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Foreword

MontiCore is a language workbench, which is developed since 2004. We have started its
development because at that time the available tools for model management where often
very poor in their functionalities and also not extensible, but closed shops. In 2004 the
first version of the UML/P was published (and is now available as [Rum16, Rum17]) and
demonstrated that the family of languages that the UML is made of can be substanti-
ated with useful transformation, refinement, refactoring and semantic diffing techniques
[KRW20, BEK"18b|. Code and test code generation as well as flexible combination of
language fragments, such as OCL within Statecharts or Class Diagrams for typing in Com-
ponent and Connector Diagrams, were the techniques of primary interest. However, at
that time available modeling tools were mainly editors and thus not helpful in realizing
these advanced and smart techniques. This was the original motivation for MontiCore that
can also be found in the first foundational theses in [Kral0, V6111, Sch12, H6118].

Later, it became apparent that the UML will be complemented by SysML as well as domain
specific languages (DSLs) that will be connected to software development or execution in
various ways. The definition of DSLs encounters the same difficulties as the definition of
the UML faced, i.e., they are often built from scratch, reuse is pretty bad, and the same
concepts get different syntactic shapes. Thus, combining DSLs is rather impossible. We
therefore extended the focus of MontiCore to become a general language workbench that
allows to define languages and language fragments and to derive as much as possible from
an integrated and therefore compact definition.

In this version of the MontiCore Reference Manual, the core facilities of MontiCore
are described. Extensions are available through various projects either using or en-
hancing MontiCore with more functionality. MontiCore provides sophisticated tech-
niques to generate transformation languages and their transformation engines based on
DSLs [H6118, HRW15, AHRW17b, RRW15, HHRW15, Weil2, HMR'19|, MontiCore
was used to explore tagging languages [Lool7, MRRW16, GLRR15, HMR*19|, various
forms of the UML and its derivatives [Sch12, Worl6, Hab16, Reil6, Rot17, HMR 19|,
sophisticated forms of language composition and derivation techniques including the
generated code [GHKT15a, HLMSN*15a, HMSNRW16, MSN17, HRW18, BEK"18a,
BEK'18b, BEK"19]. MontiCore also explored novel comfortable code generation tech-
niques [MSNRR16, EHRR19] as well as plenty of domain specific languages.

Despite MontiCore originated as academic tool to explore modeling and meta-modeling
techniques, after 17 years of development, it has reached an extraordinary strength and
is thus increasingly used in industrial projects. The small excerpt of topics below demon-
strates this: energy management [Pinl4|, program planning in the television domain
[DHH*20], modelling and execution of tax laws, assistive systems [MRV20], AutoSAR



communication and architecture modelling, autonomous driving [KKRZ19, KKR19]|, ac-
counting and management [GMNT20, AMNT20, SHH"20], orchestrating digital twins
[JvdAB*21, DMR 20, BDH"20|, internet of things, as well as in scientific projects of en-
tirely different nature, such as simulation of city scenarios for autonomous driving [Ber10]
or human brain modeling [PBIT16]. MontiCore, however, does not primarily focus on
comfort, e.g., graphical editing, but advanced functionality for model-based analysis or
synthesis of software intensive systems and quick textual editing for experienced users.

We would like to thank all current and former members of our group as well as all students
and apprentices who helped to develop MontiCore in its current shape. Namely, we would
like to thank Kai Adam, Daoud Ali, Vassily Aliseyko, Professor Dr. Christian Berger,
Vincent Bertram, Miriam Bofs, Arvid Butting, Joel Charles, Manuela Dalibor, Anabel
Derlam, Niklas Dienstknecht, Imke Drave, Robert Eikermann, Christoph Engels, Arkadii
Gerasimov, Dr. Timo Greifenberg, Dr. Hans Gronniger, Dr. Tim Giilke, Dr. Arne Haber,
Guido Hansen, Olga Haubrich, Malte Heithoff, Dr. Lars Hermerschmidt, Dr. Christoph
Herrmann, Gabi Heuschen, Steffen Hillemacher, Nico Jansen, Hendrik Kausch, Christian
Kirchhof, Carsten Kolassa, Dr. Anne-Therese Kortgen, Thomas Kurpick, Evgeny Kus-
menko, Dr. Holger Krahn, Dr. Stefan Kriebel, Achim Lindt, Dr. Markus Look, Daniel
Maibach, Professor Dr. Shahar Maoz, Matthias Markthaler, Dr. Dan Matheson, Dr.
Judith Michael, Joshua Mingers, Dr. Klaus Miiller, Dr. Pedram Mir Seyed Nazari, An-
tonio Navarro Pérez, Lukas Netz, Mathias Pfeiffer, Nina Pichler, Dr. Claas Pinkernell,
Dr. Dimitri Plotnikov, Deni Raco, Professor Dr. Jan Ringert, Dr. Holger Rendel, Dr.
Dirk Reiss, Dr. Daniel Retkowitz, Dr. Alexander Roth, Dr. Martin Schindler, David
Schmalzing, Steffi Schrader, Dr. Frank Schroven, Dr. Christoph Schulze, Igor Shumeiko,
Brian Sinkovec, Sebastian Stiiber, Simon Varga, Dr. Steven Voélkel, Louis Wachtmeister,
Dr. Ingo Weisemdller, Dr. Michael von Wenckstern, and Professor Dr. Andreas Wort-
mann. The individual contributions to MontiCore and its derivatives resulted in numerous
publications'. Special thanks go to Marita Breuer and Galina Volkova, who maintain and
extend MontiCore, and in particular to Sylvia Gunder and Sonja Miikighrodt, who en-
sure that all financial and project activities supporting our language workbench project
MontiCore are running perfectly.

We also would like to thank the authors or co-authors of several chapters, for describing
relevant parts of MontiCore directly in this handbook.

To all readers of this handbook: We hope you enjoy reading this manual and trying out
our language workbench MontiCore as well as the tools generated with MontiCore. In case
you have any suggestions or questions do not hesitate to contact us.

Aachen, 27.03.2021

Bernhard Rumpe, Katrin Holldobler, Oliver Kautz

lwww.se-rwth.de/publications/
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Chapter 1
Introduction to Tool Generation

This handbook describes how to generate tools that deal with language processing.

These tools are partially generated by the language workbench MontiCore and partially
need handcoded extensions. This handbook explains how to do this efficiently.

We assume that the reader is familiar with a variety of computer science concepts, such as
grammars, UML and in particular their class diagrams and Java. If not, [HMUO0G6] is
suggested for grammars, [Rum16] for UML, and [GJSO05] for Java.

As we will further explain, MontiCore is a meta-tool, actually a language workbench: It
generates tools. It may well be that the generated tooling is itself a generator. That
is fine, but in order to avoid confusion, we should be clear that there are two levels.
Furthermore, the generated tooling can not only be a generator, but can be used for
transformation, simple and complex analysis, simulation or the connection of runtime data
with the originating models.

All the tooling is about processing models in standard or domain specific languages (DSLs).
MontiCore generates infrastructure, such that many models as well as heterogeneous mod-
els, that means of different languages, can be processed. Modeling in the large is well
assisted.

MontiCore is not only about generation of tools, but in particular about reuse of tool
components that have been developed independently. In particular MontiCore provides a
number of techniques to systematically reuse language components by composing, extending
or inheriting them. MontiCore assists an easy development and extension of languages and
thus should be a good solution for tool development.

MontiCore also includes a number of plug-ins e.g. for Eclipse or EMF-compatible gen-
eration and thus supposedly has a rather useful development environment. We strongly
encourage the reader to download and install MontiCore.

1.1 MontiCore Language Workbench

The MontiCore language workbench can be used both as a closed product out-of-the-
box for the generation of software as well as an open, customizable framework for tool
development. MontiCore itself is a generator with the speciality that the products it
produces are generators themselves. As already said, MontiCore is therefore a meta-tool.
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~ \Tip 1.1: Where to find MontiCore

2 The MontiCore language workbench as well as a number of language components
are available as open source. More interesting information can be found at:

1| www.monticore.de // Newest info about
2 // MontiCore and the
3 // MontiCore generator
4/https://github.com/MontiCore // Sources of the core
5 // project on GitHub

At a glimpse, the features of MontiCore are:

Modular definition of languages and language components

Explicit interfaces between models, allowing heterogeneous composition of models.

Techniques for composition of languages, thus allowing:

independent language development,

language extension,
— language inheritance including concept replacement, and

— composition of language tools.

Assistance for model analysis.

Assistance for model transformation by reusing the concrete syntax of the modeling
language.

Only a single source is necessary for the definition of concrete syntax, abstract syntax,
parser and internal representation of models.

e Easy definition of e.g. Eclipse language specific editors.

e Explicit management of variability in both, languages and their generation tools.

Numerous tools for domain specific modeling languages as well as general purpose languages
have been developed by using MontiCore. Among them are MontiCore itself, a larger part
of the UML set of languages, the architectural description language MontiArc, Java, a
subset of Ansi-C++ and a feature diagram DSL (see e.g. Figure 1.2). Various applications
in engineering domains (AutoSar, autonomous driving simulation, flight control, building
facilities, energy management, cloud service configuration) and natural science (human
brain, control software for physical experiments) demonstrate the usability of MontiCore.

In addition to the above mentioned bullets this document also discusses:

e How a generator architecture looks like

e Out-of-the box use of MontiCore
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Figure 1.2: Some languages MontiCore provides

e Language definition

e How an abstract syntax (AST) looks like

e Managing symbols and visibility of definitions

e Model composition

e Language components and their composition

e Navigation an manipulation of the AST with compositional visitors
e Generation using FreeMarker’s templates

e Integration of handwritten code

There is more to say about MontiCore. However, this document explicitly omits the
internal architecture of MontiCore, how to define and apply transformations in concrete
syntax, how to manage variability of languages, and various application languages, such
as UML, MontiArc etc. The MontiCore website provides additional information.

1.2 Notational Conventions

Although MontiCore mainly relies on textual models, a diagrammatic representation is
sometimes convenient. To be clear to what language the model, code snippet, etc. belongs
to, it will be marked with a flag. An example is shown in the upper right corner of
Listing 1.3, which is an excerpt of a generated Java class called Person.

We use various abbreviations, such as CD for class diagrams, etc. Especially class diagrams
serve multiple purposes, therefore, it is necessary to understand precisely, what is modeled
by a CD. In several chapters we use the modeling language Class Diagrams for Analysis
(abbreviated: CD4A) as source for the generation process. But, we also use class diagrams
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class Person { Java «gen» PersonB]

private String firstname, surname;
Adress adr;

- W o =

Listing 1.3: Example in Java

to exhibit concrete situations in the tool or product, such as for example the extension of
a generated class GroupTOP by the handcoded class Group, which are both present in
the product, i.e., the final target of the development process. We notate this as depicted
in Figure 1.4

Product-CD)| 1/ is a class diagram that shows

classes in the product
«gen»

I —

This class is generated

S~ - hand coded

«hey

Figure 1.4: Notational conventions

1.3 Textual Modeling

Many experts think that the mental model in the conscious human brain is the most
important form of models. Thus, it is not so important how to represent the model-
ing information on the screen or on paper, but that the model communicates the right
information and concepts. However, for easy understanding, quick adaptations, logical
manipulations, refactorings or similar purposes, it seems not so unimportant to use an
appropriate representation.

It is an ongoing debate, whether and where textual or graphical models are better for
software development. It also depends on the background of the reader, which model is
easier to be used. Both forms of models do have advantages. Experts for example are
quicker to produce the model in text form, because they are not distracted by "pushing
boxes around" to produce nice diagrams. And for tool developers it is easier to write a
text processor than a diagram processing tool, especially when using this handbook.

Our experience is that computer scientists tend towards textual models due to higher
compactness, more efficient creation, refactoring and use and less dealing with graphical
layout.

Diagrams and text will coexist in the future and may be even closely integrated. MontiCore
currently focusses on text as the main form of input and output. Thus, the infrastructure
is easier for tool development.
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1.4 Methodical Considerations: Agile Modeling

There are a variety of development processes, ranging from traditional document oriented
approaches, such as the V-Model, up to several incarnations of agile development, such
as Extreme Programming (XP) [BA04] and Scrum [SBO1]. It would go beyond the scope
of this handbook to talk about methodological issues. However, we would like to hint
towards discussions that a development job could well be assisted by models and high-level
modeling languages, if the generation process for code and tests is efficient and robust. In
[Rum1l, Ruml2, Ruml6| this is discussed in detail.

[Rum12] for example suggests to combine the advantages of agile development with use
of models by concentrating on a set of complementing models with as little redundancy
as possible in order to represent each piece of information only once and as compact as
possible. Figure 1.5 depicts this idea in an abstract form, mainly focussing on the UML.

object

class statecharts g
architecture diagrams C++, lagrams sequence
diagram % Java . T: diagrams

N
\ [ J
l \[ L Y J

consistency parameterized test code
analyser code generator
generator

L

Y <
errors 4

Figure 1.5: Agile use of models for coding and testing

Some generators concentrate on the system while other generators derive automatically
running testing code similar to JUnit tests [Becl5]. If the software to be developed is part
of a larger system, it would also be possible to derive automatically running simulations
for the complete product or some of its components to check the correctness of the system,
e.g. done in [BR12b].

As a consequence, we suggest to base larger parts of the development project on modeling
artifacts. Models can be used for

rapid prototyping,

e code generation,

generation of automated tests,

documentation,
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e static analysis, and

e refactoring and evolution.

In a generative software development project, models serve as central artifacts. They are
used for programming, testing and specifying.

QTip 1.6: Agile Model-Based Development

2 Agile software development and model-based generation fit together.

First and foremost, generation obviously increases the speed of development.
However, this only becomes an advantage, when two important criteria are fulfilled:

(1) It is important to easily rerun the generator each time a slight change was
made in the models. A one-shot generation is not helpful, because it does not assist
any form of evolution, but only the waterfall model. So, it is best to not manually
touch generated code.

(2) To keep the pace of development, generation must be quick. In particular when
generating lots of code from lots of models, incremental generation based on detected
changes is necessary. So, it is optimal to use an intelligent dependency management
that allows automatic incremental and thus efficiently minimal re-generation.

Then agile generative software development becomes possible.

( —

QTip 1.7: Current Version of this Document is Online

MontiCore is an evolving tool. Therefore, more material describing the capabili-
ties and forms of usage will evolve over time.

Therefore, you might also have a look at MontiCore’s website.

However, your feedback will definitely be appreciated, e.g. by emails to
monticore@se-rwth.de or through sending a printout with comments.




Chapter 2
Getting Started with MontiCore

This chapter describes the technical installation and usage of MontiCore for language
developers. This chapter further inspects a simple example grammar and the Java classes
and other artifacts generated from this grammar. After installing MontiCore as described
in this chapter, it can be used to develop new modeling languages and generators as
described in subsequent chapters.

MontiCore provides a command line interface (CLI) tool and can easily be used with Gra-
dle. The Gradle integration enables developers to easily employ MontiCore in commonly
used integrated development environments (IDEs), such as Eclipse and IntelliJ IDEA. We
strongly recommend to work through the section about the CLI tool first. The CLI sec-
tion contains information about an example MontiCore project and the files generated by
MontiCore. It also shortly explains some key features of MontiCore.

A potentially newer explanation can be found on the MontiCore website. Detailed infor-
mation about all configuration options that can be used in the MontiCore CLI tool and
in MontiCore Gradle projects are explained in Chapter 16. More information about the
example Automata language are available in Section 21.1.

'(/ ~\Tip 2.1: MontiCore Website: Where to find MontiCore

The MontiCore language workbench as well as a number of language components
are available as open source. More interesting information can be found at:

1|www.monticore.de/ // Newest info about

2 // MontiCore and the

3 // MontiCore generator

4

5| www.monticore.de/gettingstarted // Introductory tutorial

2.1 Prerequisites: Installing the Java Development Kit

We start with the JDK: Please perform the following steps to install the Java Development
Kit (JDK) and validate that the installation was successful:
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/ \Tip 2.2: MontiCore Website: Best Practices

website.

Many best practices for the development with MontiCore can be found on the

www.monticore.de/bestpractices

e Install a JDK with at least version 8 provided by Oracle or OpenJDK.

o Make sure the environment variable JAVA_HOME points to the installed JDK, and

not to the JRE, e.g., the following would be good:
— /usr/lib/jvm/java-8-openjdk on UNIX or
— C:\Program Files\Java\jdkl.8.* on Windows.

You will need this in order to run the Java compiler for compiling the generated Java
source files.

Also make sure that the PATH system variable is set such that the Java compiler can
be used from any directory. JDK installations on UNIX systems do this automati-
cally. On Windows systems, the bin directory of the JDK installation needs to be
appended to the PATH variable, e.g. $PATH%; $JAVA_HOME%\bin .

Test whether the setup was successful. Open a command line shell in any directory.
Execute the command javac -version. If this command is recognized and the
shell displays the version of the installed JDK (e.g., javac 1.8.0_192), then the
setup was successful.

Now we have the prerequisites to run MontiCore from the command line. The JDK instal-
lation is also required for using MontiCore with Gradle.

2.2

Install and Use the MontiCore Command Line Interface

This section describes instructions to perform the following first steps to use MontiCore as
an CLI tool:

Installation of the MontiCore distribution file.
Grammar inspection

Running the MontiCore generator

Compiling the product

Running the product, i.e. the Automata tool with an example model
example/PingPong.aut.
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2.2.1 Installation

For installing MontiCore, perform the following steps:

™

© 0w N O ot s W
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2.

1. Download the example Automata MontiCore project:

=

// MontiCore zip distribution source
http://www.monticore.de/download/monticore.tar.gz

M

2. Unzip the archive. The unzipped files include a directory called mc-workspace
containing the executable MontiCore CLI monticore-cli. jar along with a di-
rectory src containing handwritten Automata DSL infrastructure, a directory hwc
containing handwritten code that is incorporated into the generated code, and a
directory example containing an example model of the Automata DSL.

// MontiCore zip distribution content in directory mc-workspace
Automata.mc4

monticore-cli. jar

src/automata/AutomataTool. java
src/automata/visitors/CountStates. java
src/automata/prettyprint/PrettyPrinter. java
src/automata/cocos/AtLeastOneInitialAndFinalState. java
src/automata/cocos/StateNameStartsWithCapitalLetter. java
src/automata/cocos/TransitionSourceExists. java
hwc/automata/_ast/ASTState. java
hwc/automata/_symboltable/AutomatonSymbol. java
hwc/automata/_symboltable/AutomataSymbols2Json. java
hwc/automata/_symboltable/AutomatonSymbolDeser. java
hwc/automata/_symboltable/AutomataGlobalScope. java
example/PingPong.aut

2.2 Inspect the Example Grammar

MontiCore is a language workbench. It supports developers in developing modular model-
ing languages. The core of MontiCore is its grammar modeling language (cf. Chapter 4),
which is used by developers for modeling context-free grammars. A MontiCore grammar
defines (parts of) the abstract and concrete syntax of a language. Each grammar contains
nonterminals, production rules, and may extend other grammars. At most one rule is
marked as the start rule.

It is a key feature of MontiCore that it allows a grammar to reuse and extend other gram-
mars. In an extension all of the nonterminals defined in the extended grammars can be
reused or even overridden. This form of extension allows to achieve several effects:

e Language (i.e. grammar) components can be reused and integrated in larger lan-
guages, composed of several components.

e Individual nonterminals can be reused (like classes) from a library.
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e A given language can be extended, which enables developers to add additional alter-
natives inside a language.

Component grammars and grammar extensions are detailedly discussed in Chapter 4.

1|grammar Automata extends de.monticore.MCBasics { MCG =
2

3 symbol scope Automaton =

4 "automaton" Name "{" (State | Transition)s* "}"

5

6 symbol State =

7 "state" Name

8 (("<<™ ["inditdial"™] ">>" ) | ("<<" ["final"] ">>" ))=«*
9 ( ("{™ (State | Transition)x= "}") | "; ")

10

11 Transition =

12 from:Name "-" input:Name ">" to:Name ";" ;

13| }

Listing 2.3: The Automata grammar

In the following, we inspect the MontiCore grammar of the Automata language. Navigate
your file explorer to the unzipped mc—workspace directory. The directory contains the
file Automata.mc4. This file contains the MontiCore grammar depicted in Listing 2.3.
MontiCore grammars end with .mc4.

The definition of a MontiCore grammar starts with the keyword grammar, followed by
the grammar’s name (1. 1). In this example, the grammar is called Automata. The
grammar’s name is optionally followed by the keyword extends and a list of grammars
that are extended by the grammar. In this example, the Automata grammar extends the
grammar de.monticore.MCBasics.

/~ \Tip 2.4: MontiCore Key Feature: Composition

2 The MontiCore language workbench allows to compose language components by
composing grammars and also to reuse all infrastructure, such as context conditions,
symbol table infrastructure, generator parts and handwritten extensions.

In the example the Automata grammar extends the grammar
de.monticore.MCBasics and thus reuses its functionality.

MontiCore comes with an extensive library of predefined language components.

Grammars can also have a package and import other grammars. If a grammar has a
package, then the package declaration must be the first statement in the grammar and
is of the form package QualifiedName where package is a keyword and Qualified Name
is an arbitrary qualified name (e.g., de.monticore). The optional grammar imports
follow the package definition. Every import is of the form import QualifiedName. The
Automata example grammar file does neither contain a package declaration nor imports.
The grammar extended by the Automata grammar is specified by its fully qualified name.

10
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automaton PingPong {
state NoGame <<initial>>;
state Ping;
state Pong <<final>>;

NoGame - startGame > Ping;

Ping stopGame > NoGame;
Pong - stopGame > NoGame;

11 Ping - returnBall > Pong;
12 Pong - returnBall > Ping;

Listing 2.5: A model conforming to the Automata grammar

As usual in context-free grammars, production rules have a left-hand side and a right-hand
side. The left-hand side contains the possibly annotated name of a nonterminal. The left-
hand side is followed by the terminal = and the right-hand side. Nonterminal names start
with an upper-case letter. For instance, the Automata grammar contains the nonterminals
Automaton, State, and Transition. A single nonterminal can be annotated with the
start keyword. Then, the nonterminal is the starting symbol of the grammar. If no
nonterminal is annotated with start, then the first nonterminal of the grammar becomes
the starting symbol by default. In the Automata grammar, the Aut omaton nonterminal
is the starting symbol.

The other possible annotations for nonterminals influence the generated classes for the
abstract syntax tree as well as the generated symbol table infrastructure. Details can be
found in Chapter 4 and Chapter 9. For example, the Automaton nonterminal is anno-
tated with symbol and scope. The annotation symbol makes the MontiCore generator
generate a symbol class for the nonterminal. Intuitively stated, the annotation scope
instructs MontiCore to construct a symbol table infrastructure that opens a scope when
the production is processed. The following sections explain the effects of annotating the
Automaton nonterminal with the keywords symbol and scope in more detail. Termi-
nals are surrounded by quotation marks. The Automata grammar, for example, inter alia
contains the terminals automaton, state, {, }, and ;.

The right-hand sides of grammar productions consist of nonterminals, terminals, and se-
mantic predicates, may use cardinalities (x, +, ?), and introduce alternatives via the
terminal | as known from regular expressions. Details can be found in Chapter 4. The
right-hand side of the production defining the nonterminal Aut omaton, for example, uses
the terminal automaton and the nonterminals Name, State, and Transition. The
nonterminal Name is not defined in the grammar Automata. Thus, it must be defined in
one of the extended grammars. In this case, Name is defined in the grammar MCBasics
and is reused by the grammar Automata. For distinguishing different usages of nonter-
minals on right-hand sides, they can be named. For example, the right-hand side of the
production defining the nonterminal Transition uses the Name nonterminal twice. The
first usage is named input and the second usage is named to. MontiCore also supports

11
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interface and external nonterminals for introducing extension points as detailedly
described in Chapter 4. However, the example grammar does not use these concepts.

Listing 2.5 depicts an example model conforming to the Automata grammar in its concrete
syntax. You can find the model in the file PingPong.aut contained in the example
directory of the unzipped mc-workspace directory.

2.2.3 Run MontiCore

The MontiCore generator takes a MontiCore grammar as input and generates an infras-
tructure for processing models conforming to the grammar. When a grammar E extends
another grammar G, then all of the infrastructure generated for the grammar G is reused
and only the extending part from E is generated.

/~ \Tip 2.6: Infrastructure Generated by MontiCore

2 MontiCore itself as well as the infrastructure generated by the MontiCore gener-
ator are implemented in Java. This infrastructure includes:

e a parser for parsing models conforming to the grammar and transforming tex-
tual models into abstract syntax tree instances abstracting from the concrete
syntax.

e a symbol table infrastructure to handle the symbols introduced or used by
models conforming to the grammar. The symbol table infrastructure is used
for resolving dependencies between model elements that are possibly defined
in different files.

e a context-condition checking framework for checking well-formedness rules that
cannot be captured by context-free languages.

e a visitor infrastructure for traversing models respectively their abstract syntax
instances. The abstract syntax of a model consists of its internal representation
as an abstract syntax tree abstracting from the concrete syntax of the model
(the instance of the data structure obtained from parsing) and the symbol
table of the model.

e a mill infrastructure for retrieving objects for language processing, such as
parsers, builders for abstract syntax trees, visitors and objects for the sym-
bol tables of the language. The possibility to configure the mills is crucial
for reusing the functionality implemented for a sublanguage (cf. Section 5.9,
Section 5.10.2, and Section 11.5 for details).

e a code generating framework that extends the FreeMarker template engine
[Fre21] by various modularity enhancing features.

For executing MontiCore using the Automata grammar as input, perform the following
two steps:

12
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1. Open a command line shell and change the working directory to the unzipped direc-
tory (mc-workspace).

2. Execute the following command in order to generate the language infrastructure of
the Automata DSL:

java —jar monticore-cli.jar Automata.mc4 —-hcp hwc/

The only required argument Automata.mc4 denotes the input grammar that shall
be processed by MontiCore. The processing includes the generation of the language
infrastructure. Using the option —hcp enables specifying the path to a directory
containing the handwritten code that is to be incorporated into the generated in-
frastructure. In this case, passing the argument hwc/ to the option —hcp makes
MontiCore consider the handwritten code located in the directory hwc/. Provid-
ing handwritten code enables to easily incorporate additional functionality into the
generated code. For example, this enables developers to extend generated abstract
syntax classes as detailedly described in Section 5.10.

Executing the command launches MontiCore, which results in the executing of the
following steps:

a) The specified grammar is parsed and processed by MontiCore.

b) Java source files for the corresponding DSL infrastructure are generated into
the default output directory out. This infrastructure consists of the directories

e out/automata/ containing the mill (cf. Section 5.9, Section 5.10.2, Sec-
tion 11.5).

e out/automata/_ast containing the abstract syntax tree data structure
(cf. Chapter 5).

e out/automata/_auxiliary containing adapted mills of sublanguages,
which are required for configuring the mills of sublanguages (cf. Chap-
ter 11).

e out/automata/_cocos containing the infrastructure for context condi-
tions (cf. Chapter 10).

e out/automata/_od containing the infrastructure for printing object di-
agrams for reports produced during processing the models.

e out/automata/_parser containing the generated parsers, which are

based on ANTLR (cf. Chapter 6).

e out/automata/_symboltable containing the infrastructure for the
symbol table (cf. Chapter 6).

e out/automata/_visitor containing the infrastructure for visitors (cf.
Chapter 9).

e out/reports/automata containing reports created during the process-
ing of the grammar.

13
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¢) The output directory also contains a log file of the executed generation pro-
cess monticore.YYYY-MM-DD-HHmmss .log with the generation time in its
narme.

In the following, we review the classes and interfaces generated from the Automata gram-
mar that are relevant for language engineers in more detail. We do not review the classes
and interfaces that are only internally relevant for MontiCore and are usually not intended
to be used by language engineers.

Abstract Syntax Tree Data Structure

The abstract syntax tree data structure is generated into the directory
out/automata/_ast. Details about the generation of AST classes can be found
in (cf. Chapter 5). For each nonterminal contained in the grammar, the MontiCore
generator produces AST and corresponding builder classes. The AST classes implement
the abstract syntax tree data structure.

The builder classes implement the builder pattern for constructing instances of the re-
spective AST classes as usual. For example, the class ASTAutomaton is the AST
class generated for the Automaton nonterminal (cf. Listing 2.3, 1. 3) and the class
ASTAutomatonBuilder is the corresponding generated builder class.

«interface»

|AutomataScope

enclosingScope | 1 1| spannedScope

ASTAutomaton

<@ String name I —
1 i symbol
« | states AutomatonSymbol « [transitions

ASTState String name ASTTransition

Figure 2.7: Parts of the AST data structure generated for the Automata grammar

The contents of the AST and builder classes are generated systematically from the gram-
mar. The attributes of each AST class resemble the right-hand side of the corresponding
production rule. In the following, we mainly speak of attributes, but please be aware that
all attributes come fully equipped with access and modification methods, which should
normally be used.

For instance, Figure 2.7 depicts parts of the generated AST infrastructure for the
Automata grammar. The class ASTAutomaton contains the attributes name, states,
and transitions. The AST class does not contain an attribute for the terminal
automaton as it is part of every word conforming to the production of the Automaton
nonterminal. The type of the attribute name is String whereas the attributes states
and transitions are lists of the types of the AST classes corresponding to the used non-
terminals. This is the case because exactly one Name is parsed with the right-hand side

14
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of the production of the nonterminal Aut omaton, whereas multiple states and transitions
can be parsed.

The ASTAutomaton class further contains the attributes symbol, spannedScope, and
enclosingScope. These attributes are specific to the symbol table of Aut omata models
and are used for linking the symbol table of a model with its abstract syntax tree. Details
can be found in Chapter 9.

‘/’“\ij 2.8: Generated Symbols and Scopes in the AST

& Each AST class contains access to the enclosingScope.
When a production contains the keyword symbol, the generated AST class con-
tains the attribute symbol (see Chapter 9).
Keyword scope indicates that a nonterminal also defines a new local scope,
stored in attribute spannedScope.
The parser builds the abstract syntax tree of a model and the available scope
genitor creates the symbol table of the model, consisting of symbols and scopes.

The ASTAutomaton class further contains several straight-forward methods for checking
different instances for equality and accessing the attributes. Similar to the ASTAutomaton
class, the ASTAutomatonBuilder class contains attributes resembling the right-hand
side of the corresponding production. It further contains methods for changing the values
of the attributes (e.g., addsState), checking whether the AST instance that would be
constructed from the current builder state is valid (cf. 1svalid), and for building the
AST instance corresponding to the builder’s state (cf. build). The contents of the other
AST and Builder classes are constructed analogously.

r‘/’*\Tip 2.9: Handwritten AST Class Extensions

-\& If the generator detects that an AST class for a nonterminal is already imple-
mented in the handwritten code, then it produces a corresponding TOP AST class
instead.

This TOP mechanism allows developers to add handwritten extensions to any
generated class, while reusing the generated TOP class via extension.

This gives a very close integration between handwritten and generated code that
even adapts builders accordingly, while preventing the very bad habit of performing
manual changes to the generated code.

Option —hcp tells the generator where to look for handwritten integrations.

The following section presents the methods of the classes for parsing textual models (pos-
sibly stored in files) into AST class instances at runtime. For now, it suffices for you to
understand that (1) MontiCore generates an extensible AST data structure that resembles
the nonterminals and productions of the grammar in a straight-forward way and (2) that
all models of a grammar have an AST data structure representation for internal processing.

15
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Parser

The parser infrastructure is generated into the directory out/automata/_parser. De-
tails about the generated parsers and their uses are described in Chapter 6.

AutomataParser

Optional<ASTAutomaton> parse(String fileName)
Optional<ASTAutomaton> parse(Reader reader)
Optional<ASTAutomaton> parse_String(String str)
Optional<ASTState> parseState(String fileName)
Optional<ASTState> parseState(Reader reader)
Optional<ASTState> parse_StringState(String str)

Figure 2.10: Parts of the class AutomataParser, which is generated from the Automata
grammar

Parts of the generated class AutomataParser are depicted in Figure 2.10. The class
implements the generated parser for the Automata grammar. Usually, developers are
solely concerned with the methods parse (String) and parse_String (String). For
now, it suffices if you remember that parsing textual Automata models stored in files is
possible by calling the method parse (String) of an AutomataParser object with the
fully qualified name of the file as input.

r‘/"'\JTip 2.11: Methods for Parsing

-
lw The class AutomataParser contains the methods

e parse (Reader r),
e parse (String filename), and

e parse_String(String content).

All of the methods return an object of type Optional<ASTAutomaton>, where
absence means failure of parsing and errors have been issued.

For each nonterminal in the grammar, the class further contains methods for
parsing a sub-model described by this nonterminal.

Symbol Table

The symbol table infrastructure is generated into the directory
out/automata/_symboltable. Details about the generated symbol table in-
frastructure and its use are described in Chapter 9. The symbol table infrastructure
is used for resolving cross-references concerning information defined in different model
elements that are potentially defined in different models stored in different files.
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«interface»
IMCBasicsScope

«interface»
|AutomataScope

«interface» : «interface» «interface»
|AutomataGlobalScope AutomataScope |IAutomataArtifactScope IMCBasicsAtrtifactScope

‘ AutomataGlobalScope }j ZL‘ AutomataArtifactScope *

Figure 2.12: The scope classes generated from the Automata grammar

~\Tip 2.13: Scope Classes

I/

For the Automata grammar, the generator produces the classes

e AutomataScope,
e AutomataArtifactScope, and

e AutomataGlobalScope

as well as respective interfaces. The relationships between these classes and in-
terfaces are depicted in Figure 2.12.

The singleton AutomataGlobalScope contains all
AutomataArtifactScopes of all loaded Automata artifacts.
AutomataScopes represent scopes spanned inside of models.

spannedScope «interface» spannedScope
1 |IAutomataScope 1

[N

enclosingScope 1| enclosingScope

StateSymbol AutomatonSymbolTOP

String name String name

L

AutomatonSymbol

String name

Figure 2.14: Parts of the symbol classes generated from the Automata grammar

Figure 2.14 depicts parts of the symbol classes generated for the Automata grammar.
As the nonterminal State is annotated with symbol in the Automata grammar, the
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generator produces the class StateSymbol. The StateSymbol class, inter alia, con-
tains the attributes name, enclosingScope, and spannedScope. The attribute name
stores the name of the symbol. The attributes enclosingScope and spannedScope
store the enclosing and spanned scopes of the symbol. The class further contains meth-
ods for accessing and setting the attributes. For all symbol classes, the MontiCore
generator also produces builder classes (e.g., AutomataArtifactScopeBuilder and
StateSymbolBuilder).

"/ ~\Tip 2.15: Extending Symbol Classes

It is possible to add further methods and attributes in two ways:
e adding a symbol rule in the grammar (described in Chapter 9) or

e using the TOP mechanism applied to the generated symbols.

The generated class AutomataScopesGenitor is responsible for creating the scope
structure of Automata artifacts and linking the scope structure with the correspond-
ing AST nodes. For this task, it provides the method createFromAST that takes an
ASTAutomaton instance as input and returns an TAutomataArtifactScope instance.
The returned TAutomataArtifactScope instance can be added as a subscope to the
(during runtime unique and administrated by the mill) AutomataGlobalScope instance.

Developers can create visitors for complementing the symbol table (creating symbols and
filling the extensions introduced via symbol rules or the TOP mechanism) of an Automata
artifact. After creating the scope structure, the visitor should be used to traverse the AST
instance of the artifact for complementing the symbols and scopes. The following sections
explain the generated visitor infrastructure in more detail.

Optional<AutomatonSymbol> resolveAutomaton (String name)
List<AutomatonSymbol> resolveAutomatonMany (String name)
Optional<StateSymbol> resolveState (String name)

List<StateSymbol> resolveStateMany (String name)

oW N e

Listing 2.16: Different resolve methods

For each nonterminal annotated with symbol in the grammar Automata, the scope in-
terfaces contain a symbol-specific resolve method taking a string as input. The method
can be called to resolve symbol instances by their names. The name given as input to
a resolve method should be as qualified as needed to find the symbol. For instance,
Listing 2.16 lists the signatures of four of the resolve methods provided by the interface
TAutomataScope.

For now, it suffices for you to understand that (1) MontiCore generates an extensible
symbol table data structure that resembles the scope and symbol structure as specified
in the grammar in a straight-forward way and (2) that all models of a grammar have a
symbol table data structure representation for internal processing and (3) that symbols
can be resolved from scopes via calling the resolve methods.
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(De)Serialization of Symbol Tables

MontiCore also supports the serialization and deserialization of symbol tables. The
(de)serialization is crucial for incremental code generation and efficient language com-
position via aggregation. Details about this are explained in Chapter 7 and Chapter 9.

For the (de)serialization, the generator produces the class AutomataSymbol2Json. It
provides the public methods store and load. The former can be used to serialize
IAutomataScope instances into their string representations encoded in JSON and per-
sisting these to a file at a location that is passed as method argument. The latter can
be used to load a stored IAutomataScope into its objects representation. For now, it
suffices that you understand which methods to call for the (de)serialization.

Visitor

«interface»

AutomataTraverser
void add4Automata(AutomataVisitor2 v)
void add4MCBasics(MCBasicsVisitor2 v)
void setAutomataHandler(AutomataHandler h)
void setMCBasicsHandler(MCBasicsHandler h)
void visit(ASTAutomatonNode n)
void endVisit(ASTAutomatonNode n)
void handle(ASTAutomatonNode n)
void traverse(ASTAutomatonNode n)

L

‘ AutomataTraverserlmplementation |

0..1l automataHandler * lautomataVisitorList
«interface» «interface»
AutomataHandler AutomataVisitor2
void handle(ASTAutomatonNode n) void visit(ASTAutomatonNode n)
void traverse(ASTAutomatonNode n) void endVisit(ASTAutomatonNode n)

Figure 2.17: Parts of the visitor infrastructure generated from the Automata grammar

The visitor infrastructure is generated into the directory out /automata/_visitor. De-
tails about the generated visitor infrastructure are described in Chapter 8. For each gram-
mar, the generator systematically produces several classes and interfaces implementing the
visitor infrastructure. For the Automata grammar, for example, the generator produces
the interfaces AutomataTraverser, AutomataVisitor2, and AutomataHandler
and the class AutomataTraverserImplementation. The relationships between these
interfaces and classes are depicted in Figure 2.17.

The interfaces Traverser, Visitor2 and Handler together realize the Visitor pattern.
Conceptually, the traverser is the entry point for traversing. The traverser manages visi-
tors for the different sublanguages and realizes the default traversing strategy. Whenever
an AST node is traversed, the traverser delegates the visit to the corresponding visitor
implementation. If a special traversal is to be implemented that differs from the default,
it is possible to add handlers to the traverser that realize the alternative traversal. For a
more detailed explanation consider reading Chapter 8.
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~ \Tip 2.18: Visitors

2 MontiCore provides the visitor pattern in a detangled and thus flexible variant.
AutomataTraverser is traversing the AST. AutomataVisitor2 contain the
actual functionalities, added through subclassing. Many visitors can be added to
the traverser for parallel execution via the method add4Automata.
The visitors are compositional, allowing to maximize reuse of visitors from sub-
languages, and they can be adapted through the TOP mechanism.

For example, the handwritten class PrettyPrinter, which can be found in the di-
rectory mc-workspace/src/automata/prettyprint, implements functionality for
pretty printing an Automata model, which is given by its abstract syntax tree. List-
ing 2.19 depicts the attributes and the constructor of the class. The PrettyPrinter
class implements the AutomataHandler interface. Its constructor instantiates a printer
(a helper for printing indented strings) and retrieves an AutomataTraverser object
from the mill (which is explained later on). It sets the handler of the traverser to itself.
This ensures that the pretty printer becomes the handler of the traverser. We will execute
it in a following section.

| Java «hw» PrettyPrinter B]

public class PrettyPrinter implements AutomataHandler ({
private final IndentPrinter printer;
private AutomataTraverser traverser;

public PrettyPrinter () {
this.printer = new IndentPrinter();
this.traverser = AutomataMill.traverser();
traverser.setAutomataHandler (this) ;

© 0w N ot s W N =

=
o
—

11| }

Listing 2.19: Attributes and constructor of the PrettyPrinter for the Automata lan-
guage

For now, you should understand that (1) for implementing visitors it is often sufficient to
implement the visitor interfaces and to add them to a traverser and (2) custom traversals
can be realized by implementing handlers and adding those to the traverser.

Context Conditions

The  context  condition infrastructure is  generated into the  directory
out/automata/_cocos. Details about the generated context condition infrastructure
are described in Chapter 10.

For each nonterminal of a grammar, the generator produces a context condition interface
for implementing context conditions for this nonterminal. For the Automata grammar, for
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example, the generator produced the interface AutomataASTStateCoCo. The interface
solely contains the method check (ASTState). Each class implementing the interface
should represent a predicate over subtrees of abstract syntax trees starting at a node with
the type corresponding to the nonterminal.

The check method should be implemented such that it reports an error or a warning if
the input node does not satisfy the predicate. Thus, context conditions implement well-
formedness rules that cannot be captured by context-free grammars (or that are intention-
ally not captured by the grammar to achieve a specific AST data structure). For producing
the error or warning, the static methods error and warning of the MontiCore runtime
class Log should be used.

For the Automata grammar, the generator also produced the class
AutomataCocoChecker. For each nonterminal of the grammar, the class con-
tains a method for adding context condition instances to an AutomataCocoChecker
instance. For checking whether an AST node satisfies all registered context conditions,
the method checkAll can be called with the AST node as input. Calling the method
makes the checker traverse the abstract syntax tree and check whether each node satisfies
the context conditions registered for the node. Thus, AutomataCocoChecker instances
represent sets of context conditions that are required to be satisfied by abstract syntax
tree instances.

For now, you should understand that (1) implementing context conditions is possible via
implementing the generated CoCo interfaces and (2) context conditions can be checked via
instantiating the Checker class, adding the CoCos, and calling the check211 method.

Mill as Factory for Builders

The mill for the Automata language is generated into the directory out/automata/.
Details about the generated mill and the mill pattern in general are described in Sec-
tion 11.5. The generated mill class AutomataMill is responsible for providing ready
to use and correct parser, scope genitor, scope, and builder instances. The mill of each
language is a singleton.

/ \Tip 2.20: Mill Use and Automatic Initialization

2 A mill is a factory for builders and other commonly used functions, such as parsers
or visitors. The mill was introduced to ensure compositionality of languages, while
retaining reusability of functions developed for sublanguages.

Only one mill instance exists, even though in composed languages it is available
under several static signatures. Let language G2 extend another language G1. Then
G2M1i11 initializes the G1Mi11 appropriately, such that all of the code of the sub-
language G1 can be reused in the tools developed for the language G2, even when
creating new AST nodes, symbols, etc.

Cool mechanism and the developers don’t have to bother.
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public static TAutomataGlobalScope globalScope () [ Java «gen» AutomataMill =

public static TAutomataArtifactScope artifactScope ()

public static IAutomataScope scope ()

public static AutomataScopesGenitor scopesGenitor ()

public static AutomataScopesGenitorDelegator
scopesGenitorDelegator ()

public static ASTAutomatonBuilder automatonBuilder ()

public static AutomatonSymbolBuilder automatonSymbolBuilder ()

public static AutomataParser parser ()

public static AutomataTraverser traverser ()

© 0 N O Ut s W N

=
o

Listing 2.21: Some methods of the AutomataMill API

Developers should retrieve all instances of the classes and interfaces provided by the mill
by using the mill. Instances of the classes and interfaces that are provided by the mill
should never be instantiated manually. Otherwise, it may be the case that not all of the
code implemented for the language can be reused as expected in other languages extending
the language. Listing 2.21 shows some signatures of the methods of the AutomataMill.

 \Tip 2.22: Mill Methods

@ A mill provides public static methods for retrieving the instances of the
parsers, scope genitors, scopes, and builders. For that is acts like a factory. Because
a mill is realized using the static delegator pattern (cf. 11.1), it still can be adapted
at will.
This combines the advantage of general availability with the advantage of being
able to override the functions.

For now, you should understand that (1) the methods of the mill should be used for creating
ready to use and correct parser, scope genitor, scope, and builder instances and (2) how
to call these methods.

2.2.4 Compile the Target

Section 2.2.3 describes how to generate the desired Java code from a MontiCore grammar.
For compiling these Java classes, generated for the Automata DSL, execute the following
command:

javac —-cp monticore-cli.jar —-sourcepath "src/;out/;hwc/" \
src/automata/AutomataTool. java

Please note, on Unix systems paths are separated using ":" (colon) instead of semicolons.

Providing the option -cp with the argument monticore-cli.jar makes the
Java compiler consider the compiled MontiCore runtime classes contained in the file
monticore-cli. jar.
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The option —sourcepath enables to specify paths to directories containing the source
files that should be considered during the compilation.

In this case, executing the command makes the Java compiler consider all generated classes
located in out and all handwritten classes located in src and hwc. The last argument
instructs the Java compiler to compile the class src/automata/AutomataTool. java.

Please note that the structure of the handwritten classes follows the package layout of the
generated code, i.e. there are the following subdirectories (Java packages):

e src/automata contains the top-level language realization for using the generated
DSL infrastructure. In this case the class src/automata/AutomataTool. java
constitutes a main class executable for processing automata models with the au-
tomata DSL.

e src/automata/cocos contains infrastructure for context condition of the au-
tomata DSL.

e src/automata/prettyprint contains an exemplary use of the generated visitor
infrastructure for processing parsed models for pretty printing.

e src/automata/visitors contains an exemplary analysis using the visitor infras-
tructure. The exemplary analysis counts the states contained in the parsed automata
model.

e hwc/automata/_ast contains an exemplary usage of the handwritten code inte-
gration mechanism for modifying the AST for the automata DSL. Details about the
integration mechanism are described in Section 5.10.

e hwc/automata/_symboltable contains handwritten extensions of the generated
symbol table infrastructure. Details about implementing handwritten symbol table
infrastructure extensions are described in Chapter 9.

Please, also do not mix the code for the Automata tool vs. the code for the final product,
generated from that tool, although both have a similar package structure.

We already described the contents of the directories hwc/automata/_ast and
hwc/automata/_symboltable in the previous section. They contain handwritten ex-
tensions of the abstract syntax of the Automata language.

| Java «hw» CountStates B]

}

1

2|public class CountStates implements AutomataVisitor2 {
3| private int count = 0;

4

5 @Override

6 public void visit (ASTState node) {

7 count++;

8

9

=
o

public int getCount () {
return count;

}

=
=

-
M

23



2. Getting Started with MontiCore

13| }

Listing 2.23: The CountStates visitor implementation

The directory src/automata/visitors contains the file CountStates. java. The
class is depicted in Listing 2.23. It implements a simple visitor for counting the num-
ber of states contained in an Automata model. To this effect, it implements the
AutomataVisitor2 interface. It has an attribute count of type int for storing the cur-
rent number of counted nodes. It overrides the visit method for ASTState to increase
the counter whenever a state is visited.

The directory src/automata/cocos contains the context-condition implementations for
the Automata language.

1 | Java «hw» AtLeastOnelnitialAndFinalState \>'|
2| public class AtLeastOneInitialAndFinalState

3 implements AutomataASTAutomatonCoCo {

4 @Override

5 public void check (ASTAutomaton automaton) {

6 boolean initialState = false;

7 boolean finalState = false;

8

9 for (ASTState state : automaton.getStatelList()) {
10 if (state.isInitial()) {

11 initialState = true;

12 }

13 if (state.isFinal()) {

14 finalState = true;

15 }

16 }

17

18 if (!initialState || !finalState) {

19 // Issue error...

20 Log.error ("OxA0116 An automaton must have at least one "
21 + "initial and one final state.",

22 automaton.get_SourcePositionStart ());

23 }

24 }

25 }

Listing 2.24: Context condition implementation for checking that there exist at least one
initial and at least one final state

Listing 2.24 depicts the class AtLeastOneInitialAndFinalState. The class imple-
ments a context condition for checking whether an Automata model contains at least
one initial and at least one final state. To this effect, the class implements the interface
AutomataASTAutomatonCoCo. The class StateNameStartsWithCapitalletter
is implemented similarly.
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i1|public class TransitionSourceExists [Java <hw» TransitionSourceBxists
2 implements AutomataASTTransitionCoCo {

3

4 @Override

5 public void check (ASTTransition node) {

6

7 TAutomataScope enclosingScope = node.getEnclosingScope () ;
8 Optional<StateSymbol> sourceState =

9 enclosingScope.resolveState (node.getFrom());

10

11 if (!sourceState.isPresent()) {

12 // Issue error...

13 Log.error (

14 "0xADDO3 Source state of transition missing.",

15 node.get_SourcePositionStart ());

16 }
17 }
18] }

Listing 2.25: Context condition implementation for checking that states used in transitions
exist

Listing 2.25 presents the implementation of the class TransitionSourceExists. The
class implements a context condition for checking whether the source states used in tran-
sitions are defined. To this effect, the class uses the resolving mechanisms of the symbol
table. For each transition, the context conditions tries to resolve the state symbol corre-
sponding to the source state of the transition. If the resolving fails for the state, then the
context condition logs an error.

The class AutomataTool is the main class of the Automata language. It is defined in
the file AutomataTool. java contained in the directory src/automata.

i|public ASTAutomaton parse (String model) { [Java <hw» AutomataTool =)
2 try {

3 AutomataParser parser = new AutomataParser () ;

4 Optional<ASTAutomaton> optAutomaton = parser.parse (model);

5

6 if (!parser.hasErrors () && optAutomaton.isPresent ()) {

7 return optAutomaton.get () ;

8 }

9 Log.error ("OxEE840 Model could not be parsed.");

10 }

11 catch (RecognitionException | IOException e) {

12 Log.error ("OxEE640 Failed to parse " + model, e);
13 }

14 System.exit (1);

15 return null;

16| }

17
18| public IAutomataArtifactScope createSymbolTable (ASTAutomaton ast) {
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19
20 IAutomataGlobalScope globalScope = AutomataMill.globalScope();
21 globalScope.setModelPath (new ModelPath());

22 globalScope.setFileExt ("aut");

23
24 AutomataScopesGenitorDelegator symbolTable = AutomataMill
25 .scopesGenitorDelegator () ;

26
27 return symbolTable.createFromAST (ast);
28] }

Listing 2.26: Methods for parsing and creating symbol tables

Listing 2.26 presents the implementation of the methods parse and
createSymbolTable of the AutomataTool class. The methods can be used for
parsing and creating symbol tables for Automata. The methods also demonstrate the
usage of the mill for retrieving global scopes and genitors.

public static void main(String[] args) { [Java_«hw» AutomataTool =)
// delegate main to instantiatable method for better integration,

—-

™

3 // reuse, etc.

4 new AutomataTool () .run(args);

5}

6

7lpublic void run (String[] args) {

8 // use normal logging (no DEBUG, TRACE)

9 Log.ensurelnitalization();

10

11 // Retrieve the model name

12 if (args.length != 2) {

13 Log.error ("0OxEE7400 Arguments are: (1) input "
14 +"model and (2) symbol store.");
15 return;

16 }

17 Log.info ("Automata DSL Tool", "AutomataTool");
18 String model = args[0];

19
20 // parse the model and create the AST representation

21 ASTAutomaton ast = parse (model);

22 Log.info (model + " parsed successfully!", "AutomataTool");
23
24 // setup the symbol table

25 TAutomataArtifactScope modelTopScope =
26 createSymbolTable (ast) ;

27
28 // can be used for resolving names in the model
29 Optional<StateSymbol> aSymbol =

30 modelTopScope.resolveState ("Ping");

31

32 if (aSymbol.isPresent ()) {

33 Log.info ("Resolved state symbol \"Ping\"; FON = "
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34 + aSymbol.get () .toString(),

35 "AutomataTool") ;

36 } else ({

37 Log.info ("This automaton does not contain a state "
38 +"called \"Ping\";", "AutomataTool");

39 }

40
a1 // setup context condition infrastructure

42 AutomataCoCoChecker checker = new AutomataCoCoChecker();
43
44 // add a custom set of context conditions

45 checker.addCoCo (new StateNameStartsWithCapitalLetter());
46 checker.addCoCo (new AtLeastOneInitialAndFinalState());
a7 checker.addCoCo (new TransitionSourceExists());

48
19 // check the CoCos

50 checker.checkAll (ast) ;
51
52 // Now we know the model is well-formed and start backend
53
54 // store artifact scope and its symbols

55 AutomataSymbols2Json deser = new AutomataSymbols2Json();
56 deser.store (modelTopScope, args[l]);

57
58 // analyze the model with a visitor

59 CountStates c¢cs = new CountStates();

60 AutomataTraverser traverser = AutomataMill.traverser();
61 traverser.add4Automata (cs);

62 ast.accept (traverser);

63 Log.info ("Automaton has " + cs.getCount() + " states.",
64 "AutomataTool") ;

65
66 // execute a pretty printer

67 PrettyPrinter pp = new PrettyPrinter();

68 AutomataTraverser traverser?2 = AutomataMill.traverser();
69 traverser2.setAutomataHandler (pp) ;

70 ast.accept (traverser2);

71 Log.info ("Pretty printing automaton into console:",

72 "AutomataTool") ;

73 // print the result

74 Log.println (pp.getResult ());

75| }

Listing 2.27: Main method of the AutomataTool class

The AutomataTool provides a main method, which can be called from the command
line. The implementation of the method is depicted in Listing 2.27. It expects two inputs.
The first is the name of a file containing an Automata model. The second input is the
name of the file in which the tool should store the symbol table of the model that is given
as first input.
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The method
e parses the input model (1. 21),
e creates the symbol table (1. 25),
e resolves a state (1. 29),
e executes context conditions (Il. 41-50),
e stores the symbol table by using the serialization (11. 54-56),
e executes the visitor for counting the states (Il. 59-64), and
e pretty prints the model to the standard output (1l. 66-74).

Inspect the main method and try to understand the implementation for the executed tasks.
Read the above descriptions again if necessary.

2.2.5 Run the Tool

The previous command compiles the handwritten and generated code including the
Automata tool class AutomataTool. For running the Automata DSL tool, execute
the following command:

java —cp "src/j;out/;hwc/;monticore—-cli.jar" \
automata.AutomataTool example/PingPong.aut \
st/PingPong.autsym

Please note again, on Unix systems paths are separated using ":" (colon) instead of semi-

colons. Executing the command runs the Automata DSL tool.

Using the option —cp makes the Java interpreter consider the compiled classes contained
in the paths specified by the argument.

The argument automata.AutomataTool makes the Java interpreter execute the main
method of the class automata.AutomataTool contained in the directory src.

The argument example/PingPong. aut is passed to the main method of the Automata
DSL tool class as input. Inspect the output on the command line, which displays log
messages concerning the processing of the example Automata model.

The last argument st/PingPong.autsym is also passed to the main method. It
makes the tool store the serialized symbol table of the input model into the file
example/PingPong.aut.

The shipped example Aut omata DSL (all sources contained in mc-workspace/src and
mc-workspace/hwc) can be used as a starting point for creating your own language. It
can easily be altered to specify your own DSL by adjusting the grammar and the hand-
written Java sources and rerunning MontiCore as described above.

28



2.3. Using MontiCore via Gradle From the Command Line

2.3 Using MontiCore via Gradle From the Command Line

It is possible to execute MontiCore via the MontiCore Gradle plugin. A detailed description
about using the MontiCore Gradle plugin is given in Chapter 16. This section describes
the execution of MontiCore via a Gradle plugin from the command line shell by example.

First, install Gradle via executing the instructions mentioned on the following website and
make sure that the PATH system variable is set such that the gradle command can be
used from any directory:

// Gradle installation
https://gradle.org/install/

—

™

The shipped example Automata DSL can be used as a starting point and can be down-
loaded here:

http://www.monticore.de/download/Automaton. zip

-

The build script (file build.gradle) can easily be adapted for creating build scripts for
other languages. For executing MontiCore via the Gradle plugin from the command line
shell by example of the Automata DSL, perform the following steps:

1. Download the Automata example (cf. Listing 2.3).
2. Unzip the downloaded zip file into an arbitrary directory.

3. Open a shell and change your working directory to the directory in which you un-
zipped the downloaded file (the directory containing the file build.gradle).

4. Execute Gradle in the shell:
e If you are using a Windows shell, execute the command gradle build.

e If you are using a Unix shell, execute the command ./gradle build.

When executing the above commands, MontiCore launches, which results in the execution
of the following steps:

1. The grammars specified in the build.gradle are incrementally parsed and processed
by MontiCore.

2. Java source files for the corresponding DSL infrastructure are generated into
the default output directory ../target/generated-sources/monticore
/sourcecode. The contents of this generated directory are equal to the contents
of the generated directory out as described in Section 2.2.3.

2.4 Using MontiCore in Eclipse

The MontiCore Gradle plugin can be used in Eclipse. Section 2.4.1 describes the process
of setting up Eclipse. Section 2.4.2 presents how to import the example project in Eclipse.
Finally, Section 2.4.3 explains how the MontiCore Gradle plugin can be executed in Eclipse.
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2.4.1 Setting up Eclipse

Before you import the example project and run MontiCore as a Gradle plugin, please make
sure that a current version of the Gradle plugin is installed in Eclipse. When installing
a new version of Eclipse, the Gradle plugin is installed by default. If the Gradle plugin
is not yet integrated into your Eclipse installation, download the latest Eclipse version or
perform the following steps to install the Eclipse plugin:

1. Download and install Eclipse (or use an existing one).
2. Open Eclipse.
3. Install the needed Plugins.
o Help > Eclipse Marketplace...
e Type ’gradle’ in the search box and click Enter.
e Install the 'Buildship Gradle Integration’ plugin.
4. Make sure to configure Eclipse to use an JDK instead of an JRE.

e Window > Preferences > Java > Installed JREs.

2.4.2 Importing the Example

The shipped example Automata DSL can be used as a starting point. Once imported into
Eclipse, it can easily be altered to specify your own DSL by adjusting the grammar and
the handwritten Java sources and rerunning MontiCore as described in Section 2.4.3. To
import the example, perform the following steps:

1. Download and unzip the Automata example (cf. Listing 2.3)
2. Open Eclipse and select

e File > Import > Gradle (if you are required to choose a Gradle version, then
choose version 6.7.1) > Existing Gradle Projects > Next.

e Click on the Browse.. button and import the directory that contains the file
build.gradle from the Automata example.

2.4.3 Running MontiCore

To execute the MontiCore Gradle plugin, perform the following steps:

e Select the Gradle Task menu (at the top or bottom, depending on your installed
Eclipse version).

e There select automaton > build > build (double click).

This makes Eclipse execute the MontiCore Gradle plugin as described in Section 2.3.
After installing and executing MontiCore in Eclipse, your workspace should look similar
to Figure 2.28.
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i# automata. parser @attribute transitions List of transitions
& automata,_symboltable 10%/

symbol scope Automaton =

i# automata, visitor
“automata” Name "{" (State | Transition)* "}" ;

£ reports.automata
3 reports.Automata_scope

& reports Automata_symbol 1 /** A ASTState represents a state of a finite automata

@attribute name Name of state

(% sr¢/main/resources 2 Snied N 3 PR
/main/ @attribute initial True if state is initial state
B srcpestjava . : : : :
@attribute final True if state is a final state
% srcftest/resources @attribute states List of sub states
B\ JRE System Library @attribute transitions List of transitions
B\ Project and External Dependencies 2%/
3 > bin symbol scope State =
@ gradle “state” Name

&y src
# buildgradle

(("<<™ ["initial"] ">>" ) | ("<<" ["final"] ">>" ))*

Figure 2.28: Eclipse after importing the example project and executing MontiCore

2.5 Using MontiCore in IntelliJ IDEA

The MontiCore Gradle plugin can be used in IntelliJ IDEA. Section 2.5.1 describes the
process of setting up IntelliJ IDEA. Afterwards, Section 2.5.2 presents how to import the
example project in Eclipse. Finally, Section 2.5.3 explains how the MontiCore Gradle
plugin can be executed in IntelliJ IDEA.

2.5.1 Setting up IntelliJ IDEA

For setting up IntelliJ IDEA, perform the following steps:
1. Download and install IntelliJ IDEA (or use your existing installation).
e Hint for Students: You get the Ultimate version of IntelliJ IDEA for free.

2. Open IntelliJ IDEA.

2.5.2 Importing the Example

The shipped example Automata DSL can be used as a starting point. Once imported into
IntelliJ IDEA, it can easily be altered to specify your own DSL by adjusting the grammar
and the handwritten Java sources and rerunning MontiCore as described in Section 2.5.3.

For importing the example, perform the following steps:

1. Download and unzip the Automata Example (cf. Listing 2.3).

2. In the IDE select: File > Open.

3. Select the directory containing the build.gradle (if you are required to choose a Gradle
version, then choose version 6.7.1).
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2. Getting Started with MontiCore

2.5.3 Running MontiCore

To execute the MontiCore Gradle plugin, perform the following steps:

e Select the Gradle Projects menu on the right.

e From there select automaton > Tasks> build > build (double click).

This makes IntelliJ IDEA execute the Gradle plugin as described in Section 2.3. If you do
not see the Gradle Projects menu yet, right-click on the build.gradle file and select 'Import
Gradle Project’. Now the Gradle Projects menu should occur on the right side and you
can follow the above mentioned steps for the execution. After installing and executing
MontiCore in IntelliJ IDEA, your workspace should look similar to Figure 2.29.

) file Edit View Navigate Code Analyze Refactor Buid Run Tools VCS Window Help
automaton
Project ~ |8 = Automata.mcé

automaton
gradle

re W 1:Project

? grammar Automata extends de.monticore.MCBasics {
gradle

symbol scope Automaton =
"avtomata" Name "{" (State | Transition)* "}" ;

@ Commit b

symbol scope State =
"state” Name

(("<< ["initial"] ">>" ) | ("<<® ["final"] ">>* ))x

( ("{" (state | Transition)* "}*) | ";*) ;

Figure 2.29: IntelliJ IDEA after importing the example project and executing MontiCore
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Chapter 3
Architecture of a Model Processor

This chapter provides an overview of the standard architecture of the MontiCore tool, in-
cluding which features and capabilities it provides. This is a prerequisite for understanding
the definition, usage and adaptation of model-based tool processors.

Note that MontiCore as well as its components and derivates are not exclusively used
for generation, but also for deep analysis techniques, general transformations or language
interpretation at runtime. This chapter focusses on the widely used generative aspect.

Familiarity with the concepts of model, modeling language, model transformation and gen-
erator, as discussed in [CFJT16, Rum16, Ruml7], is a prerequisite to understand the
contents of this chapter.

3.1 Structure of a Model Processor - External View

There are many forms of model processing, but a typical processor would function like this:
firstly process one or more models, then apply some internal transformations to them in
order to produce related artifacts. Often these are partially or even completely executable
programs written in a General Purpose Language. It is also possible to produce models
of another language, websites in HTML, relevant documentation, overview drawings, or
proof obligations to be handled by a model checker or verifier.

The generated code typically makes use of the generators operating system, some existing
frameworks and other platform specific code. However, generators need high flexibility
and intelligence in order to enable the incorporation of handwritten code, platform specific
adaptations, predefined components, and potentially even project or user specific prefer-
ences.

Classical compilers embed concepts to manage these features within a programming lan-
guage through the import of external frameworks, compiler directives or a macro prepro-
cessor. Model-based generation contrast this by normally only carrying domain knowledge
in the model, whilst the parameterized generator adds technical details and allows for filling
of adaptation points in form of generator scripts and templates.

Figure 3.1 shows the external view of a generator along with the artifacts used and pro-
duced. Within a model-based generative project, people may adopt different roles in order
to provide and use artifacts within it.
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application application component
;de/e/‘% programmer provider
\mL_e'S/ Target system: the product )

e [T /
5!_%5 = >t manually |—
e written code Predefined
N S components
Parame- t i 2
terized generated code | T
Scripts + generator + included
code snippets
templates pp [ runtime system
code
L snippets A
L generator
i customizer tool
("tool smith”) provider

Figure 3.1: Structure of a generator - external view

The tool provider develops the generator as well as the runtime system that interacts with
the generated code.

The tool smith customizes the generator. The customization can be used to add many
project-specific scripts in order to orchestrate code generation or to introduce templates
which provide code snippets to be copied into the generated code. Both, scripts and
templates, are usually dependent on the target platform, operating system, hardware,
frameworks, and external components included into the system, etc. Unlike scripts and
templates, models only contain application or domain specific information, but are inde-
pendent of the target technology.

3.2 Internal Architecture of a Generator - Component View

A generator is typically decomposed into several components as shown in Figure 3.2.

A model loader handles the loading of all needed models and their subsequent transforma-
tion into an internally accessible structure. The MontiCore language workbench mainly
uses parsers, assuming that the models are stored textually in individual file artifacts. This
assumption may be violated if the models are stored in a database or only one large file is
used to store all models.

Parsers produce the internal representation, called abstract syntaz (AST)' of the loaded
models. Secondly the frontend contains a library of data structures and functions needed
to check the context conditions on the input models, to load further needed models, or to
ensure the resulting input AST is well formed.

The central part of a generator transforms the input AST into an output AST. This
may be a rather complex transformation, mapping one kind of model to another, or a

IWAST" traditionally also stands for abstract syntaz tree, but our ASTs are often full graphs, because
they contain a spanning sub-tree plus useful extra information and links.
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templates
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Frontend: i Center: | Backend:

read i transform generate

Figure 3.2: Internal architecture of a generator

relatively simple augmentation like adding additional information. MontiCore provides the
capability to translate between different kinds of ASTs including the translation from any
source language to Java. MontiCore also supports the attachment of specific templates to
AST nodes, such that parts of the generators intelligence can be deferred to the templates
themselves, while selection of the appropriate templates is done as part of the augmentation
of the output AST and is consequently decided in the transformation part.

The backend of a generator focuses on the generation of artifacts such as code, analy-
sis results, documentation or other forms of models. It consists of a ftemplate engine that
processes the output AST together with a number of standardized and project-specific tem-
plates, which describe the concrete shape of the resultant artifacts. This process is highly
configurable and adaptive, e.g. using the hook point mechanism provided by MontiCore.

The three processing steps are connected via a main control as shown in Section 3.3 or
a workflow written in a Groovy script. These workflows control code generation and
transformation, as well as storing of a larger function library that facilitates the building
of symbol tables, arrangement of transformations, and the setting of specific template
configurations, etc. Section 16.5 describes the standard Groovy script that MontiCore
uses and that is explicitly dedicated for customization.

Figure 3.2 is of course an abstraction of the real MontiCore infrastructure that also contains
components for reporting, logging, the symbol table infrastructure including symbols and
scopes, parametrization and customization techniques, and mechanisms for adapting the
template-based generation, such as hook points described in the subsequent chapters.

Figure 3.3 provides an overview of all the chapters containing relevant information on how
to develop components for your own model parser.
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Figure 3.3: Chapter structure of the handbook

3.3 Tool Workflow

Figure 3.2 has shown the general architecture of a tool. However, many tools might the
simplified, for example by not including a Groovy script engine, but being directly coded
within a Java main class.

Listing 3.4 shows such a Java main method that connects different modules of a DSL
tool into a linear workflow. It defines the tool’s main control structure and might serve
as a blueprint for other DSL processing tools, although it does not contain any handling
of parameters and only processes a simple language without imports of foreign symbol
tables. This example uses the Automata DSL which is also used and explained later in
this handbook. Details, such as the methods used, can be found in their respective chapters
or the complete example in the MontiCore project.

Line 18 identifies the file of an automata model from the arguments passed to the main
method. In line 21 the parser AutomataParser (cf. Chapter 6) parses the automata
model to create the AST. The symbol table (cf. Chapter 9) is then created (1. 26) based
on the resulting AST. Lines 29-39 show an example resolution of a state symbol.

public static void main (String[] args) { |Jwaﬂw»AMmmMﬂbMDﬁ
// delegate main to instantiatable method for better integration,
// reuse, etc.
new AutomataTool () .run(args);

}

public void run (String[] args) {
// use normal logging (no DEBUG, TRACE)
Log.ensurelInitalization();

© 00 N Utos W N

=
o

// Retrieve the model name
12 if (args.length != 2) {
13 Log.error ("OxEE7400 Arguments are: (1) input

=
=
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+"model and (2) symbol store.");
return;
}
Log.info ("Automata DSL Tool", "AutomataTool");
String model = args[0];

// parse the model and create the AST representation
ASTAutomaton ast = parse (model);
Log.info (model + " parsed successfully!", "AutomataTool");

// setup the symbol table
IAutomataArtifactScope modelTopScope =
createSymbolTable (ast) ;

// can be used for resolving names in the model
Optional<StateSymbol> aSymbol =
modelTopScope.resolveState ("Ping");

if (aSymbol.isPresent ()) {
Log.info ("Resolved state symbol \"Ping\"; FQN = "
+ aSymbol.get () .toString (),
"AutomataTool") ;
} else {
Log.info ("This automaton does not contain a state "
+"called \"Ping\";", "AutomataTool");

// setup context condition infrastructure
AutomataCoCoChecker checker = new AutomataCoCoChecker () ;

// add a custom set of context conditions
checker.addCoCo (new StateNameStartsWithCapitalLetter());
checker.addCoCo (new AtLeastOnelInitialAndFinalState());
checker.addCoCo (new TransitionSourceExists());

// check the CoCos
checker.checkAll (ast) ;

// Now we know the model is well-formed and start backend

// store artifact scope and its symbols
AutomataSymbols2Json deser = new AutomataSymbols2Json();
deser.store (modelTopScope, args[l]);

// analyze the model with a visitor

CountStates c¢cs = new CountStates|();

AutomataTraverser traverser = AutomataMill.traverser();

traverser.add4Automata (cs) ;

ast.accept (traverser) ;

Log.info ("Automaton has
"AutomataTool") ;

+ cs.getCount () + " states.",
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66 // execute a pretty printer

67 PrettyPrinter pp = new PrettyPrinter();

68 AutomataTraverser traverser?2 = AutomataMill.traverser();
69 traverser2.setAutomataHandler (pp) ;

70 ast.accept (traverser2);

71 Log.info ("Pretty printing automaton into console:",

72 "AutomataTool") ;

73 // print the result

74 Log.println (pp.getResult ());

75] }

Listing 3.4: Example tool for the Automata DSL

Since the parser can only identify context-free parsing errors (cf. Chapter 10) addi-
tional contexrt sensitive constraints have to be validated (e.g., there must exist at least
one initial and one final state). For this purpose, an AutomataCoCoChecker ob-
ject is created, which can be configured with concrete context conditions (Il. 42-47).
The checkAll method checks all registered context conditions (1. 50). After this, a
AutomataScopeDeSer is added, which is used to store the symbols a scope contains in
a specific location (cf. 56). Next, the model is analyzed. Visitors provide an appropriate
infrastructure to traverse and operate on the AST (cf. Chapter 8). Here, the number of
states is calculated (1. 59).

Finally, the model is pretty printed (1. 67). Pretty printing serves several purposes: Firstly,
the resulting model may be easier to maintain or to simply store in form of documentation.
Secondly, pretty printing helps to check, whether parsing and the AST construction was
complete and correct. Usually, but not in this example, an executable implementation of
the automata model would also be generated.

This example only covers the essence of working with an implemented DSL. There are
many other possibilities which are covered in their respective chapters.
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Chapter 4

MontiCore Grammar for Language and
AST Definitions

In MontiCore, gramimars are the central notation from which a lot of infrastructure, in-
cluding the language parser and the internal representation of a model (called the abstract
syntax, short AST), are derived.

This chapter will explain the MontiCore grammar format. It discusses productions defining
different types of nonterminals and their relations, context conditions that define the well-
formedness of a grammar, and additional concepts that allow further configuration of the
code generation process from MontiCore grammars.

MontiCore grammars describe the contezt-free syntaz of languages using notation based
on the Extended Backus-Naur Form (EBNF, [ASU86|) and the ANTLR tool [Parl3|. Ad-
ditionally a MontiCore grammar provides convenient constructs for specifying commonly
used options and additional context-sensitive concepts of languages. As MontiCore creates
Adaptive LL(*) parsers, it can also support semantic predicates, which make it possible
to describe common context free parsable languages. However, MontiCore’s main pur-
pose is to develop DSLs, most of which have a rather straightforward syntax. Therefore,
MontiCore has been developed with comfort and agility as primary goals.

A MontiCore grammar defines the concrete syntar and the abstract syntaz of a language
in one artifact. That is to say, MontiCore derives the following from a grammar:

e The parser used for reading the model in the form of concrete syntax and produce
the internal representation, i.e., abstract syntax (cf. Chapter 6).

e The data structure of the abstract syntax (AST, cf. Chapter 5).
e The transformations that are used to fill an AST when parsing a model.

e The infrastructure needed to manage symbols and scopes.

The majority of the frontend of the generator tool is generated using a MontiCore grammar.
Furthermore, MontiCore provides inheritance, extension and overriding mechanisms for
productions, thus allowing an improved reuse of sublanguages (cf. Chapter 7). However,
this chapter will focus on the syntax and semantics of MontiCore grammars.

Each grammar in MontiCore consists of a head and a body. The head comprises the
package declaration, import statements as well as the name of the grammar. Furthermore,
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1grammar MinimalExample extends de.monticore.MCBasics { MCG
2 A = "Hello" B ;

3 B = Name "!";

4|}

Listing 4.1: Minimal grammar example

it may mark a grammar as a component or define grammars that are extended which will
be explained in Chapter 7.

A grammar’s body may comprise four kinds of statements that can be specified in any
arbitrary order:

e Productions (like A and B) are the main elements of a grammar and make up the
syntactic specification of the language.

o Lexer productions help describe small tokens, such as names, values and atomic key-
words, which are later read by the grammar.

o Grammar directives which allow configuration of the grammar.

o Grammar concepts which further extend the capabilities of language specification in
the grammar.

For reference purposes we have included an EBNF version of the MontiCore grammar in
Section 4.6. It describes the MontiCore grammar language using a MontiCore grammar.
To avoid confusion when describing a grammar langauge using grammars, we avoid direct
references to EBNF-nonterminals in the following explanations, instead using examples.

4.1 Lexical Tokens for the Scanner

The first step for processing a model is to run a lezer (also called scanner) for the lexical
analysis of the input model. The lexer segments sequences of input characters which

describe a model into a sequence of tokens. These tokens are passed to the parser to create
AST objects [Vol11, ASUS6|.

Some typical forms of tokens include

e keywords like "1f",

e operators like "++", "S>M oM
o delimiters like " (", ", ",
e values like 3.2, 42,

e names like Person and age,

e qualified names like de .monticore.dex.Person or

e whitespaces that are ignored by the grammar.
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Individual tokens can be directly included as terminals in the productions and thus need no
explicit rules (like "1£"). On the other hand, it is possible to introduce nonterminals that
stand for a class of tokens, like all numbers, strings or names. These simple nonterminals are
defined via lexical productions and contribute to the abstract syntax in form of attributes,
but are not as AST classes on their own. We sometimes refer to those simple nonterminals
as tokens.

4.1.1 Definition of Tokens using Regular Expressions

Lexical productions are simplified forms of productions and consist of a left-hand side,
i.e. the name of the token, and a right-hand side, i.e. the body of the production. The
production body defines the structure of the token by use of a regular expression. If
not specified through an explicit type in the production (see Listings 4.7 and 4.8), a token
results in a value of type St ring. The token is later stored as an attribute of the associated
type in the AST named after the token. If the input matches the regular expression defining
this token, the lexer recognizes the nonterminal and produces the token.

1 token SimpleName = ('a'..'z'['A'..'Z")+ ; MCG

3 token SimpleString = '"' ('a'..'z'|'A'..'Z")x '"';

Listing 4.2: Lexical productions for SimpleName and SimpleString

Listing 4.2 shows a standard definition of two nonterminals as tokens called SimpleName
and SimpleString. SimpleName is defined as a sequence of upper and lower case letters
requiring at least one letter to be present. The second lexical production introduces the
nonterminal SimpleString defined as a sequence of upper and lower case letters, which
are embedded in quotation marks. In this case, the sequence may be empty.

The definitions of lexical rules correspond to the rules of regular expressions as follows:

e Constant strings denote keywords and are surrounded by single or double quotes,
like "st' or "st".

e A range of characters is given by lowerChar. .upperChar.
e The | character separates alternatives.
e Grouping items is done by use of parentheses ( and ).

e The character ~ is used for negation, meaning the expression matches what is not
part of the negated expression.

e The + sign denotes that the previous item may be added to nonterminals or groups
one or more times.

e The » character denotes the previous item being added zero or more times.

e The ? character denotes the previous item being added zero or one-time.
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4. MontiCore Grammar for Language and AST Definitions

token NUM_INT = MCG
("0'..'9'")+ EXPONENT? SUFFIX? ;

fragment token SUFFIX =
lfl'lFl‘ldlllDl ,.

fragment token EXPONENT =
(lelllEl) ('_I_lll_')? ('Ol."9')+;

w N O s W N =

Listing 4.3: Lexical productions for Numbers using token fragments

Lexical definitions may be reused in other definitions to make them more readable. Lex-
ical productions marked as fragments, as it is the case for SUFFIX and EXPONENT in
Listing 4.3, can only be used in other lexical productions and cannot be nested recursively.
Fragments are not passed to the parser but instead allow a modular definition of lexicals.
Therefore, only NUM_INT results in a String that is stored in the AST, however the
string will contain the fragments.

& Technical Info 4.4: Limited Scanning Capability

For efficiency reasons, a scanner does not backtrack. If a token is prefix of
another token, e.g. ">" and ">>" then an unfortunate combination, e.g. in
"List<List<String>>" will fail. Here grammar directive splittoken can
help.

When you want to use a reserved keyword also as e.g. variable name in another
context, then you can use the nokeyword directive.

Both are discussed in Section 4.3.

4.1.2 Actions to Process a Token

Actions (i.e., Java code) can be embedded into lexical definitions to modify the lexers
results directly. Hence actions do not contribute to the definition of concrete syntax, but
extend the parser by mapping concrete syntax to elements, which are stored in the abstract
syntax, or to completely different things.

1 token WS = MCG D
2 ("

3 I "\t

4 | "\r' // Macintosh

5 | "\n' // Unix

6 ) :{_channel = HIDDEN; };

Listing 4.5: Lexical productions for white spaces

To allow an arbitrary number of white spaces and line breaks in a model, MontiCore has a
predefined nonterminal WS (cf. Listing 4.5). The last line encloses Java code to avoid pass-
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ing this token to the parser. Alternatively you can replace the Java code with the following
statement "-> skip". Thus, it is not necessary to explicitly place the nonterminal WS in
grammars. For a more detailed discussion, refer to the ANTLR documentation.

1 token STRING = '"' MCG &
2 ( ESC

3 [~ "\ | "\n" | "\r')

4 ) *

5 T

6 : {setText (getText () .substring (1, getText ().length() - 1));};

Listing 4.6: Lexical production for strings without quotation marks, which are removed in
a Java action

In the example shown in Listing 4.6, the embedding quotation marks are removed from
the token before it is passed to the parser. It is allowed to add actions at the end of a
lexical production for a free computation of the result.

Listing 4.7 shows how to adapt the different types for the generated attributes in the AST. If
the right side of a production is a lexical production like Name, the corresponding attribute
is of type String. We can change the default attribute type by adding a predefined type
like float, separated by a colon. Some of the supported predefined types are: float,
int and char. The corresponding default conversion methods translate the parsed value
of type String to the derived type.

// token results can be converted mMoG =
// here NUMBER becomes type float
token NUMBER = ('0'..'9")% '.'" ('0'..'9")x '"f': float;

A2 = b:NUMBER "," c:NUMBERx;

// while Name is stored as a String
Al = b:Name "," c:Name;

N O O s W N

Listing 4.7: Changing the result type of lexicals

If the default methods do not work, we can implement our own conversion method as
shown in Listing 4.8. The token CARDINALITY should be adapted to the type int. The
declared variable x has the default type String and we can add a Java-Block to convert
the String to the desired type int.

4.1.3 Predefined Tokens in Importable Grammars

MontiCore is shipped with some basic grammars meant for reuse as described in Section 7.4.
These are, among others:

e MCBasics

e MCLiteralsBasis,
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-

// token results get adapted: MCG

2| // type conversion to int

3| // by Java code that does the conversion

4 token

5 CARDINALITY = ('0'..'9")+ | '«!

6 x —> int : { // Java code:

7 if (x.equals("x"))

8 return -1;

9 else

10 return Integer.parselnt (x.getText ());

-
=

}i

Listing 4.8: Adding a conversion method for lexical types

e MCCommonLiterals, and

e MCJavaliterals.

They provide a set of basic literals useful for almost every parse process (MCBasics)
or for expressions that Java programmers know quite well. The grammars described in
Chapter 18 build full expression and statement sublanguages based on these literals.

( —

\Tip 4.9: Predefined Tokens
‘! Predefined tokens can be found in the MontiCore repository, for example in the
following component grammars:

1| Repository: MontiCore/monticore github
2| Directory: monticore-grammar/src/main/grammars/

3| Files: de.monticore.MCBasics.mc4

4 de.monticore.literals.MCLiteralsBasis.mc4

5 de.monticore.literals.MCCommonLiterals.mc4

6 de.monticore.literals.MCJavaLiterals.mc4

Some of the ways you can include tokens in a grammar are: use of extends
de.monticore.MCBasics or inclusion of the directory in the grammar path. A
detailed description can be found in Chapter 17.

When including the available basic grammars MCBasics, MCCommonLiterals and
MCJavaLiterals, a number of predefined tokens can be used as described in Table 4.10.4
All tokens (cf. Table 4.10, column 1) are stored as String but the MCCommonLiterals
and MCJavaliterals grammars also provide nonterminals (cf. Table 4.10, column 2)

'fragment, not a complete token

2delimiters are removed

3delimiters are removed

‘Please note that the type grammars MCBasicTypes, MCCollectionTypes, etc. do not define
tokens, but only parser nonterminals. The grammars MCCommonLiterals and MCJavaliterals also
define additional parser nonterminals.
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Table 4.10: Some of the predefined tokens of the MCBasics, MCCommonLiterals and
MCJavaliterals component grammars.

’Tbken Value Type | Defined in

WS - MCBasics
SL_COMMENT - MCBasics
ML_COMMENT - MCBasics

NEWLINE B MCBasics

Name - MCBasics

Digits - MCCommonLiterals
Char - MCCommonLiterals
String 2 MCCommonLiterals
CharLiteral char MCCommonLiterals
BooleanLiteral boolean MCCommonLiterals
StringLiteral String3 MCCommonLiterals
NatLiteral int MCCommonLiterals
BasicLongLiteral long MCCommonLiterals
BasicFloatLiteral float MCCommonLiterals
BasicDoubleLiteral | double MCCommonLiterals
Num_Int - MCJavalLiterals
Num_Long - MCJavaliterals
Num_Float - MCJavaliterals
Num_Double - MCJavaliterals
IntLiteral int MCJavaliterals
LongLiteral long MCJavaliterals
FloatLiteral float MCJavaliterals
DoublelLiteral double MCJavaliterals

with respective AST classes that provide methods getValue () in order to convert the
stored String to a more usable type. See Chapter 17 for details.

Furthermore, there are four token nonterminals defined in the MCBasics grammar that
are not passed to the parser:

NEWLINE tokens are not stored, but used as token separator
WS tokens are not stored, but used as token separator

SL_COMMENT describes single line comments in Java style, like //. ... Those comments
are not passed to the parser, instead they are attached to the AST object which is
created by the parser and therefore can be retrieved if necessary, but need not be
included in productions explicitly (cf. Section 5.7)

ML_COMMENT like / * x/ do the very same as //, but can span over multiple lines.
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Multi line comments are not nested like in Java (as opposed to C++). In case that this
form of comment is not desired, the MCBasics grammar should not be used.

The type grammars MCBasicTypes, MCCollectionTypes,
MCSimpleGenericTypes MCFullGenericTypes, and MCArrayTypes gram-
mars define nonterminals that provide different kinds of data types. Some examples of
this are:

e primitives types such as int or boolean,

e collection types such as MCListType or MCSetType,

e widely reusables types MCImportStatement or MCQualifiedName,
e data structures such as generics or arrays.

See Table 4.11 for the list of the most interesting nonterminals.

Table 4.11: Predefined nonterminals of Types grammar.

’ Nonterminal ‘ Meaning
MCType Interface for all forms of types
MCQualifiedName Sequence of Names, separated by a "."
MCPrimitiveType "boolean","int" etc.
MCGenericType Interface for all forms of generic types
MCListType for List<T>, but not java.util.List<T>
MCTypeArgument Interface for all forms of type arguments
MCWildcardTypeArgument | Single type argument, using the wildcard "?"

4.2 Productions in the Grammar

A production counsists of a left-hand side that defines a new nonterminal (e.g. A), and the
right-hand side of a production which describes how the nonterminal is defined i.e., its
body. Listing 4.12 shows some simple examples of productions, which are rather similar to
lexical productions. In addition, productions support recursion (thus becoming context-
free and not just regular productions, as per the Chomsky hierarchy) and a number of
techniques to control how to map productions to AST classes. The mapping process is
partially introduced here but discussed in more detail in Chapter 5.

1| A = "Hello" "World" "." ; MeG ™
2 B = ("Good Morning" Name ) | A ;

3 C = "Hello" (Name || ",")+ ;

4 D = A Bx (C | D)

5 | Bx A ;

Listing 4.12: Some production examples
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The body of a production is composed of terminals and nonterminals, both of which may
be used as part of alternatives, may themselves be optionals or occur multiple times. The
MontiCore grammar provides these constructs for the productions:

Double quotes to define constant strings e.g. "state" and are then used a keywords.
LowerChar. .upperChar to define a range of characters (cf. Listing 4.8).

The | character to separate alternatives.

Parentheses ( and ) to signify grouping.

+ to signify the appearance of a group or nonterminal one or more times.

* to signify the appearance of a group or nonterminal zero or more times.

? to signify the appearance of a group or nonterminal zero or one time.

[ C1 |...| Cn ] toexpress an alternate group of constants (terminals), where
exactly one occurs.

Shorthand notations (NT || T)+and (NT || T)+ to define repetitions of the left
nonterminal NT being separated by the right terminal T.

References to other nonterminals, e.g. Name@State, which mean the name refer-
ences an entity that is defined by a State nonterminal.

The key statement key ("state") to define a local keyword state. This keyword
is almost identical to a permanent keyword, but name "state" can still be used
as a normal name in other places. The argument of the key (.) statement must
match the Name nonterminal or a list of | separated Name. E.g. key ("F"|"f")
describes the float suffix for numbers.

Furthermore, nonterminals allow for structuring of the parsing, including mutual recur-
sion (with only a slight restriction on mutual left recursion). The main differences from
nonterminals to lexical productions are the ability to use other arbitrary nonterminals, but
also the absence of negation ~.

Several elements on the right-hand side can be decorated to control the AST:

Names such as n:NT and n:"st" can be attached to terminals and nonterminals,
describing where the attributes will be stored in the AST.

References to other nonterminals can be attached using @, like Name@NT. For exam-
ple, Name@State expresses that the name references an entity that is defined by a
State nonterminal, i.e., elsewhere there will be a State defined with this name.
This is also called referencing symbols because the nonterminal which is referenced
to must also define a symbol. For more information on this check Chapter 9.

MontiCore also provides so called semantic predicates, which are in detail discussed in
Section 4.5. However, there are a number of standard methods available that allow us to
control parsing process:
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e Function next ("42")7 is wusable in semantic predicates, such as
{next ("42","41")}? Digits, to check if the next token of the model
equals to the string. The token is first parsed according to the following non-
terminal (here: Digits) and then the semantic predicate is checked. For Names,
the key (.) shortcut does the same, but next also allows arbitrary many strings
to be listed as alternatives.

e the noSpace (n) function forbids spaces between consecutive token, e.g.
{noSpace (2)}? "-" "-" only accepts "--" and {noSpace(2,3)}? ">"
"> v>v forbids spaces between the angle brackets. This can also be deferred to
extending grammars, using the splittoken keyword.

e Function cmpToken (n, s) can be used to restrict possible consecutive tokens. For
example {cmpToken (1, "st")}? Name specifies that the name must be st.
While next must be used preceding to the token cmpToken allows to look further
into the forthcoming token using the distance as its first argument. cmpToken allows
arbitrary many strings to be compared

e Function {cmpTokenRegEx (n, r) }? issimilar to cmpToken (n, s), but interprets
r as regular expression.

Listing 4.13 shows how the predefined functions next, cmpToken and cmpTokenRegEx
can be used in conjunction with arbitrary tokens, e.g., the Name nonterminal.

1 D = {next ("foon")}? Name ":"; mMcg =
2

3 F = {cmpToken(l, "foon")}? Name ":";

4

5 H = {cmpTokenRegEx (1, "foon|FOO")}? Name ":";

Listing 4.13: next, cmpToken and cmpTokenRegEx

The regular expression passed to cmpTokenRegEx is based on the regular expressions
used in the standard libraries of Java. Thus, regular expression according to the syntax
provided by Java are possible’.

4.2.1 Terminals

Terminals are enclosed in quotation marks (e.g. "if" or "!") and are usually not part
of the abstract syntax (cf. Chapter 5). Semantically relevant terminals can be marked
as such by naming them or surrounding them with square brackets, e.g a terminal in an
alternative (cf. Listing 4.14). In the former, the given name of the terminal is used as the
name of the attribute. In the latter, a boolean stores whether the terminal occurred in the
model. The mapping of relevant terminals to the AST is discussed in Chapter 5.

Introducing "Hello" as explicitly mentioned terminal disallows "Hello" to be used as
ordinare (variable) name elsewhere. The key statement key ("Hello") can be used to

Shttps://docs.oracle.com /javase/7/docs/api/java/util /regex/Pattern.html
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i| E = "Hello" MeG
2 (who: "World" | who: "Tom")

3 n!n,.

4

5 F = ["initial"]?;

Listing 4.14: Augmentation of terminals for storage in the AST

define a local keyword Hello. This keyword is almost identical to a permanent keyword,
but now "Hello" can still be used as a normal name in other places. The argument of
the key (.) statement must match the Name nonterminal or a list of | separated Names.
E.g. key ("F"|"£f") describes the float suffix for numbers and key ("Wor1d" | "Tom")
is a shortcut usable in Listing 4.14. For an even more convenient alternative see grammar
directive nokeyword in Section 4.3.

4.2.2 Enumeration

If the language describes alternatives of multiple terminals resulting in boolean attributes,
one may instead use alternatives when creating the abstract syntax. Instead of mapping
each terminal to a boolean attribute, an integer with constants mimicking an enumeration
may be used. To use this variant, the alternatives are enclosed within square brackets
(Listing 4.15). If this is the case, it is necessary to add a name in front of the square
brackets, separated by |. As with square brackets, each terminal can be named, e.g.,
PRIVATE:"-", which will result in a name stored as a constant. However, as described
in Chapter 5, MontiCore will derive a name automatically if none is given explicitly, such
as PUBLIC for "public". In case the default derivation is not desirable (e.g. "-" by
default results in MINUS) an explicit name can be added. Please note that adding a
name equivalent to the automatically derived name is allowed. In the following example
(Listing 4.15) the four alternatives would produce only two constants because PUBLIC: "+"
and "public" will coincide.

1 G = vis:[ PUBLIC:"+" | "public" | MCG
2 PRIVATE:"-" | "private"];

Listing 4.15: A choice of alternate terminals is stored as integers

Instead of using a list of keywords (i.e. relevant terminals), it is also possible to use an
enumeration nonterminal. As shown in Listing 4.16, the MontiCore grammar language
allows for the definition of enumerations directly by using the keyword enum, followed
by a name and a body consisting of a list of constants seperated as alternatives. An
enumeration nonterminal can be used like any other nonterminal.
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1| enum VISIBILITY = MeG
2 PUBLIC:"+" | "public" |

3 PRIVATE:"-" | "private"

4 H = vis:VISIBILITY;

Listing 4.16: Explicit definition of an enumeration

4.2.3 Nonterminals

A nonterminal is defined using a production, where the nonterminal on the left-hand side is
replaced by the body of the production on the right-hand side. A nonterminal can be part of
an alternative (A|B), be optional A? or occur multiple times when indicated by a * or a +
character (at least one). Nonterminals are always mapped to the AST (cf. Chapter 5). For
every nonterminal, there is a class generated for the AST data structure. Nonterminals on
the right-hand side of a production result in compositions stored as attributes with access
methods.

1 Automaton = mMoG =
2 "automaton" Name " {"

3 ( State | Transition )«

4

"}";

Listing 4.17: Automatic naming of unnamed nonterminals

Both terminals and nonterminals can be explicitly named by adding a name and colon. In
case no explicit name is given, the name of the composition is derived from the nonterminal
name by lowercasing the first letter. Thus, state:State is equivalent to State in
Listing 4.17, reducing the developer’s writing effort. If a nonterminal on the right side is
marked with a » or a +, a list of this nonterminal is generated. The name of this lists
attribute is also either derived from the nonterminals name or, if given, from the explicit
name. Additionally, a s will be appended to the name. That means a nonterminal Statex
will be stored as a list List<State> with the attribute name states.

If nonterminals are grouped and marked with cardinalities, then each nonterminal will
receive its own list. This means (A |B) = will become two independent list, which store the
order within the As and Bs, but forget the order between them.

A convenient way of defining the frequently appearing pattern of lists with separators
is provided by MontiCore in the following construct: use y: (A || ", ")+ to define a
comma separated list, which is equivalent to y:A (", " y:A) *.

On the left (i.e. the A), there must be a single nonterminal, whilst the right side should con-
tain a terminal. The definition of the nonterminal MCQualifiedName is given as (Name
[| ".")+ and demonstrates this feature. Accordingly, y: (A || ", ") * is equivalent to
(y:A("," y:A)=*)?, as it also allows repetition.

50



4.2. Productions in the Grammar

4.2.4 Interface Nonterminals: implements

An unique feature is the ability to define interface nonterminals. An example of an in-
terface nonterminal is given in Listing 4.19. Here, the production I defines an interface
nonterminal and the productions A and B implement the interface I. In production C, the
interface I is used like a normal nonterminal on the production’s right-hand side. Seman-
tically, an interface production can be considered equivalent to a production which has its
implementing productions as alternatives on the right hand side, as shown in Listing 4.20

Interfaces can be used to extend languages and thus are a core concepts of language com-
position (cf. Chapter 7). The important main advantage here is that interface I does not
refer to the implementation nonterminal A, but in the opposite direction. This is espe-
cially interesting for language extension, because the extending grammar is defined later
and thus the base grammar can be reused black-box without modification.

r‘/"‘\JTip 4.18: When to use an Interface Nonterminal

-\& Interface nonterminals share a lot of the characteristics of interfaces in program-
ming languages. Using an interface nonterminal allows to decouple the definition of
certain structures of a language, while leaving open "holes" (extension points).

It is worth introducing an interface nonterminal for important language elements,
such as Expression or Statement, especially when it is intended to extend the
language later. Interfaces therefore serve as extension points or potentially also
variation points, in case future language extension or embedding is planned.

An interface does not prescribe the possible concrete syntax, while abstract non-
terminals (described in Section 4.2.6) do.

1 interface I ; mMoG =
2 A implements I = "...1" ;
3 B implements I = "...2" ;
 Cc=T1T " ..v;
Listing 4.19: An interface nonterminal and several nonterminals implementing it
1 I =A | B ; MCG &
of A= "..1v
s B =r"..2";
sl c=1 "0

Listing 4.20: Alternative to interface nonterminal in Listing 4.19 accepting the same con-
crete syntax, but I knows A and B

Furthermore, productions of interface nonterminals can have a body. This body defines
which kind of signature all implementing nonterminals need to provide in order to imple-
ment the interface nonterminal. Considering the example in Listing 4.21, the interface
I defines the signature x: Integer and y:Namex for all nonterminals implementing I.
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Thus, both entities need to be part of the body of A and B, as they implement I. However,
as demonstrated, the concrete syntax and order of the elements is not prescribed by T,
which allows for flexible adaptation of the concrete syntax of nonterminals implementing
an interface. As such, interface bodies are mainly a mechanism used to add functionality
to the abstract syntax nodes described in Chapter 5.

interface I = x:Integer y:Namex* ; MCG
A implements I = x:Integer "...1" y:(Name || ",")*x ;

B implements I y :Name~* "...2" x:Integer ...
c=1"...";

W N =

Listing 4.21: Interface nonterminal defining its signature

4.2.5 Extending Nonterminals: extends

The MontiCore grammar format allows extending the production of an already defined
nonterminal via addition of alternatives which modify the original definition. Listing 4.22
shows nonterminal B extending the already defined nonterminal A. The production of the
nonterminal C uses A on its right-hand side and thus also includes the alternative of B.
In the context of parsing, extension B is equivalent to adding the extending nonterminal
B as a new alternative to the extended nonterminal A. By choosing a definition inverse
to EBNF, we can provide an object-oriented solution where subclasses can extend their
superclasses without any changes in the definition of the superclass. This second core
mechanism is used to allow for reuse of grammar and language extensions. Listing 4.23
shows an equivalent alternative to Listing 4.22 that accepts the same concrete syntax for
nonterminal A.

1 A="...1"; MCOG
2 B extends A = "...2";
3 C = A;

Listing 4.22: Extending the production of a nonterminal
il A="...1" | B; McG o
o) B = "...2";
3 C = A;

Listing 4.23: Equivalent alternative to extension in Listing 4.22 accepting the same concrete
syntax for A, but A knows and thus is coupled to B

4.2.6 Abstract Nonterminals

An abstract nonterminal is similar to an interface nonterminal, but is introduced using the
keyword abstract. Abstract nonterminals can bundle nonterminals together, as shown
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/~ \Tip 4.24: When to use Nonterminal Extension

s Extension of nonterminals (like A in Listing 4.22) shares characteristics with class
extension. For concrete syntax this means that an already implemented nonterminal
A gets additional alternatives (so to say "subclasses" like B). This can also occur if
the original nonterminal is extended.

The newly introduced nonterminal B is never usually used explicitly in the con-
crete syntax, but plays a role in the abstract syntax.

If A is meant for extension, it is advantageous to make it an interface. But if a
default version of the concrete syntax should exist, an ordinary nonterminal needs
to be defined and then extended in sub-nonterminals.

in Listing 4.25. Here, AutomatonElement is an abstract nonterminal. The nonterminals
State and Transition extend the nonterminal AutomatonElement, meaning that
both states and transitions are elements of an automaton. As such, the nonterminal
AutomatonElement can now be used in a production’s right side to allow both states
and transitions. Listing 4.26 shows an alternative to Listing 4.25 that accepts the same
concrete syntax.

abstract AutomatonElement; MCG

State extends AutomatonElement = "...1" ;

ot W N

Transition extends AutomatonElement = "...2" ;

Listing 4.25: Abstract production in a grammar

Abstract nonterminals can be extended by other (abstract) nonterminals by using the key-
word extends. This mechanism can be used to bundle other productions as alternatives
and can be used to more clearly mark extension points. This means that the grammar
is designed to be extended later by the addition of further nonterminals that extend the
abstract ones. As abstract nonterminals are mapped to abstract classes, a production can
only extend one abstract production but may implement many interfaces. Similarly to
interfaces, an abstract nonterminal having a body means all nonterminals extending the
abstract nonterminal must provide one too.

1 AutomatonElement = State | Transition; McG
2

3 State = "...1" ;

4

5 Transition = "...2" ;

Listing 4.26: Alternative to abstract nonterminal in Listing 4.25 accepting the same con-
crete syntax
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4.2.7 Starting Nonterminal

By default, the start (axiom) of a MontiCore grammar is the first nonterminal defined
within the grammar. However, in case a different nonterminal should act as the starting
nonterminal of the language, it can be explicitly marked as such by introducing it with
the keyword start, as shown in Listing 4.27. This is especially helpful, when the starting
nonterminal is inherited.

grammar Automata3 extends InvAutomata, Expression { McG
start Automaton;

//

}

Listing 4.27: Explicitly setting a top-level nonterminal that is inherited with start

4.2.8 Infix Operations and Priorities

MontiCore can of course define an expression language that uses infix operations. For
their convenient description, MontiCore provides the possibility to attach priorities to
infix operations and, if necessary, also the keyword <rightassoc>, which marks the
infix operation as a right associative. Figures 4.28, 4.29, and 4.30 show an example of a
typical expression language using an excerpt of Java.

component grammar ExpressionsBasis McG

extends MCBasics, MCLiteralsBasis {
interface Expression;

= Name;

LiteralExpression implements Expression <340>

1
2
3
4
5 NameExpression implements Expression <350>
6
7
8
9 = Literal;

10| }

Listing 4.28: Grammar ExpressionsBasis which provides an interface Expression
and basic expressions for the other expression grammars to use

MontiCore allows for definition of nonterminals like Expression as an interface and
the subsequent additions of alternatives. Because in the case of Expressions many
alternatives are infix they should get a priority in form of an integer, e.g. <170>, which
tells the parser how to parenthesize infix expressions.

In our example a+bxc would parse as a+ (b*c), because 180>170. Many of the non-
infix alternatives do not need explicit priorities assigned to them, but it may be helpful for
further extension later on. However, the priority of prefix operators, like " !'"" also influences
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1 McG B
2 AssignmentExpression implements Expression <60> = <rightassoc>

3 left:Expression

4 operator: [ "=" | "4=" | M_=" | Mu=" | M/=w | wg=" | W=

5 [ "A=T ] TSS=T | TS >=T | Te="T | s =T ]

6

right:Expression;

Listing 4.29: Excerpt of grammar AssignmentExpressions for several forms of assign-
ments

MCG
MultExpression implements Expression <180>, InfixExpression =
left:Expression operator:"*" right:Expression;

PlusExpression implements Expression <170>, InfixExpression =
left:Expression operator:"+" right:Expression;

@ o - W [ —

Listing 4.30: Excerpt of grammar CommonExpressions for common expressions like a+b
including infix operation priorities

the parsing order. For example "!a && b" would wrongly be parsed as "! (a && b)"if
"1" has lower precedence than "&&".

The advantages of denoting expressions in this form is twofold: (1) The grammar is kept
small and simple, hence fairly readable. (2) As discussed in Chapter 5 the abstract syntax
is structurally rather equivalent to the concrete syntax. For a deeper discussion of how to
deal with parsing of infix expressions that naturally occur to be left recursive, we refer to
standard literature.

MontiCore is designed for extensibility and thus iteratively allows extending the
Expression language by repeatedly adding more alternatives. In order to add alter-
natives with priorities into the middle of already existing alternatives, MontiCore uses
explicit numbers as priorities instead of approaches like ANTLR, which use the order of
occurrence in the grammar. We also defined our Expression language with larger pri-
ority numbers in steps of 10, allowing for additional infix alternatives to be added where
desired. This is even possible when extending languages through composition.

Unfortunately, it is not possible to use a sub-nonterminal, such as PlusExpression
directly, instead only the main nonterminal, here Expression may be included. Solutions
are: (1) using CoCo’s to restrict other forms of expressions (on the top-level only?), or
(2) use a new nonterminal N = Expression + Expression that only looks like a
PlusExpression.

4.2.9 Restricting the Cardinality of a Nonterminal

In order to constrain the number of occurrences of a nonterminal on the right hand side
of a production, the astrule keyword may be used. Using a statement like the one given
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/~ \Tip 4.31: Mutual Left-Recursion can be used

2 The good news is that MontiCore can handle left recursion within its productions.
ANTLR can already handle direct left recursion (like & = A ...).

MontiCore has expanded this feature for mutual left recursion which includes an
interface nonterminal and many implementing alternatives, as shown in Figures 4.28,
4.29, and 4.30.

This is a relevant advantage in MontiCore, because language embedding and ex-
tension allow mutual recursion across language components, i.e. when an already
defined nonterminal Expression is to be extended with more variants of expres-
sions in an extending grammar.

in Listing 4.33 (see Fig. 4.32) will create the option to constrain the occurrences of the
nonterminals on the right-hand side by setting a minimum and maximum number of oc-
currences. Line 6 shows such a constraint. Any natural numbers are allowed. It is also
possible to use +, * and ? instead of min and max. The astrule keyword does not
normally affect the concrete syntax but this is an exception that we wanted to highlight
before properly introducing the keyword in Chapter 5.

= - . 2.4
§ = y:Aa¥; S > A
y

A=

astrule S = y:A min=2 max=4;

nonterminals result into
compositions

Figure 4.32: Constraining the cardinality of a nonterminal, when parsing

// nonterminals for the concrete syntax McG B

S = yiAx*;
A=".00"

// constraining occurrences of A in S:
astrule S = y:A min=2 max=4;

Listing 4.33: Constraining the cardinality of a nonterminal

4.2.10 Symbols and Scopes

Textual languages use explicit names in order to reference any kind of language entity
(methods, classes, attributes, states, signals, etc.) which has been defined elsewhere. For
efficient management of names and their referenced entities, symbols and their related
management infrastructure is helpful.

For a more detailed explanation of the definition and usage of symbols or scopes using
MontiCore’s grammar see Chapter 9.
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In order to generate a symbol management infrastructure (cf. Chapter 9), which is usually
not complete, productions can be marked as symbol definitions or visibility restrictions.
The keyword symbol, when attached to a production, introduces a new symbol. A symbol
must either have the nonterminal Name directly on the right-hand-side of the production,
otherwise only an abstract symbol class is generated. To use the abstract symbol class,
the getName () method needs to be implemented manually.

The keyword scope, when attached to a production, indicates that the nonterminal in-
troduces a new scope that includes exactly only that AST node and all its child nodes. All
symbols defined in these child nodes are restricted in their visibility to this scope.

Furthermore, nonterminal Name, when used as the right-hand side of a production, can
be marked as a reference to another nonterminal by appending @ plus the name of the
nonterminal that is being referenced (e.g. Name@State). See Chapter 9 for details.

The statements symbolrule and scoperule allow to specify further attributes to store
extra information for a symbol or a scope. They are discussed in Section 9.2.3

4.2.11 Passing Code to the ANTLR Parser

It is sometimes necessary to directly specify additional Java code for the underlying
ANTLR parser. For this purpose, MontiCore allows adding Java code as shown in the
following example (Listing 4.34).

It is possible to add methods, attributes and constants to the generated parser class.
Sometimes it is necessary to add variables or methods to be used by the actions defined in
the grammar. The variable 1tCounter defined in Listing 4.34 counts the number of LT
(<) used by type parameters or type arguments and can be used for checking the correct
number of brackets. The method incCounter () enables increasing the counter by the
parameter value passed to the method.

concept antlr ({ MCG
parserjava {
public int 1ltCounter = 0;

this.ltCounter = this.ltCounter + 1i;
}

1
2
3
4
5 public void incCounter (int i) {
6
7
8
9

Listing 4.34: Add Java code to the parser

Similar to extension of the parser shown above, the lexer can be extended with custom Java
code. An example for a lexer extension is shown in Listing 4.35. An additional method
capitalize () is added to the lexer which takes a String and returns it with its first
letter capitalized.

Insertions into the lexer have some restrictions. In particular, it is not possible to extend
the list of imports, which means that all references to external classes need to be fully
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1|concept antlr ({ MeG
2 lexerjava {

3 public String capitalize (String s) {

4 return de.se_rwth.commons.StringTransformations.capitalize(s);
5 }

6 }

7|}

Listing 4.35: Add Java code to the lexer

qualified. Furthermore, it has proven useful to keep the amount of Java code in grammars
as small as possible by, for example, delegating the execution of complex funcionality to
other Java classes.

The parserjava and lexerjava statements will be mapped to two different classes
and therefore cannot directly be called from one to the other. However, the function
getCompiler () can be used from within the lexer code to access the parser code. Please
note, however, that the lexer uses a lookahead and thus may have progressed much further
than the parser knows. Thus, controlling the lexing mode from the parser is not easy or
sometimes impossible.

4.2.12 Annotations for Nonterminals and Grammars

Annotations in programming languages like Java are used to add additional information
to classes, fields or methods e.g., whether their deprecated or override functionalities of a
super class. MontiCore offers similar annotations as well.

Deprecated Annotation Languages evolve and so do grammars. Similar to the Java
programming language, MontiCore allows to mark a production or a whole grammar as
deprecated with the @Deprecated annotation. It can be added directly before a produc-
tion or before a grammar itself. A comment can be added (e.g. @Deprecated ("text
of the comment")).

The @Deprecated annotation is intended to signal the user of a language that this non-
terminal respectively the whole grammar will vanish in a future release and alternatives
exist. As a result, generated Java code will also be annotated as @Deprecated.

Override Annotation When using language inheritance as explained in Chapter 7 it is
possible to redefine nonterminals by overriding existing nonterminals (cf. Chapter 7). To
this end, a nonterminal production is marked with the @Override annotation. Omitting
the annotation when overriding a nonterminal results in a warning while adding an override
annotation to a production that does not override an existing nonterminal is considered as
an error.
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4.2.13 Predefined Nonterminals in Importable Grammars

MontiCore is shipped with a larger number of basic grammars meant for reuse as described
in Section 7.4.

These grammars provide a set of sublanguages useful for many forms of languages including
expressions, statements, types, etc. that Java programmers know quite well. The grammars
are described in Chapter 18.

'/’ ~Tip 4.36: Predefined Nonterminals

-
& Predefined nonterminals building useful sublanguages can be found in the Mon-
tiCore repository, for example in the following component grammars:

Repository: MontiCore/monticore github
Directory: monticore-grammar/src/main/grammars/
Files: de.monticore.Cardinality.mc4

de.monticore.Completeness.mc4
de.monticore.JavaLight .mc4
de.monticore.UMLModifier.mc4
de.monticore.UMLStereotype.mc4

N O ot W N e

Some of the ways you can include tokens in a grammar are: use of extends
de.monticore.MCBasics or inclusion of the directory in the grammar path. A
detailed description can be found in Chapter 17.

Expressions build on the literals that were mentioned in Section 4.1. An expression lan-
guage is usually difficult to design and has many infix, prefix and postfix operations to be
dealt with. Statements again build on expressions. Chapter 18 describes a larger variety of
grammars that describe composable expression sublanguages for typed Java-like languages.
Statements and Java methods are defined in Chapters 19 and 20

4.3 Additional Control Directives in the MCG Language

Besides the possibility to define tokens and nonterminals, there are a few control directives
that allows to adapt the parsing process.

Here, we describe the ones that deal with the parsing of the concrete syntax.

e the nokeyword directive is similar to the key function, but handles all occurrences
of the given keyword list, e.g. nokeyword "state", "automaton"; results in
all occurrences of state and automaton keywords in the grammar to be treated
as local keywords, but also allows these as names in ordinary places, where names
are allowed.

e the splittoken directive is similar to the noSpace function to prevent whitespaces
between individually defined tokens. For example splittoken ">>>" handles all
occurrences of this token as three separate token but does not allow spaces in between.
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It is important to note, that both directives can adapt the way how tokens respectively
names are treated even backwards in the grammar inclusion hierarchy.

splittoken was introduced to remove any need to preemptively split all tokens into
single character tokens by a component grammar developer, just because it may be that
some later extension grammar will introduce some constructs that might come into conflict.
This can then be done by the extension developer.

nokeyword has a similar goal: If a component grammar has not made "state" a local
keyword, this can still be achieved in retrospect by an extending grammar without touching
the original nonterminal.

The further grammar statements symbolrule and scoperule allow to specify further
attributes and thus allow to store extra information in a symbol or a scope. They are
discussed in Section 9.2.3.

4.3.1 Splitting Tokens

If a token consists of multiple special characters (e.g. ">>" in a production like Shift =
">>") then a certain other productions using a prefix of that token will not be recognized
correctly anymore, e.g. List<List<String>>.

For sake of efficiency Antlr and therefore MontiCore do not backtrack on token level, which
is if two token > and >> are defined, where one is a prefix of another, in a constellation,
where both are possible in a sequence, only the second will be recognized. To avoid this,
there are three options:

1. Accept that ">>" need spaces inbetween "> >" for correct recognition,

2. Split the token manually and use the nospace function, e.g. Shift =
{nospace(2)1}? ">" ">"_ Now, both token are recognized separately and the
semantic predicate {nospace (2) } ? ensures that there is no space before the second
token.

3. Use directive splittoken followed by a comma separated list of tokens that should
be split and a semicolon (cf. Listing 4.37).

Solution 1 is slightly unpleasant to the modeler; solutions 2 and 3 slow down the parsing
process. The splittoken has the considerable advantage, that the split need not be
defined initially already in the component grammar, but can be deferred to later extending
grammars, when the problem actually occurs.

In Listing 4.37 the token ":::" is split into single character tokens in all productions,
because of the final splittoken directive. Thus, the productions need not be altered to
express a split of this token. When composing languages (see Chapter 7), the splittoken
directive can even be used for tokens inherited from extended grammars such that these
grammars need not be altered if a token produces problems after composing.

Splitting is only allowed for tokens consisting of special characters but not letters or num-
bers. For example "#tag" should use nospace () instead.
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1 A = ":::" Name; MeG
2 B = ":::"%x Name;

3 D = foo:":::" | bar:"--—-";

4 E = foo:":::"x ;

5 F = foo:[":::"];

6

7 splittoken ":::", "-——=-";

Listing 4.37: Add a conversion method for lexical types

4.3.2 Local Keywords: Avoid handling Keywords as Tokens

/ \Tip 4.38: Temporary Keyword with nokeyword "foo";

glf a keyword, like "state" is introduced in a production, then state cannot
be used as name anymore. Not for variables, methods, attributes.
To avoid this, a temporary keyword can be introduced using nokeyword
"state";

The introduction of a keywords like "1 £" or kg disallows to use the characters i f or kg
as normal Name. When composing languages (see Chapter 7), however, this may lead to a
problem, because keywords suddenly influence the allowed names in each other languages.
Programming languages are very careful when adding new keywords, e.g. looking at the
Java challenges when introducing the assert statement.

To introduce a temporary keyword key ("km") can be used as discussed in Section 4.2. If
this concept is overused, it can slow down the parsing process when the terminals are used
for selection between alternatives.

MontiCore also offers the possibility to make keywords local using the nokeyword direc-
tive. Listing 4.39 demonstrates its usage for the automaton keyword, but the arguments
can also be a comma separated list.

Automaton = MCG
"automaton" Name "{" (State | Transition)s* "}" ;

nokeyword "automaton";

Listing 4.39: Using nokeyword to define "automaton" as a local keyword

Similar to the splittoken directive, the nokeyword directive expresses that all occur-
rences of the listed keywords should not be handled as token and it can be used to decide
this also retroactively for keywords inherited from extended grammars.
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4.4 Context Conditions for the MCG Language

As in any other language, a number of context conditions apply for grammars. For the
MontiCore grammar language these rules mainly deal with nonterminals extending or im-
plementing other nonterminals, or with existence and naming conflicts. The following de-
scriptions provide details on the actual context conditions (i.e., error codes and messages).
The following notation is used to explain the error messages:

e [A] A is a placeholder for a concrete value during runtime,

e [A]? is an optional output of A,

e [A|B] is an alternative A or B,

e [placeholder=A|B] is a named alternative.

Naming

CoCo
Ezxpl.

CoCo
Ezxpl.

CoCo
Ezxpl.

CoCo
Expl.

CoCo
Ezpl.

Hint
CoCo

Ezpl.
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0xA4003 (error)
The grammar name [grammarName] must not differ from the file name of
the grammar (without its file extension).

0xA4004 (error)
The package declaration [package] of the grammar must not differ from the
package of the grammar file.

0xA4005 (warning)

The name [name] used for the nonterminal [nonterminalName] refer-
enced by the production [productionName] should start with a lower-case
letter.

0xA 4090 (error)

The prod: [productionName] contains different rule components with
the same name: [ruleComponentName] with incompatible types:
[firstType] and [secondType].

0xA4018 (error)

The production [productionName] must not use the keyword [keyword]
without naming it.

Keywords may only be used without explicit naming whenever there could be
a valid attribute name derived from it.

0xA4019 (error)
The production [productionName] must not use a ConstantGroup with
more than one element without naming it.
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0xA4024 (error)

The production [productionName] extending the pro-
duction [extendedProductionName] must not use the
name [name] for the nonterminal [nonterminalName] as

[extendedProductionName] already uses this name for the nonter-
minal [extendedProductionsNonterminalName].

0xA4025 (error)

The overriding production [productionName] must not use
the mname [name] for the nonterminal [nonterminalName] as
the overridden production uses this name for the nonterminal
[overriddenProductionsNonterminalName].

0xA4031 (error)
The nonterminal [name] should not start with a lower-case letter.

0xA4033 (warning)
The grammar’s name [grammarName] should start with an upper-case letter.

0xA4079 (error)
The string [keyword] for splittoken may not contain any letters or digits
and must be longer than 2.

0xA4091 (error)
The string [keyword] for key () must be compatible to 'Name’.

0xA4093 (error)
The string [keyword] for nokeyword must be compatible to 'Name’.

0xA4058 (warning)
If the string [digits] is defined as terminal, this string can no longer be
part of an expression.

0xA4006 (warning)
The package name [packageName] contains uppercase letters!

0xA 2008 (error)

The production [productionName] contains two list nonterminals that re-
sult in the attribute name [name]. But one name is derived from the non-
terminal name and one is set manually. This is not allowed.

Implements/Extends

CoCo
Ezxpl.

0xA 2007 (warning)

The production [productionName] does not extend the Rule
[superRuleName] In a conservative manner at component
[ruleComponentName]. This can lead to problems in the AST.
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0xA2106 (error)

The abstract nonterminal [name] must not implement the nonterminal
[typeName]. Abstract nonterminals may only implement interface nonter-
minals.

0xA2107 (error)

The abstract nonterminal [name] must not extend the interface nonterminal
[typeName]. Abstract nonterminals may only extend (abstract) nontermi-
nals.

0xA2102 (error)
The nonterminal [name] must not implement the nonterminal [typeName].
Nonterminals may only implement interface nonterminals.

0xA2103 (error)
The nonterminal [name] must not extend the interface nonterminal
[typeName]. Nonterminals may only extend (abstract) nonterminals.

0xA2116 (error)

The interface nonterminal [name] must not extend the
[abstract |external]? nonterminal [typeName]. Interface non-
terminals may only extend interface nonterminals.

0xA4001 (error)

The production [productionName] overriding a production of a sublan-
guage must not extend the production [extendedProductionName].
Overriding productions can only implement interfaces.

0xA4002 (error)

The abstract production [productionName] overriding a pro-
duction of a sublanguage must not extend the production
[extendedProductionName].

Overriding productions can only implement interfaces.

0xA4011 (error)
The nonterminal [name] must not [extend|astextend] more than one
[nonterminal|class].

0xA4012 (error)
The abstract nonterminal [name] must not [extend|astextend] more
than one [nonterminal|class].

0xA4013 (error)
The AST rule for [nonterminalName] must not extend the type
[typeName] because the production already extends a type.

0xA4029 (error)
The nonterminal [name] must not extend and astextend a type.
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CoCo
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0xA4030 (error)
The abstract nonterminal [name] must not extend and astextend a type.

0xA4047 (error)
The production [productionName] must wuse the component
[ruleComponentName] from interface [interfaceName].

0xA4097 (error)
It is forbidden to extend the rule [productionName] with the external class
[externalName].

0xA4150 (error)
A grammar must not extend another grammar multiple times.

0xA0113 (error)
The production [productionName] extends or implements a non-existent
production.

0xA2025 (error)
The nonterminal [nonterminalName] must not be defined by more than
one production.

0xA 2026 (error)
The nonterminal [nonterminalName] must not be defined by more than
one production: nonterminals aren’t case-sensitive.

0xA 2030 (error)

The production [productionName] must not reference the
[nonterminal |interface nonterminal] [referencedName]
because there exists no defining production for [referencedName].

0xA2031 (error)

The production [productionName] must not wuse the nontermi-
nal [referencedName] because there exists no production defining
[referencedName].

0xA0276 (error)
The external nonterminal [name] must not be used in a grammar not marked
as a grammar component.

0xA0277 (error)
The abstract nonterminal [name] must not be used without nonterminals
extending it in a grammar not marked as a grammar component.

0xA0278 (error)
The interface nonterminal [name] must not be used without nonterminals
implementing it in a grammar not marked as a grammar component.
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0xA4014 (error)
Duplicate enum constant: [enumConstant].
The constants of enumerations must be unique within an enumeration.

0xA4015 (error)
The lexical production [productionName] must not allow the empty token.

0xA4016 (error)

The lexical production [productionName] must not reference the non-
terminal [tokenName] because there exists no lexical production defining
[tokenName].

0xA4017 (error)

The lexical production [productionName] must not reference the nonter-
minal [tokenName] because [tokenName] is defined by a production of
another type than lexical. Lexical productions may only reference nontermi-
nals defined by lexical productions.

0xA4020 (error)
There must not exist more than one AST rule for the nonterminal
[nonterminalName].

0xA4021 (error)
There must not exist an AST rule for the nonterminal [nonterminalName]
because there exists no production defining [referencedName].

0xA 4032 (error)
There must not exist an AST rule for the enum nonterminal
[nonterminalName].

0xA4028 (error)

The AST rule for the nonterminal [nonterminalName] must not use the
same attribute name [attributeName] as the corresponding production
with the type [typeNameInASTRule] as [typeNameInASTRule] is not
identical to or a super type of [typeNameInProduction].

0xA 4032 (error)
There must not exist an AST rule for the enum nonterminal [name].

0xA4037 (error)
The production for the referenced symbol [symbolName] does not exist as
a symbol or not at all.

0xA4041 (error)
Symbol or scope is mentioned more than once in the declaration of
[productionName].

0xA 4056 (error)
The left recursive rule [productionName] is not allowed in blocks, because
it is not supported by Antlr.
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Overriding

0xA4101 (error)
There is no production defining a token in Grammar : [grammarName]

0xA4102 (error)

[astrule|symbolrule|scoperule] does not allow the definition of
nested generics. Problem in grammar [grammarName], rule for
[ruleType], with additional attribute: [additionalAttributeName]

0xA4151 (error)
A symbolRule must not exist twice for a single nonterminal. Violation by
[ruleTypel].

0xA0112 (error)
Gramimar [grammarName ] contains two productions named
[productionName]. Production names must be unique within a grammar.

0xA0125 (error)
The rule [productionName] inherits symbols from more than one class.

0xA0117 (error)
There is no symbol defining rule that belongs to symbolrule
[symbolRuleName].

0xA0135 (error)
The rule [productionName] inherits scope properties from more than one
class.

0xA4119 (error)
The production [productionName] should not use the annotation [@Dep-
recated|@Override| twice.

0xA4118 (warning)
The external production [productionName] must not have a corresponding
ASTRule.

Please note that overriding of productions is an essential and smart feature of MontiCore
that is explained in Chapter 7.

CoCo
Ezxpl.

CoCo
Ezxpl.

CoCo
Ezpl.

0xA 4007 (error)
The production for the interface nonterminal [name] must not be overridden.

0xA 4008 (error)
The production for the abstract nonterminal [name] must not be overridden
by a production for an interface nonterminal.

0xA 4009 (error)
The production for the nonterminal [name] must not be overridden by a
production for an abstract nonterminal.
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0xA4010 (error)
The production [productionName] must not be overridden because there
already exist productions extending it.

0xA4026 (error)
The lexical production [productionName] must not use a different type to
store the token than the overridden production.

0xA4027 (error)
The production for the enum nonterminal [productionName] must not be
overridden.

0xA0274 (error)

Production [productionName] from grammar [grammarName] is a sym-
bol and overwritten by the prod [productionName] of the grammar
[grammarName] that also defines a symbol. Remove the second symbol
definition, because the symbol property is inherited anyway.

0xA0275 (error)

Production [productionName] from grammar [grammarName] is a
scope and overwritten by the prod [productionName] of the grammar
[grammarName] that also defines a scope. Remove the second scope defini-
tion, because the scope property is inherited anyway.

0xA 4094 (error)
The production [productionName] does not override any production.

0xA 4098 (warning)
The production [productionName] overrides production
[productionName] without annotation.

0xA 4022 (error)
The production [name] introduces an inheritance cycle. Inheritance may not
be cyclic.

0xA4023 (error)
The grammar [name] introduces an inheritance cycle.

0xA 4039 (error)
You can only refer to other symbols on the nonterminal Name.

0xA4100 (error)
The attributes with the UsageName [name] cannot reference to the different
symbols [symbolName] and [symbolName].



4.5. Semantic Predicates and Actions

The unique error identifier, like 0xA4023, can also be used to find the source code where
the context condition is checked. Most of the context conditions for MCG can be found
under the following Java package:

1| Repository: MontiCore/monticore github
2| Directory: monticore—-generator/src/main/java/
3| Package: de.monticore.grammar.cocos

4.5 Semantic Predicates and Actions

Semantic predicates and actions are Java expressions embedded in curly braces and followed
by a question mark. They allow for checking of constraints on passed model elements or
for the injection of Java code into the parser, e.g. counters to count opening and closing
brackets. The syntax and semantics of semantic predicates, as well as actions have been
adopted from ANTLR, therefore we do not excessively discuss their syntax and usage here,
but refer to the ANTLR documentation available at [Parl3] instead.

However, due to the restricted capability of the token lexer to read its input and select
the right token, it is sometimes useful to use semantic predicates to help MontiCore in
selecting the correct parsing form. See Section 21.4.3 for examples.

Several of the above discussed grammar constructs are actually short semantic predicates:
e {next ("42","41")}?

° {nospace(2,3)}? ">" ">" ">"

{cmpToken (1, "st")}?

{cmpTokenRegEx (n, r}?

Now, as we know the content of the curly brackets { ...} is ordinary Java, we also know,
that we can combine the provided Java functions with our own code as well as with any
other functions.

An additional functions are provided by the MontiCore runtime environment:

e the token (n) function gives access to forthcoming token with number n, e.g. within
a semantic predicate token (1) returns the next token as a string.

We, however, suggest not to overuse semantic predicates, and in particular not to write
too much code in the grammar itself. If complex code is necessary, you may write that in
extra methods in ordinary Java classes and call them from there.

To facilitate writing semantic predicates and avoid fully qualified names, a star import
for the package de.monticore.parser.* is included in the parser which allows all
handwritten classes located in this package to be used via their simple name.
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4.6 EBNF of the MCG Language

‘This section contains the EBNF form of the context free syntax of the MCG language. It
is usable for understanding the concrete syntax, but not meant for parsing.

[/
2 EBNF MCG 7, Version April, 6th, 2021.

3| *x/

4

5 MCGrammar ::=

6 ('package' QualifiedName ';' )?

7 (MCImportStatement) *

8 GrammarAnnotation?

9 'component'? 'grammar' Name

10 ('extends' (GrammarReference || ',' )+ )7
11 e

12 (GrammarOption | Prod | StartRule

13 | ASTRule | SymbolRule | ScopeRule

-
'S

| SplitRule | KeywordRule | Concept )=
l}l;

=
(2B

GrammarReference ::= QualifiedName ;

[
S © »

[/ #ER R A A A A #A##A Grammar Options
21
22 GrammarOption ::=

23 'options' '"{' (FollowOption | AntlrOption | KeywordOption)=* '}' ;
24
25 FollowOption ::=

26 'follow' Name Alt ';' ;
27
28 AntlrOption ::=

29 Name ('=' (Name | String) )2 ';' ;
30
31 KeywordOption ::=

32 'allkeywords' | 'keywords' (Name)+ ';' ;
33
34 GrammarAnnotation ::=

35 '@Deprecated' Name ('(' String ')'")?
36 | '"@Override'
37 | '"@NonConservative' ;

38
39 StartRule ::=

40 'start' Name ';' ;
41
42
43 S/ tER R AR AR A AF##HFA Productions
44
45 Prod ::= GrammarAnnotationx

46 ( LexProd | ClassProd | InterfaceProd
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47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
T
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

| AbstractProd | ExternalProd | EnumProd );

LexProd ::=
("fragment' | 'comment') x
'token' Name
LexOption? ActionBlock?

'=' (LexAlt || '"|" )+
(":'" ('->' Name)? ActionBlock?
(Name ('->' QualifiedName (':' ActionBlock)? )? )?
ClassProd ::=
SymbolDefinition* Name
( ('extends'|'implements') (RuleReference |[|',' )+
| ('astextends'|'astimplements') (MCType || ', ")+
) *
ActionBlock?
("=" ALt ('|' Alt )x )? ';' ;
InterfaceProd ::=
'interface' SymbolDefinitionx Name
( '"extends' (RuleReference || ',' )+
| 'astextends' (MCType || ',")+
) *
("="' Alt ("|' Alt )x )2 ';' ;
AbstractProd ::=
'abstract' SymbolDefinitionx Name
( ('extends'|'implements') (RuleReference ||',"' )+
| ('astextends'|'astimplements') (MCType || ', ')+
) *
("='" (Alt || "IN+ ) 'yt
ExternalProd ::=

'external' SymbolDefinitionx Name MCType? ';' ;

EnumProd ::=
'enum' Name '=' (Constant || "|")+ ';' ;
Card ::=
l?‘ I l*' | l+l
| 'min' '=' Digits ('max' '=' (Digits | 'x'))?
| 'max' '=' (Digits | 'x'") ;
RuleReference ::= SemanticpredicateOrAction? Name

('<'" Digits '>")? ;

[/ttt # R AR # #4444 Production body

Alt ::= '<rightassoc>'? GrammarAnnotation? RuleComponentx*

RuleComponent =

4
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29 NonTerminalSeparator

100 | Block

101 | NonTerminal

102 | Terminal

103 | KeyTerminal

104 | TokenTerminal

105 | ConstantGroup

106 | Eof

107 | SemanticpredicateOrAction

108 | LexNonTerminal

109 ;

110

111 NonTerminalSeparator ::=

112 (Name ':")? '"(' Name ('@' Name)? '&'? '"||' String ")' ('"*'|'+");
113

114 Block ::=

115 '('" (Option ':' | Option? 'init' ActionBlock ':')?
116 Alt ("' Alt )+ ")V ("' "k |'+")?

117

118 Option ::=

119 'options' '{' OptionValue+ '}' ;

120

121 OptionValue ::=

122 Name '=' Name ';' ;

123

124 NonTerminal ::=

125 (Name ':')? Name ('@' Name)? ('!!'" Name?)? '&'? ('2'"|'"x"|'"+")? ;
126

127 Terminal ::=

128 (Name ':')? String ('?'['x'"|"'+")? ;

129

130 KeyTerminal ::=

131 (Name ':')? KeyConstant ('"?2"'"['x"'"|['"+")? ;
132

133 KeyConstant ::=

134 'key' "(' (String || "I")+ ")'" ;

135

136 TokenTerminal ::=

137 (Name ':')? TokenConstant ('2?'|['x'|['+")? ;
138

139 TokenConstant ::=

140 'token' '(' String ")' ;

141

142 Constant ::=

143 (Name ':")?

144 ( String |

145 KeyConstant |

146 TokenConstant

147 )

148

149 ConstantGroup ::=

150 (Name ':'"'")? '['" (Constant || "[")+ "]"'" ("2"["'"x"|"+")? ;
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151
152
153
154
155
156
157
158

160
161
162
163
164
165
166
167
168

170
171
172
173
174
175
176
177
178

180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196

198
199
200
201
202

Eof ::= 'EOF' ;

SemanticpredicateOrAction ::=
'{' ExpressionPredicate '}' '?' | ActionBlock ;

S/ HRRRFHARFHFFAAAH#F##H## Concepts and Control Rules

Concept ::=
'concept' Name MCConcept ;

SplitRule ::=

'splittoken' (String || ',™)+ ';';
KeywordRule ::=

'nokeyword' (String || ', ")+ ';';

[/ HEHE A A AR RS AST Rules

ASTRule ::=
'astrule' Name
( 'astextends' (MCType || ', ")+
| "astimplements' (MCType || ', ")+
) *

('="

(GrammarMethod | AdditionalAttribute) *

)2 i
GrammarMethod ::=
'method' ('public'| 'private'| 'protected')?
'final'? 'static'?
MCReturnType Name ' (' (MethodParameter || ',' )%
("throws' (MCTIype || ',")+ )2

ActionBlock ;

MethodParameter ::= MCType Name ;
AdditionalAttribute ::=
(Name ':' )? MCType Card? ;

[/ E R Lexer

LexAlt ::=
LexComponent* ;

LexComponent
LexBlock
| LexCharRange

| LexChar
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203 | LexAnyChar

204 | LexString

205 | LexActionOrPredicate
| LexNonTerminal

207 | LexSimpleIteration

208 ;

209

210 LexBlock ::=

211 Tt (!

212 (LexOption ':' | LexOption? 'init' ActionBlock
213 (LexAlt || "|" )+ ")y" ('"2"|"«s"|"+")°?
214

215 LexCharRange ::= '~'? Char '..' Char ;
216

217 LexChar ::= '~'? Char ;

218

219 LexAnyChar ::= '.' ;

220

221 LexString ::= String ;

222
223 LexActionOrPredicate ::=

224 '{' ExpressionPredicate '}' '?' ;
225
226 LexNonTerminal ::= Name ;
227
228 LexSimpleIteration ::=

229 (LexNonTerminal | LexString | LexChar | LexAnyChar)

230 (l?'l!*l‘l_'_l) (!?l)?
231
232 LexOption ::=

233 'options' '{' Name '=' Name ';' '}' ;
234
235
236 [/ #EHREH A A HHESF Symbol Table
237
238 SymbolDefinition ::=

239 'symbol'
240 | 'scope'
241 | 'scope' '(' ('shadowing' | 'non_exporting' |

242
243 SymbolRule ::=

244 'symbolrule' Name
245 ('extends' (MCType || ',")+
246 | 'implements' (MCType || ', ")+
247 ) *
"=

248 ( (GrammarMethod | AdditionalAttribute) *)?
249

250 ScopeRule ::=

251 'scoperule’

252 ('extends' (MCType || ',")+

253 | 'implements' (MCType || ', ')+
254 ) *
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255
256
257

259
260
261
262

264
265
266
267

269
270
271
272

('"="'" (GrammarMethod | AdditionalAttribute)*)? ';' ;

[/ #EfdHFE S F A # A #HE External Productions

ActionBlock ::= '"{' Action '}' ;
Action ::= ... ;
ExpressionPredicate ::= ... ;
MCConcept ::= ... ;

/] HHEHEHEFAE S SESF Types and References
QualifiedName ::= (Name |[[|'.")+ ;

MCType ::= ...;

Listing 4.40: EBNF of the MontiCore grammar MCG

f ""‘\Tip 4.41: The MontiCore Grammar

The full and reusable MontiCore grammar can be found in the MontiCore repos-
itory here:

1| Repository: MontiCore/monticore github
2| Directory: monticore-grammar/src/main/grammars/

3| Files: de.monticore.grammar.Grammar.mc4

4 de.monticore.grammar.Grammar_ WithConcepts.mc4

The latter grammar also includes several additional concepts that help to control
the parsing process and related issues.
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Chapter 5

Abstract Syntax Tree

A MontiCore grammar defines the concrete and abstract syntax (AST) of a language in
an integrated fashion. Thus, lexer, parser and the classes for the abstract syntax can be
automatically derived. This chapter explains the structure of the AST classes derived from
a MontiCore grammar.

Besides the AST classes and the parser, MontiCore also generates builders and other helpful
classes by deriving them from a grammar. The generated files for any given grammar are
summarized in Table 5.1. They can be found in the output folder located in the target
package plus the subpackage given in Table 5.1.

Table 5.1: Files generated from a grammar

‘ File(s) for ‘ Explanation ‘ Subpackage
AST Classes Classes are generated by MontiCore | _ast
and instantiated during parsing
Parser and Lexer Read a file and produce AST _parser
Node Builders Used to create AST objects (must _ast

also be used to create AST objects
by hand). They can be modified to
inject handcoded AST subclasses.
Mill For providing builders -
Visitors For traversing the AST _visitor
and the symboltable
(see Chapter 8)
Symboltable Symbols, scopes, visitors and _symboltable
symboltable serialization
(See Chapter 9)

Context Condition | Environment to implement

Infrastructure context conditions __cocos

(See Chapter 10)
CD Representation | Help understanding the grammar report (no subpackage,
of the Grammar and AST structure next to the grammar

(for documentation) package)




5. Abstract Syntax Tree

5.1 Mapping Nonterminals to the AST

As described in Chapter 4 a production defines a nonterminal. It comprises a nonterminal
on the left-hand side and the production body on its right-hand side. For every nonterminal
defined in a grammar an AST class is generated. Nonterminals on the right-hand side of a
production result in compositions (cf. Figure 5.2). If a nonterminal occurs more than once
or has a cardinality greater than 1, there is an s added to the derived name, i.e. State~
is equivalent to states:State* with the exception of some trailing s differing at the
end of some of the methods. Nonterminals that are marked with a » or + will result in list
attributes. Furthermore, several equally named nonterminals are grouped and result in one
single list (cf. Figure 5.2). As a consequence, nonterminals that should be distinguishable
need to be named explicitly with different names.

AST-CD "
1
S = x:A y:A¥*; s & x' A
A= N >
1
S = x:A "::=" ‘ S A ‘
Y:A n__mn (Y:A | u,n )*;
y

Figure 5.2: Sequences of nonterminals in the AST

Optional nonterminals, i.e., nonterminals marked with a question mark or within an alter-
native, are mapped to Java Optionals of the type of the nonterminal (cf. Figure 5.3).
If the Optional is present then the nonterminals occurred in the parsed model. If a
nonterminal occurs several times (even optionally), e.g. A? A?, it is also stored in a list.

is marked as optional is a list because it is marked as optional two times

MG ) AST-CD |
A = B? C? C?; A
/\—/ Optional<B> b
B = "x"; — | List<C> cList
= (D | E);

C
Optional<D> d

are optional due to the alternative Optional<E> e

Figure 5.3: Optional nonterminals

Storage in lists is efficient, but forgets some of the information e.g. the order of interleaving.
For example in the pathological cases (A|A) or (A|B) * the alternative taken respectively
the order in which As and Bs occur cannot be fully reconstructed from the AST. In this
case, restructuring the grammar helps.

Finally, tokens defined by regular expressions over characters are mapped to Strings. Con-
sider the predefined Name token, for example, it does not map to an AST class ASTName
and thus is mapped to a String attribute, when used within a production body.
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5.2 Interface and Abstract Nonterminals

Interface and abstract nonterminals are mapped differently to the AST. In the AST an
interface nonterminal I maps to a Java interface I (actually ASTI). If there is a nonterminal
A that implements I (cf. Figure 5.4), ASTA will implement ASTI. Hence, although the
grammars in Listing 4.19 (p. 51) and 4.20 (p. 51) are equivalent regarding the concrete
syntax, their AST data structures differ significantly.

Similarly, an abstract nonterminal B maps to an abstract Java class B (actually ASTB).
Thus, the nonterminal AutomatonElement in Figure 5.5 is mapped to an abstract class
AutomatonElement in Java. Usually other nonterminals implement or extend those
nonterminals, which will be explained in Section 5.3.

A

interface I; «interface»
A implements I = "..."; |

s="..."; j
A extends S = "..."; S A

interface J extends I; «interface» ﬂ «interface»
interface I; | J

Figure 5.4: How interfaces in a grammar map to the abstract syntax

abstract AutomatonElement; MG
State extends AutomatonElement = "..." ;

Transition extends AutomatonElement = "..." ;

mapped to

an abstract AST-CD
class

«abstract» State = "..." ;
AutomatonElement Transition = "..." ;
ZF ZF AutomatonElement =
— State | Transition;
\ State | | Transition \

Figure 5.5: How abstract nonterminals in a grammar map to abstract classes

5.3 Extending Nonterminals: astimplements, astextends

The extension mechanism for the AST is straightforward (cf. Figure 5.7 and 5.4). The
keyword extends directly maps to an extension on the AST classes. Interface nontermi-
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5. Abstract Syntax Tree

~ \Tip 5.6: Interface and Abstract Nonterminals

2 Interfaces and abstract nonterminals help in structuring the grammar in order to
keep it readable and manageable.

Even more important is that they are excellent mechanisms to extend a language
(cf. Section 5.3 and Chapter 7).

They also help in structuring the abstract syntax, represented in a set of classes
and interfaces. Therefore a well structured AST is based on a good structure of the
grammar.

nals map to Java interfaces. And thus the nonterminal extension on interfaces also maps to
Java interface extension. Therefore, unsurprisingly: Normal productions (cf. Section 4.2.6)
can only be extended by normal productions, while abstract productions can be extended
by normal and abstract productions. Interfaces (cf. Section 4.2.4) can only be extended
by interfaces (cf. Section 4.4), but implemented by normal and abstract nonterminals.

A = "foo" ;

S extends A = "bar" y:B* ;
S H B

S inherits all productions of form
A = .."(in addition to those
defined explicitly for S)

Figure 5.7: Productions extending other productions

The MCG grammar format allows adding interfaces or super classes to the AST classes
without any impact on the concrete syntax. To add an interface to an AST class the
keyword astimplements is used. The keyword astextends is used to extend AST
classes (i.e. derived from normal nonterminals) by other Java classes and AST interfaces
by other Java interfaces.

astimplements and astextends can only be used when followed by a Java class or
interface respectively. They are directly realized in the structure of the generated AST (cf.
Figure 5.8 and 5.9).

In the astimplements statement any Java interface, e.g. Observer, also including
interfaces derived from the grammar, e.g. ASTI, can be used. However, some restrictions
do apply. For instance, given B astimplements IF, the Java interface IF enforces its
methods being implemented by the class ASTB (cf. Figure 5.8). There are three options:
(1) the nonterminal B is declared as abstract, (2) the missing methods are added using the
astrule statement or (3) a handwritten version of class ASTB is provided that implements
these methods (see Section 5.10).

The Java class CL in the statement B astextends CL also obeys restrictions. Because
Java only allows single inheritance, the astextend statement lets CL replace the normal
superclass, which is directly or transitively a subclass of ASTCNode. Therefore, CL must
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5.4. Extending the Abstract Syntax Implementation

Parser

- N - R A= "x":
interface I; «interface» LA | !
A implements I = "x"; | <} B B = "y";
B implements I = "y"; I=A|B
interface I; «interface» -{# A = "x";
A implements I = "x"; l B = "y";
B astimplements Observer = "y"; «interface» I =242
= { B -
Observer

Java interface ,)

(i.e. any Java interface, incl. a
generated one, like "ASTA")

Figure 5.8: Implements in abstract and concrete syntax

AST-CD" Parser
A= "x"; A= "x" | B;
A < H B ’
B extends A = "y"; B = "y";
A = "xv; Pee
B astextends CL = "y"; CL <l_ B R
\ —
Java class

Figure 5.9: Inheritance in abstract and concrete syntax

implement interface ASTNode. For example it could be defined as a subclass of ASTCNode.
Thus, it is not possible to use foreign classes, such as Observable. Additionally, in order
to use a Java class or interface which is being extended or implemented by an AST class,
the used Java class must be fully qualified in the grammar.

Please note, that the attributes inherited from CL are ignored by MontiCore’s standard
functionality, e.g. when parsing. Therefore, the developer is responsible for completing
the object data. Again, this can be done by (1) declaring the nonterminal B abstract, (2)
using the astrule statement for B, or (3) providing a handwritten version of ASTB.

If B is declared as an interface, it is allowed to use arbitrary Java interfaces for IF. For
example in interface B astextends IF, Java interface IF can be chosen freely.

5.4 Extending the Abstract Syntax Implementation

AST rules start with the keyword astrule and enable the definition of additional at-
tributes and methods for the generated AST classes, but do not have an impact on the
concrete syntax of the language. The notation is aligned to the grammar format, i.e. AST
rules are defined similar to productions but start with the keyword astrule (cf. Fig-
ure 5.10). Here it is also possible to use the keywords astextends or astimplements
as described above.
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5. Abstract Syntax Tree

B="...": «interface» *

|

interface I; y

astrule I =<— | )
astrule-statement

y:B¥*;

adds element to signature of
class I

Figure 5.10: Extending the AST structure

The extensions defined with astrule will result in additional method signatures in the
AST interface and corresponding attributes and methods implementations in the AST
classes for all implementing productions.

grammar Automata {

Automaton = "automaton" Name
"{" ( State | Transition )* "}" ;

State = "state" Name
(ll<<ll ["initial"] ll>>ll I H<<ll [HfinalH] ">>V| ) * H; " ;
Transition = from:Name "-" input:Name ">" to:Name ";" ;

astrule State =
reachableState:State¥*;

Automaton

. String name g
additional attribute
in the abstract syntax * .
(not part of the State Transition
concrete sy ntax) boolean initial String from
boolean final String input
String name String to
List<State> reachableStates

Figure 5.11: Adding attributes in the AST with the astrule statement

grammar Automata {
State = "..." ;

astrule State =
reachableStates:State* N
AST-CD
method public boolean isReachable (ASTState s) {
return reachableStates.contains(s);

\

State
af?’d/‘f/b{‘lﬂ/ me thod - List<State> reachableStates
(including implementation,

public boolean isReachable(ASTState s)

Figure 5.12: Adding methods in the AST with the astrule statement

In AST rules, nonterminals can be used in the same way as they are used in productions (cf.
Figure 5.11). AST rules produce additional attributes and methods in the generated class.
However, this does not affect the concrete syntax and when the parsing is complete, any
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5.5. Terminals in the AST

newly defined attributes, like reachableStates, will not have a defined value directly
after parsing.

Additional methods are introduced by the keyword method followed by the usual Java
syntax for method declarations (cf. Figure 5.12). If an attribute n (derived e.g. from
nonterminal n:A) was already present within the normal production, the type (e.g. n:B)
specified in the AST rule has precedence. This allows us to override the type chosen by
the attribute derivation.

‘/’“\Tip 5.13: AST Rules, like astextends and astrule

& When the resulting abstract syntax (which results in a tree of nodes) does not
fully accommodate the developers needs, additional attributes may be added directly
in the grammar.

After parsing, the AST objects then, however, need to be completed, for example
by using a visitor (see Chapter 8) that fills all the additional attributes.

Methods can also be added using the astrule statement, but for complex meth-
ods there is a more comfortable approach, using handcoded extensions (see Chap-
ter 14).

Both, methods and getters/setters for attributes that are added using astrule
are visible in the public signature of a generated AST class.

Please note that the mechanism for a handcoded extension of the AST allows roughly the
same effects as adding methods in the product. However, it is usually more comfortable
because the handcoded extension can be written directly within a comfortable Java IDE
of your choice.

5.5 Terminals in the AST

As stated before, terminals are usually not part of the abstract syntax. In case a terminal is
semantically relevant, e.g. like a terminal in an alternative, there are two options to mark
it as relevant: (1) Adding an explicit name or (2) surrounding it with square brackets
(cf. Figure 5.14). In the first case there will be an attribute with the given name of type
String in the abstract syntax holding the terminal as value (cf. Figure 5.14). The second
variant is usually preferable, as it results in a boolean attribute named like the terminal.
In this case the name of the attribute is derived from the terminal. In Figure 5.14 the
terminal "Hello" is not reflected by the AST, but the attribute who is. If the terminal in
square brackets is not a suitable attribute name, but e.g. an operator like "++" a name
can be added explicitly within the square brackets.

Please note that terminals marked as relevant are usually optional or part of an alternative.
Otherwise, these terminals are mandatory in the model and thus the attribute will always
hold the same value, providing no information.
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A = "Hello" A
(who: "World" | who:"Tom") String who
" ! H;

‘B = ["initial"]?; | B

boolean initial

Figure 5.14: Terminals included in the AST

5.6 Enumerations

A list of terminals within square brackets mimics an enumeration and results in an at-
tribute of type int in the abstract syntax as shown in Figure 5.15. Furthermore, for
each terminal in the alternative there is a constant stored in an extra class created for
such constants (e.g. ASTConstantsGr for a grammar called Gr). If an explicit keyword
name is omitted it is derived automatically from the keyword e.g. PUBLIC from public.
Letters are capitalized. For other symbols, such as "+", there are default names used, e.g.
plus. It is possible to choose the same name for different keywords meaning that they are
semantically equivalent as shown in Figure 5.15 for "+" and "public". Since no name
can be determined for the constant group, the group is given the name vis .

AST-CD )
grammar Example { ConstantsExample
A = DEFAULT = 0;
vis:[ PUBLIC:"+" | "public" | PUBLIC =1;
PRIVATE:"-" | "private"]; PRIVATE = 2
! A
If several values can be  s|intvis

chosen, they are represented
by int constants

Figure 5.15: Choice of one of several values stored as int

In the grammar an enumeration introduced by the enum keyword results in an explicit
Java enumeration holding the corresponding constants (cf. Figure 5.16). Enumeration
nonterminals are used in productions like other nonterminals. Again, it is possible to use a
keyword in an enumeration repeatedly, because alternatives with equal names are mapped
to the same constant.
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AST-CD"
enum VISIBILITY = «enum»
PUBLIC:"+" | "public" | VISIBILITY
PRIVATE:"-" | "private" ; PUBLIC
A = vis:VISIBILITY; PRIVATE
A
) VISIBILITY vis
enumerations

Figure 5.16: Explicit definition of an enumeration

5.7 ASTNode: A Base Interface for AST Classes

All AST classes implement a common interface called ASTNode (cf. Figure 5.18). This
interface, respectively the default implementations behind it, allows us to compare AST
nodes, store comments from the original file and the source position, from where the AST
node and its substructure has been parsed.

The ASTNode interface shown in Figure 5.17 provides the common signature implemented
by all AST classes.

[CE

© 0w N O ot s W

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

public interface ASTNode {

// Cloning
ASTNode deepClone (ASTNode result);
ASTNode deepClone();

// Forms of equalities

boolean equalAttributes (Object o);
boolean equalsWithComments (Object o) ;
boolean deepEquals (Object o);

boolean deepEqualsWithComments (Object o);

boolean deepEquals (Object o, boolean forceSameOrder);
boolean deepEqualsWithComments (Object o, boolean forceSameOrder);

// Managing the attached source position (start)
boolean isPresent_SourcePositionStart ();
SourcePosition get_SourcePositionStart();

void set_SourcePositionStart (SourcePosition start);

void set_SourcePositionStartAbsent () ;

// Managing the attached source position (end)
boolean isPresent_SourcePositionEnd();
SourcePosition get_SourcePositionEnd();

void set_SourcePositionEnd (SourcePosition end);
void set_SourcePositionEndAbsent () ;

// Managing attached comments
boolean add_PreComments (Comment precomment) ;

// in total ~30 methods for managing List<Comment> pre

Java «RTE» ASTNode
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30 boolean add_PostComments (Comment postcomment) ;
31 // in total ~30 methods for managing List<Comment> post
32| }

Listing 5.17: Signature of the ASTNode superclass of all AST nodes

There are several groups of methods available in the interface ASTNode: There are methods
for cloning and checking the quality of two nodes respectively node hierarchies (1. 3ff. and
1. 7ff.). By default, the deepEquals methods enforce the same order of children occurring
in the AST, but the comparison with a boolean stating whether the order should be
considered can also be used.

The source position is internally stored as an optional and thus the usual four methods
for their management are provided. Because the source position consists of start and end,
we have in total eight methods (Il. 15ff. and 1l. 21ff.). The source position is usually only
set by the parser, which knows where the AST node comes from. The AST also stores
comments before and after an AST node. Both may be a list with more than one element.
ASTNode thus provides over 30 methods for list management for the comments before and
after a node. Figure 5.18 shows a part of the signature and data structure of all ASTNodes.

«interface»

ASTNode
ASTNode deepClone() pre c
boolean deepEquals(Object o) post omment
boolean deepEquals(Object o, boolean considerOrder)
boolean deepEqualsWithComments(Object o) start 0.1
boolean deepEqualsWithComments(Object o, SourcePosition

. end 0.1
boolean considerOrder)

Figure 5.18: Common interfaces of AST classes

For a default implementation of several functions provided by ASTNode objects, the Mon-
tiCore runtime environment also provides an abstract subclass ASTCNode that implements
Cloneable. While it is helpful to know that this standard functionality is provided by all
AST objects, in concrete projects they need not be implemented by hand, but the generated
subclasses that are derived from the grammar provide already complete implementations.

1| Repository: MontiCore/monticore github
2| Directory: monticore-runtime/src/main/java/

3| Files: de.monticore.ast.ASTNode. java

4 de.monticore.ast.ASTCNode. java

5.8 Generated ASTNode Subclasses

Given a production, one can schematically infer the interface provided by the subclass
of ASTNode that is created. We demonstrate this on the ASTState class derived from
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the State production (from an enhanced automaton, where states can have priorities,
sub-states and transitions enclosed in curly brackets):

1| State = "state" Name prio:NatLiteral?
2 ( ["initial"] | ["final"] )=
3 ( ("{"™ (State | Transition)* "}") | ";") ;

The signature of the generated class ASTState directly implements all functions to access
the parsed information, that is retrieved from the right-hand side of the production. The
class furthermore implements all methods from ASTNode and it also provides functions
that allow to deal with the language specific symbol and scope structure. This will be
discussed in Chapter 9. Listing 5.19 and 5.20 show the (beautified) signature without the
method bodies.

package automata3._ast; [Java «gen» ASTState =

public class ASTState extends ASTCNode implements ASTAutomata3Node

{
// Storing the parsing result:

© N Ot s W N =

protected String name;
protected Optional<ASTNatLiteral> prio = Optional.empty();
protected List<ASTState> states = new ArrayList<>();
protected List<ASTTransition> transitions = new ArrayList<>();
10 protected boolean initial;
11 protected boolean r__ final;

12
13
14
15
16
17
18
19

// Constructor (but we use builders):
protected ASTState();

// Visitor management :

void accept (Automata3Traverser visitor);

void accept (MCBasicsTraverser visitor);

void accept (MCCommonLiteralsTraverser visitor);

Listing 5.19: Signature of the generated AST class to represent states: part 1

Like any other nonterminal, ASTState extends the MontiCore RTE class ASTCNode.
Furthermore, each grammar generates an abstract interface ASTAut omata3Node named
after the grammar. While this interface is empty it can be used by visitors that want to
visit exactly all nodes defined in a certain grammar.

The attributes defined in Il. 5ff. of Listing 5.19 are protected, only accessible and manipu-
latable through the in Listings 5.20 and 5.21 described get and set functions. There exists
only the empty constructor (ll. 13ff.), but any object of that class should be defined by
using the generated builders (see Section 5.9).

For each directly or indirectly included grammar the node also provides an appropriate
accept method (1. 16ff.), which allows the object to participate in the visitor pattern (see
Chapter 8) and also to reuse visitors of the imported languages within the new composed
language. Here, the Automata grammar relies on MCBasics and MCCommonLiterals.
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When a nonterminal is marked as interface or abstract, then the resulting class is
also an interface or abstract. In case of an interface, only the signature of methods is
provided and the attributes are deferred to the implementing classes. In Listing 5.20 the
second part of class ASTState is shown.

Java «gen» ASTState B]

// Treatment of children and semantically relevant terminals:
String getName () ;
void setName (String name);

// Optional attributes have four methods:
boolean isPresentPrio();

ASTNatLiteral getPrio();

void setPrio (ASTNatLiteral prio);

void setPrioAbsent () ;

© 0 N O s W N =

e
= o

boolean isInitial();
void setInitial (boolean initial);

e e
sWw N

boolean isFinal () ;
void setFinal (boolean r__ final);

= e
N o >
—

Listing 5.20: Attribute management signature of a generated AST class: part 2

For each nonterminal with a mandatory occurrence one get and one set method is generated
to allow access to the attribute. Lines 3ff. show this for nonterminal Name. The set function
is based on the general principle, that null is never used as a value.

For all nonterminals that may occur in cardinality different from 1, a number of additional
methods is generated that directly reflect the functionality of the implementation. That
means all functions for Lists and Optionals are directly available within the ASTNode
preventing that direct access would be necessary. Optional attributes have four methods
and List attributes more than 30 methods in total (see Java’s List methods).

If the attribute is optional, like prio (marked with a "2"), then a method allows us to
question the presence (l. 7 in Listing 5.20) and another method allows us to set the value
to absent (1. 10). Please also note that there is one get method for an optional attribute:
getPrio which issues an error message and raises an exception, if the value is absent.
getPrio thus must be guarded by isPresentPrio.

Line 12 shows, how optional, but semantically relevant terminals are managed. And line 15
demonstrates how MontiCore wraps a Java keyword that coincidentally also occurred in
the grammar as keyword: it maps "final" to "r___final'.

For a nonterminal with cardinality greater than one, MontiCore uses a List for imple-
mentation and provides the full List signature consisting of about 30 methods to access
and manipulate the list, without having developers to explicitly handle the list. For each
attribute a full set of List methods is generated. To distinguish the methods they are
attached with the nonterminal name and if several objects are involved also with an ad-

ditional "s". The advantages of these methods are that, on the one hand, writing code
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against the AST is more efficient and on the other hand, each of these methods can easily
be adapted with handwritten code, e.g. disallowing certain manipulations or enforcing
consistency vs. additional objects or back-links that create redundancy. The signature for
the Transitionx attributes is depicted in Listing 5.21.

void clearTransitions(); |Jmm«@ﬂ»AST$MeDﬁ
boolean addTransition (ASTTransition element);
boolean addAllTransitions

(Collection<? extends ASTTransition> collection);
boolean removeTransition (Object element);
boolean removeAllTransitions (Collection<?> collection);
boolean retainAllTransitions (Collection<?> collection);

-

© 0w N > o s W N

boolean containsTransition (Object element);

boolean containsAllTransitions (Collection<?> collection);
11 boolean isEmptyTransitions();

12 int sizeTransitions();

13
14 void addTransition (int index, ASTTransition element);

15 boolean addAllTransitions (int index,

16 Collection<? extends ASTTransition> collection);
17 ASTTransition setTransition(int index, ASTTransition element)

18 ASTTransition getTransition(int index);

19 int indexOfTransition (Object element);

20 int lastIndexOfTransition (Object element);

21 ASTTransition removeTransition (int index);

22 List<ASTTransition> subListTransitions (int start, int end);

23

-
o

24 Iterator<ASTTransition> iteratorTransitions();

25 ListIterator<ASTTransition> listIteratorTransitions{();

26 ListIterator<ASTTransition> listIteratorTransitions (int index);

27 void forEachTransitions (Consumer<? super ASTTransition> action);
28 Spliterator<ASTTransition> spliteratorTransitions();

29 boolean removeIfTransition

30 (Predicate<? super ASTTransition> filter);

31 void replaceAllTransitions (UnaryOperator<ASTTransition> operator);
32 void sortTransitions

33 (Comparator<? super ASTTransition> comparator);
34

35 ASTTransition[] toArrayTransitions (ASTTransition[] array);

36 Object[] toArrayTransitions{();

37 Stream<ASTTransition> streamTransitions{();

38 Stream<ASTTransition> parallelStreamTransitions{();
39
40 boolean equalsTransitions (Object o);
11 int hashCodeTransitions () ;

42
43 List<ASTTransition> getTransitionList ();

44 void setTransitionList (List<ASTTransition> transitions);

Listing 5.21: Signature for a List attribute in a generated AST class: part 3
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Almost all methods are direct delegators to the internally used List. Only the last two
(1. 43ff. in Listing 5.21) allow to retrieve the complete list or set a new list. We include
the last two methods, because we generally assume that users are experienced, but would
suggest to use the first 29 methods only and refer to Java’s List implementation to
understand their effect. Finally, each AST object implements the mechanisms to compare
and clone it (cf. Listing 5.22).

| Java «gen» ASTState B]

boolean deepEquals (Object o);

boolean deepEquals (Object o, boolean forceSameOrder) ;

boolean deepEqualsWithComments (Object o);

boolean deepEqualsWithComments (Object o, boolean forceSameOrder);

boolean equalAttributes (Object o0);
boolean equalsWithComments (Object o) ;

© 0w N O ot s W N =

=
o

ASTState deepClone();
ASTState deepClone (ASTState result);

=
[CI
—

Listing 5.22: Comparison and cloning in a generated AST class: part 4

The set of deepEquals in ll. 2f of Listing 5.22 allows to compare entire AST trees
including all sub-objects. Its variants allow to control, whether orders in list are relevant,
which is the default in deepEquals (o). Variant deepEqualsWithComments also
checks comments, but none of the variant checks source code positions.

The deepClone function in 1. 10 of Listing 5.22 produces a copy of the com-
plete AST structure including copies of all sub-objects within the AST. The method
equalAttributes only checks the attributes with cardinality one, enumerations and
simple types, but omits comparison of nonterminal types, Lists and Optionals.

/_Tip 5.23: EMF (Eclipse Modeling Framework) Integration is Available

@ MontiCore is a standalone tool infrastructure.

But if desired, the MontiCore generator can generate signatures for the AST node
classes in such a form that they conveniently integrate into the Eclipse Modeling
Framework (EMF) [SBPMOS| infrastructure.

Among others, this changes the storage of object lists to use
EObjectContainmentEList, defines functions such as eGet, eSet, eUnset,
elsSet, eBaseStructuralFeaturelD, eDerivedStructuralFeaturelID
and adds notifications using eNotify when something changes in the AST e.g.
through a setter method.

The following example in Listing 5.24 shows the methods and their signature provided in
addition to the extended generation of AST classes, generated to be EMF compatible:
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1|package automata3._ast; [Java <gen» ASTState (EMF-Version) =)

2

3lpublic class ASTState extends de.monticore.emf._ast.ASTECNode

4 implements ASTAutomata3Node

50 {

6 // Storing the parsing result:

7 protected String name;

8 protected Optional<ASTNatLiteral> prio = Optional.empty();

9 protected List<ASTState> states =

10 new EObjectContainmentEList<ASTState> (

11 ASTState.class, this,

12 Automata3Package.ASTState_States);

13 protected List<ASTTransition> transitions =

14 new EObjectContainmentEList<ASTTransition> (

15 ASTTransition.class, this,

16 Automata3Package.ASTState_Transitions);

17 protected boolean initial;

18 protected boolean r__ final;

19

20 // other methods omitted, because they are not changed

21

22 // EMF ;

23 Object eGet (int featureID, boolean resolve, boolean coreType);

24 void eSet (int featureID, Object newValue);

25 void eUnset (int featurelD);

26 boolean elIsSet (int featurelD);

27 int eBaseStructuralFeaturelID (int featureID, Class<?> baseClass);

28 int eDerivedStructuralFeaturelID (int featureID, Class<?> baseClass
)

29| }

Listing 5.24: EMF version of the ASTState class signature

5.9 Node Construction Using the Node Builder Mill

New AST nodes are constructed using builders that are available through a static delegator
pattern (cf. Section 11.1). A node builder mill provides builders for each nonterminal that
is defined in the grammar of a language. Therefore, the concrete signature varies depending
on the nonterminals of a language and their structure.

The following Listing 5.25 shows the signature of the AutomataMill created for the
example language for finite automata (cf. Section 21.1). A node builder mill provides a set
of static create methods that delegate to internal builder create methods. The two staged
builder process is necessary to allow builders to be adaptable in a language composition.
That means methods relying on the builder mill of a sublanguage can be applied in a
composed language without modification.
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package automata; Java «gen» AutomataMill B]

-

™

public class AutomataMill {
static ASTAutomatonBuilder automatonBuilder () ;

static ASTStateBuilder stateBuilder();
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static ASTTransitionBuilder transitionBuilder () ;
10| }

Listing 5.25: Signature of the builder mill for all Automaton AST classes

A method, like stateBuilder, creates a builder object that is responsible to create a
state object, i.e., from class ASTState or a subclass thereof.

As usual, the builder class itself provides methods to set the attributes individually before
the object is created. Please note that an AST node always has attributes for comments,
source position, and potential links to a scope and a symbol that the AST node defines.
Therefore, an AST node builder provides methods to manage these as well. Listing 5.26
demonstrates this on a builder for the nonterminal State.

In general, these methods do not differ from the methods generated for the class ASTState,
but have one important difference: Where the method in the class ASTState has the
return type void or is the boolean result of an add operation, the corresponding builder
method returns the builder itself. This is helpful for a chaining of calls for a builder b,
such as b.setName ("Ping") .setInitial (true) .addTransitions (x) L

A comparison of the ASTStateBuilder in Listing 5.26 and the node ASTState in
Figures 5.20 and 5.21 shows the large overlap of these signatures. Therefore, only the most
important methods are repeated in Listing 5.26.

package automata3._ast; [ Java «gen» ASTStateBuilder =

public class ASTStateBuilder extends
ASTNodeBuilder<ASTStateBuilder> {
// Setting an attribute
ASTStateBuilder setName (String name);

// Setting a boolean attribute
ASTStateBuilder setInitial (boolean initial);
10 ASTStateBuilder setFinal (boolean r_ final);
11
12 // Setting an Optional attribute

13 ASTStateBuilder setPrio (ASTNatLiteral prio);
14 ASTStateBuilder setPrioAbsent ();

15

© oo ~ @ o - W [ -

1To enable this chaining, we also had to use a generic superclass ASTNodeBuilder, which embodies
the return type of each setter as realBuilder object with the correct type.
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16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

// Setting a List valued attribute

ASTStateBuilder

ASTStateBuilder
ASTStateBuilder
ASTStateBuilder

setTransitionsList (

List<ASTTransition> transitions);
clearTransitions () ;
addTransition (ASTTransition element) ;
addAllTransitions (

Collection<? extends ASTTransition> collection);

ASTStateBuilder
ASTStateBuilder
// ... 1in

ASTStateBuilder
ASTStateBuilder
// ... 1in

removeTransition (Object element);
addTransition (int index,ASTTransition element);
total ~30 methods to handle the transition 1list

setStateslList (List<ASTState> states);
addState (ASTState element);
total ~30 methods to handle the state 1list

// Inherited methods for attributes from ASTNodeBuilder
// (first for the Optionals)

ASTStateBuilder
ASTStateBuilder

ASTStateBuilder
ASTStateBuilder

set_SourcePositionStart (SourcePosition start);
set_SourcePositionStartAbsent () ;

set_SourcePositionEnd (SourcePosition end);
set_SourcePositionEndAbsent () ;

38
39 // Inherited methods for attributes from ASTNodeBuilder

40 // (the Lists of Comments)

41 ASTStateBuilder add_PreComment (Comment element);

42 ASTStateBuilder set_PreCommentList (List<Comment> comments);
43 // ... 1in total ~30 methods to handle the pre comments
44
45 ASTStateBuilder
46 ASTStateBuilder
47 // ... 1in
48
49 // Is the object contents valid?
50 boolean isValid();

51
52 // Finally constructing the object
53 ASTState build();

54| }

add_PostComment (Comment element) ;
set_PostCommentList (List<Comment> comments) ;
total ~30 methods to handle the post comments

Listing 5.26: Signature of the Builder for State objects: part 1

Line 6 of Listing 5.26 shows how a normal attribute defined by the production is treated.
Boolean attributes are handled in a similar way (Il. 9f). For optional attributes, such as
prio, several methods exist (I1l. 13f).

List valued attributes, derived from nonterminals with multiplicity higher than 1, can be
set as list, but also through the about 30 methods allowing to manipulate the list, e.g. by
adding individual new elements. Beginning with 1. 17 Listing 5.26 shows an excerpt of the
more than 30 methods per list. In the ASTStateBuilder case, each attribute Statex
and Transitionx have their own 30 methods.
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Starting in 1. 33 the signature for setting and manipulating the inherited attributes is
shown. To avoid name clashes, some of the inherited methods have an underscore in their
names.

At the end of each building activity the AST object is created using the build () method.
Please note, that it is possible to use this method several times. FEach time a new object
is created, but (if not changed) all objects are containing the same attribute values. In
particular, the children of such objects are shared. When you want to get a complete copy,
please use the deepClone method.

Please also note, that the builder may fail with an exception if not all mandatory attributes
are provided. This can be checked ahead using the i sValid method. Internally the build
methods uses this method as well before constructing an ASTs. In case the method returns
false the builder would fail with an error message.

For all optional and list attributes and especially those inherited from ASTCNode, the AST
builder sets defaults. An Optional value is by default absent, a List is empty and a
boolean is false.

While the set and add methods are the most important, it is also possible to retrieve data
stored in the builder. Listing 5.27 shows a small excerpt of the builder for ASTState with
some get methods.

1 Java «gen» ASTStateBuilder B]

™

// Retrieving attribute values

3 String getName () ;

4 boolean isInitial();

5 boolean isFinal();

6

7 // Retrieving an Optional value

8| ASTNatLiteral getPrio(); // partial
9 boolean isPresentPrio();

10

11 // Some inherited retrieval methods for

12 // attributes from ASTNodeBuilder

13 SourcePosition get_SourcePositionStart();
14 boolean isPresent_SourcePositionStart();
15 SourcePosition get_SourcePositionEnd();
16 boolean isPresent_SourcePositionEnd();

17
18 // Some retrievers for the Transition#* attribute

19 boolean containsTransition (Object element);

20 boolean isEmptyTransitions();

21 int sizeTransitions();

22 ASTTransition getTransition (int index);

23 int indexOfTransition (Object element);

24 List<ASTTransition> subListTransitions (int start, int end);
25
26 Iterator<ASTTransition> iteratorTransitions();

27 ListIterator<ASTTransition> listIteratorTransitions();
28
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29 // get for the full Transitionx 1list
30 List<ASTTransition> getTransitionList ();

Listing 5.27: Retrieving methods for a Builder class: part 2

Builder functions for deconstructing an unfinished AST object will rarely be used, but
retrieving already added elements or checking whether an element is already in a list is
sometimes helpful.

In general, tool developers are responsible to ensure that the attributes of the created nodes
will always have correct values. Many MontiCore functions rely on a syntactically correct
AST. In particular, MontiCore functions very rarely deal with null values, because they
assume that absent values are explicitly defined as Optionals.

The validity of the AST node can be pre-checked by the above mentioned isvalid method
and generally corresponds to the definition of the production. However, there are configu-
rations definable by productions that are not checked. For example in alternatives (e.g., A
and Bin N = A | Bj;) it is not checked that exactly one alternative exists, but both are
optional. Furthermore, minimal and maximal values for lists of attributes (e.g., astrule
N = A min = 3 max = 5;) are not checked by the builder and only considered during
parsing. The builder can be manually adapted using the TOP-mechanism to add this
functionality if desired.

Tool developers are strongly encouraged to use builders to create new AST objects to
ensure that the creation process can be replaced, e.g., to use custom node classes. No
initialization is needed for a builder mill; a direct call is possible and encouraged.

However, if a completely new AST is to be built from scratch, then it is sometimes more
efficient to define a string that contains the concrete model and use a parser to parse the
string for building the AST.

r/""\JTip 5.28: Use Node Builders to Enable Reuse

-\& When you manipulate the AST and create new nodes, then you are strongly
advised to use the provided node builders.

This greatly helps to keep the actual implementation of the nodes hidden from
the usage. This is a prerequisite for reusing handwritten code and for a language
component to be embedded in the composite language.

Furthermore, when you want to provide your own handwritten extension and
do not want to use the mechanism described in Section 5.10, then you can adapt
the node builder mill for producing your own version of nodes and others can use
your extra functionality without having to notice. New functions could also take
advantage of the extra functionality.
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5.10 Handwritten Extension of AST Classes and Node
Builders

If the generated AST node classes and builders do not completely fulfill the needs and,
therefore, often should be extended or overridden with a handwritten implementation. The
following approach (similar but not exactly equal to the approach described in Chapter 14)
is the best.

5.10.1 Handwritten Extension of AST Classes: TOP-Mechanism

To extend e.g. a class ASTState (that would be generated):

1. Create (empty) class ASTState in an arbitrary directory dir (but not in a directory
where generated classes are).

2. Add dir to handcodedPath (of the MontiCore generator).
3. Run the MontiCore generator (again).

4. Let your own class ASTState extend the now existing and newly generated
ASTStateTOP.

5. Adapt ASTState at will.

e Don’t forget to initialize additional attributes and to adapt cloning and com-
parison methods.

6. If necessary, also adapt the classes that rely on the changed signature such as builders
or mills, e.g., by using the same TOP mechanism. This usually is necessary, when
attributes have been added.

MontiCore uses a trick here: During generation, it checks in the handcodedPath, whether
the class ASTState that should be generated, has been defined by a developer by hand
and therefore already exists. If so, MontiCore does not produce the class ASTState,
but an abstract superclass called ASTStateTOP (cf. Figure 5.29). Figure 5.29 shows an
example of a handwritten AST class State with manually added attribute _reachable
and a method isReachable.

/ \Tlp 5.30: Handcoded Extension is easy using the TOP Mechanism

gAH generated classes Cls, including AST classes, node builder mills, etc., can
be easily extended with handwrltten code using the TOP mechanism. When a class
shall be handcoded, then we add it in the handCoded path to tell MontiCore to
include it and also to generate an abstract superclass of the handcoded class instead.
The handcoded class Cls replaces the generated class Cls, which now becomes
generated as C1sTOP. Cls (normally) must inherit from C1sTOP.
There is nothing more to do. See Section 14.3 for details.

This approach brings numerous advantages:
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Provides Builders default implementation Tool-CD'
\/ «gen» \/ ((qgn))
AutomataMill ASTStateTOP
AutomatonBuilder automatonBuilder() boolean initial
StateBuilder stateBuilder() boolean final
TransitionBuilder transitionBuilder() String name
(crea‘res (and others...)
«gen» «hcy
ASTState.StateBuilder ASTState
: creates
ASTState build() —— > | boolean _reachable
StateBuilder initial(boolean initial) - -
StateBuilder r__final(boolean r__final) public boolean isReachable(State s)
StateBuilder name(String name) A

T & handwritten extension
creates AST objects, of default implementation
instantiates handwritten classes if present

Figure 5.29: Example: Handwritten AST class ASTState injected into the parsing process

e The generated code is still available and can be used.

e The handwritten code is directly integrated into the generated parts, because for
example the node builder mill was not changed and still creates ASTState objects.

e The handwritten code can inject both, new attributes and method implementations,
but also extend the signature of that class making additional functionality externally
usable.

e The AST classes that use ASTState also do not need to be changed, but interact
with the handwritten class.

e The parser directly uses the handwritten class to construct the AST when parsing.

There is a limitation of this approach: After a new handwritten class has been added to the
project, a re-generation is necessary. Incremental approaches do not easily detect that, but
MontiCore keeps track of the classes it has been looking up when generating. If necessary,
cleaning up all generated code before re-generating is radical, but robust.

Please note that we strictly separate generated and handwritten classes in different direc-
tory substructures. This also holds when they belong to the same package. This gives us
the serious advantage of being able to clean up generated code, or re-generate as often as
desired. See also our considerations about agile methodology in Section 1.4.

5.10.2 Handwritten Extension of AST Builders and Mills

For adjusting the AST classes created, it is possible to create a subclass of a node builder
mill and override the instance methods to register different (handcoded) mills for specific
kinds of nonterminals. This enables using adaptive mills for the creation of AST objects.
The builder mills use the static delegator pattern (Section 11.1). That means it has a pro-
tected static variable containing an instance of itself to realize the delegation. There is one
builder mill attribute for each nonterminal defined in the grammar and one general builder
mill attribute that is used for all missing specialized mills. Therefore, a coarse-grained and
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also a fine-grained overriding for each type of node is possible. During standard initializa-
tion of a node builder mill all these attributes are initialized with the same instance, but
a replacement by a custom version is possible. For completeness, we include the protected
elements a builder mill provides and that can be used for overriding:

package automata; | Java «gen» AutomataMill B]

-

™

public class AutomataMill {
// ... only the protected elements

// attributes store individual builder mills for each node
// (but all may be the same instance)

protected static AutomataMill mill;

protected static AutomataMill millASTAutomatonBuilder;

10 protected static AutomataMill millASTStateBuilder;

11 protected static AutomataMill millASTTransitionBuilder;

12 protected AutomataMill ();

13
14 protected ASTAutomatonBuilder _automatonBuilder () ;
15
16 protected ASTStateBuilder _stateBuilder();
17
18 protected ASTTransitionBuilder _transitionBuilder();
19
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20| }

Listing 5.31: Internal structure of the AutomataMill

The same approach can also be applied in combination with the TOP generation mech-
anism, i.e., the developer provides a handwritten class AutomataMill inheriting from
the then generated AutomataMillTOP (cf. Listing 5.31 and 5.32). In such a handcoded
AutomataMill class, only the creator methods need to be overriden. In Listing 5.32, we
assume that MyTransitionBuilder has been implemented accordingly.

package automata; | Java «hw» AutomataMill B]

-

M

public class AutomataMill extends AutomataMillTOP ({

@Override
protected ASTTransitionBuilder _transitionBuilder () {
return new MyTransitionBuilder () ;
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10| }

Listing 5.32: Handcoded extension of the AutomataMill

Please note, that a manually created static AST mill can still be used by developers, when
the language it has been written for is embedded in another language. In a language
composition, the concrete mill is internally used and adapted in such a way, that it creates
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objects of appropriate subclasses from the composed language. Hence, the user of an
AST from a sublanguage is not affected. This is a core technique to enable reuse of
functionality of sublanguages on composed languages, because the reused algorithm itself
needs no adaptation, not even when creating objects.
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Chapter 6

Parser Generation and Use

co-authored by Marita Breuer

This chapter explains how to derive a parser from a given grammar and how to integrate
the resulting parser into a DSL tool to read in models. This is mainly done by

1. defining a MontiCore grammar as described in Chapter 4,

2. running the MontiCore generator to generate the parser for the language (cf. Sec-
tion 6.1) and

3. using the resulting code, which includes the generated parser, AST, builders, visitors
etc. and the MontiCore runtime in your DSL tool (cf. Section 6.3).

The parser generated for a language contains a general method for parsing models of the
language, i.e., starting with the dedicated start nonterminal (cf. Section 6.3). Furthermore,
it also provides specific methods to parse each of the sublanguages defined by the other
nonterminals. If not explicitly stated otherwise, the first nonterminal defined in a grammar
is the start nonterminal.

Sections 6.2 and 6.3 are mainly dedicated to tool developers to get some overview on
how to embed a generated parser in your own tool. In contrast, Section 6.1 is mainly for
someone who wants to use the generator API directly. This is actually on a meta-meta
level (i.e. the level, where the meta-tool resp. the language workbench itself is adapted).
Normally it should be sufficient to call the MontiCore language workbench as a closed tool,
for example using the command line interface (CLI) or the Gradle integration, which are
both explained in Chapter 16.

6.1 Generating a Parser and a Lexer, as done in MontiCore

This section explains the usage of the generator API to generate a parser (i.e. meta-meta
level). Thus, this section explains how the language workbench itself can be adapted.

As said, usually it should be sufficient to call the MontiCore language workbench as a
closed tool, for example using the command line interface (CLI) or the Gradle integration,
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which are both explained in Chapter 16. Both provide the same functionality, wrapped
into the externally usable MontiCore tool.

The MontiCore parser generator (see Listing 6.1) is used to generate a parser for a given
language. It can be used as a black box tool as described in Chapter 2. However, the
generation can also be tailored to individual needs. The rest of this section addresses
experienced developers interested in understanding or even adapting the MontiCore meta-
meta-tool itself.

For generating a complete parser for a given grammar, that is already available as an
internal AST, the class ParserGenerator is used (see Listing 6.1).

1| Repository: MontiCore/monticore github
2| Directory: monticore-generator/src/main/java/
3| File: de.monticore.codegen.parser.ParserGenerator. java

Listing 6.1: Location of the MontiCore parser generator

publlc static void generateparser ( |Java «MontiCore» ParserGenerator \>“|
GlobalExtensionManagement glex,
ASTMCGrammar astGrammar,
IGrammar_WithConceptsGlobalScope symbolTable,
IterablePath handcodedPath,
IterablePath templatePath,
File targetDir)
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Listing 6.2: Method signature used to generate a parser

If the parser generator is used within Java, the method generateParser of the class
ParserGenerator is applicable. It generates a complete parser for the defined lan-
guage. The method signature is depicted in Listing 6.2. The method accepts the following
parameters:

1. the infrastructure for generating files (see Section 13),

2. the AST representation of the grammar that describes a modeling language whose
models should be parsed (see Tip 6.7),

3. the symboltable (see Section 9),

4. a list of paths where handwritten files are located, e.g., handwritten AST and other
classes (see Section 5.10) meant to be integrated into the generated code,

5. a list of paths for additional FreeMarker templates (see Section 12.1) to customize
the generation process, and

6. the directory in which the generated parser will be created, which is freely selectable.
For instance, it can be "gen/" or "target/".

The parser generator is an important part of the MontiCore language workbench. List-
ing 6.3 demonstrates how the parser generator can be executed.
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1 | Java «hw» GenerateAutomataParser B]

™

// String args[0] contains the name of the input grammar

// String args([1] the path for the output directory

// Create the AST

String filename = args[0];

ASTMCGrammar ast = Grammar_ WithConceptsMill.parser ()
.parse (filename) .get () ;
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// Initialize symbol table
10| // (using imported grammars from the model path)
11| ModelPath modelPath = new ModelPath (Paths.get (

12 "target/monticore—-grammar—grammars. jar"));
13| IGrammar_WithConceptsGlobalScope gs = Grammar_WithConceptsMill
14 .globalScope () ;

15| gs.setModelPath (modelPath) ;
16
17| Grammar_WithConceptsMill.scopesGenitorDelegator ()
18 .createFromAST (ast) ;

19
20| // Hand coded path

21| IterablePath handcodedPath = IterablePath.empty();

23| // Template path

24| IterablePath templatePath = IterablePath.empty();
25
26| // Target directory

27| File outputDir = new File(args[1l]);
28
29| // Generate the parser

30| GlobalExtensionManagement glex = new GlobalExtensionManagement () ;
31| ParserGenerator.generateParser (
32 glex, ast, gs, handcodedPath, templatePath, outputDir);

Listing 6.3: Java code creates a parser for automata (using its grammar)

The code block in line 5ff. loads the grammar that describes the language. When the AST
is built, it represents only the currently processed grammar without grammars it extends.
Information of these grammars is added in subsequent steps.

The statements in line 12 defines where additional grammars are located. In this example
only the MontiCore jar is used and thus only the standard grammars provided by Monti-
Core are available. As a next step, the symbol table is built in line 17ff. While constructing
the symbol table, all grammars are loaded and included that our grammar depends on by
the global scope gs.

The statement in line 32 produces the classes for the desired parser in a subdirectory of
the outputDir path. The execution of this block includes the generation of a grammar
in ANTLR [Parl3| format (i.e., a .g4-file) and triggering the parser generator ANTLR
to create a parser for it. But only the created parse algorithm of ANTLR is used. The
generated parser constructs an AST by instantiating AST classes generated by MontiCore.
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This is achieved by injecting corresponding Java code into the generated parser. This Java
code is complete; the created parser classes just need to be compiled. The .g4-grammar
and a .tokens-file! are produced as input for ANTLR. They are just a byproduct of the
generation process and only serve as potential documentation.

The Parser and Lexer Generation Process

Generating a parser internally consists of three consecutive steps producing the files listed
in Listing 6.4. The output directory, gen in this example, is passed as a parameter while
the package (in this example: a.b.XY) is derived from the grammars package with the
grammars name appended.

1| Input parameters:
2 grammar file -— e.g. "a/b/XY.mc4"

3 handcoded path —-— list of directories

4 output directory -— e.g. "gen"

5| Inputfile:

6 a/b/XY.mc4 -— a grammar for language XY

7| Output (excerpt):

8 gen/a/b/xy/_parser/

9 XYParser. java —— generated parser

10 XYAntlr.g4 —— intermediate file for ANTLR 4

11 XYAntlrParser.java -—- internal parts of parser and lexer
12 XYAntlrLexer. java

Listing 6.4: List of files produced during the generation of a parser

The following three steps produce the parser:

Step one: In the first step an ANTLR file is created that is used in the following steps as
an input for the ANTLR tool to create a parser and a lexer.

Step two: In the second step the ANTLR tool is executed, which produces a parser and
a lexer consisting of two classes for parsing and lexical analysis. The parser uses the
lexer to tokenize the input (cf. Chapter 4).

Step three: The third step is the generation of a class that provides parser methods for
each nonterminal of the grammar. This class encapsulates the functionality of the
parser generated by ANTLR and should be used for parsing and constructing the
AST objects. It provides methods for the full language as well as for each sublanguage
defined by a nonterminal (cf. Section 6.3).

6.2 Interface of the Generated Parser Classes

When the grammar has been processed (either directly calling the API, or the MontiCore
CLI or the Gradle plugin, see 16), then a number of classes provide the interfaces described
below.

!This file is not detailed here, please refer to [Par13] for further information
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First, there is the already known XYMill that allows to retrieve the parser using the
parse () method. The generated parser class XYParser is instantiated as usual through
the XYMill and contains three main methods (cf. lines 2ff in Listing 6.5). Those three
methods are used for parsing a complete model. In addition three parsing methods are
created for each nonterminal (cf. lines 7ff in Listing 6.5). The methods for nonterminals
are recognizable by their suffix which corresponds to the nonterminal. The methods for
the start nonterminal are equivalent to the ones for the complete model (e.g., called Ax).

// Parsers for the language: [Java <gen» XYParser =)
Optional<ASTAx> parse (Reader reader);

Optional<ASTAx> parse(String filename);

Optional<ASTAx> parse_String(String text);

// and for each nonterminal NT furthermore:
Optional<ASTNT> parseNT (Reader reader);
Optional<ASTNT> parseNT (String filename);
Optional<ASTNT> parse_StringNT (String text);
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Listing 6.5: Methods that can be used for parsing

The three types of parsing methods do the following:

1. Method parse (Reader reader) expects the input to be in form of a Reader
(e.g., stringReader). The method processes the reader content.

2. Method parse (String filename) expects an existing file given as the parameter
filename of type String. The file contains the model to be parsed.

3. Method parse_String(String text) parses the content of the given String
directly interpreting the string as a model.

Each of the methods returns an Optional AST representation. In case of parsing errors,
parsing either completely terminates or the method returns an empty Optional (see
Section 15.3 for error management).

As described above, the mill of a language provides a dedicated static method called
parser () to retrieve the parser for the language. Section 11.5 describes the Mill Pattern
that was also already used in Chapter 5 for AST node instantiation. We highly recommend
to use this method whenever a parser for a language is needed such that a mill reconfigura-
tion in extended and composed languages can provide instances of subclasses of the parser
without that the instantiating functionality (for the old, embedded language) notices this.
This is highly relevant, when the languages are composed as explained in Chapter 7.

The parse methods are called as normal methods. Internally, a parser also uses the mill
and builders to create the AST objects. Thus, when composing languages in a conservative
way, i.e., extending the language such that all models of the old language are models of
the new language, the old parser can still be used, to parse the old models, but internally
the AST of the new, extended language is created. That means, in case the language XY
is extended, handwritten code that uses the XYParser for parsing will still be functional
for the old XY models. It thus allows us to process the old models with the old parser and
delivers the new AST through the old XYParser methods.
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6.3 Executing a Generated Parser

Executing a generated parser usually happens on the meta-level, i.e., within the tool that
helps to create the product. The MontiCore parser generator is not needed for this purpose,
because the MontiCore parser is used at the meta-meta-level. However, the MontiCore
runtime environment (RTE, marked as «RTE» ) is needed at the meta-level. The MontiCore
runtime environment is, therefore, packaged in the provided MontiCore jar as well.

Following the previous sections, we now use the generated parser for the language
Automata language (cf. Chapter 4).

As a first example, the Automata parser is applied to an input file in line 5. The parser
returns an Optional value holding the resulting AST if the model is parsed successfully,
or otherwise an absent optional. In line 11, the parser is used to parse another automaton
provided as a StringReader. Line 14 demonstrates how the parser can be used to parse
the content of a String. Finally, line 17 demonstrates how to parse a model part, e.g., a
State, only.

1| String filename = "example/PingPong.aut"; Java chw» AutomataParseDemo )
2| AutomataParser p = new AutomataParser();

3

4| // parse from a file

5/ Optional<ASTAutomaton> at = p.parse(filename);

6

7| // parse from a Reader object

g String aut = "automaton PingPong {"

9 + "state Ping;"

10 + "

11| at = p.parse (new StringReader (aut));

12

13| // another parse from a String

14| at = p.parse_String(aut);

15

16| // parse for a sublanguage, here: a State

17| Optional<ASTState> s = p.parse_StringState("state Ping;");

Listing 6.6: Various forms of parsing

The Automata parser reads a file (or string) and constructs the AST corresponding to
the model of the Automata language. As described before, if the input model was not
syntactically well-formed, the result is absent and at least one error message is issued
through the standard error message channel. See Section 15.3 for a detailed description
and an explanation on how to configure the error handler. In case of unexpected, internal
errors, an exception is thrown in addition to a message to the error handler and immediate,
erroneous exit of the tooling is triggered. Please note that the Automata parser neither
checks context conditions nor resolves references to other models (see Chapter 9 and 10).
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r’\Tip 6.7: MontiCore Grammar Parsing

)

Caution: Here we are entering circular meta-meta levels.

The MontiCore tool parses grammars. All grammars belong to the Grammar
language, which itself is defined as grammar. The MontiCore parser, therefore, is
itself a parser generated by MontiCore, using the grammar defined in

de.monticore.grammar.grammar_withconcepts._parser.
Grammar_WithConceptsParser. java

1| Repository: MontiCore/monticore github
2| Directory: monticore—-grammar/src/main/grammars/

3| File: —- grammar describing how MontiCore grammars look like

4 de.monticore.grammar.Grammar_WithConcepts.mc4

5/ Directory: monticore—-grammar/target/generated-sources

6 /monticore/sourcecode

7| File: —-- MontiCore uses this Parser

8

9

Listing 6.8: Where to find the MontiCore grammar grammar

One meta-level down: If needed, a grammar can be parsed as shown in the listing
below. We use the Automaton grammar as example (cf. Chapter 7).

1 String model = "Automaton.mc4"; [Java «hw» GrammarParseDemo )
2 Grammar_WithConceptsParser parser =

3 Grammar_WithConceptsMill.parser();

4 Optional<ASTMCGrammar> result = parser.parse (model);

5 ASTMCGrammar grammar = result.get();

The grammar parser reads the file (or String) and constructs the grammar AST
that contains all essential information present in the source. If the grammar was
not syntactically well-formed, the result is absent and at least one error message has
been issued through the standard error message channel.
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Chapter 7
Language Composition

Language composition is one of MontiCore’s key concepts. In this chapter we first discuss
the motivation for language composition and give a high-level overview of how MontiCore
achieves this. Then we discuss in detail how MontiCore composes grammars and which
effects this has on the concrete and the abstract syntax that the grammars define.

Further techniques for composition can be found in the respective chapters, namely visitors
(Chapter 8), symbol management infrastructure (Chapter 9), context conditions (Chap-
ter 10), and a generator backend (Chapter 13).

7.1 Introduction to Language Composition

From best practices in Software Engineering, we know that the monolithic definition of
large artifacts leads to many problems in maintaining, evolving, and reusing assets that
have been developed. Programming became more productive when the languages started
to support encapsulated implementations and to provide these to other developers through
explicitly specified interfaces. Modularity is a key technique for reuse. In modern object-
oriented programming, it is a key technique to encapsulate a piece of data structure together
with the functions operating on it within classes. This considerably enhances black-box
reuse as well as evolution of programs where changes can be better localized within a
smaller part of the program.

It is generally predicted that a wider spread of software languages will occur for many
different areas far beyond software development. Domain specific languages (DSLs), e.g.,
are used to model brains [PBIT16] as well as many other simulations of complex domains
with a multitude of different aspects being described in different languages. DSLs are used
to specify products, production workflows, scientific artifacts, economically usable data
sets, and much more.

To be able to effectively engineer an appropriate software language, reuse on the language
level is very important [CFJT16, CBCR15]. Therefore, MontiCore offers an extensive set
of mechanisms to define modular artifacts and reuse these either as black-box or in an
enhanced and refined form within larger languages.

Language components are made for language composition. A language component is a
reusable encapsulation of a, possibly incomplete, language [CBCR15]. A language com-
ponent usually includes a grammar to define the language. The (normal) nonterminals
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provided in this grammar and the additional infrastructure for symbol management and
code generation act as "provided language interfaces", and the external nonterminals act
as "required language interfaces". Interface nonterminals, interestingly, can be used as
provided language interfaces, but also may be acting as extension points and therefore as
required languages interfaces.

The MontiCore language workbench supports four language composition mechanisms —
details follow after this overview in the rest of the chapter:

Language aggregation means that several artifacts of different languages are used to-
gether to describe aspects of the target domain. While the processed artifacts remain
separated and can thus individually be edited, compiled etc., they describe a com-
mon target and thus need to be consistent and sometimes also need to be mapped
to integrated simulation or code artifacts. This imposes restrictions on the artifacts,
which can only be understood if the tooling allows an integrated understanding on
the abstract syntax, context conditions, symbols, etc. (Example: class diagrams and
Java).

Language embedding combines the languages into integrated model artifacts in the fron-
tend, but is otherwise on the backend very similar to language aggregation. That
means one single model, which is stored in one artifact, may consist of several sublan-
guages, which have been developed independently, but now define the overall model
together (Example: Expressions in automata). Language embedding composes the
languages even more tightly because it also composes the concrete syntax, which
enforces a tighter composition of the tooling, including the editors.

Language inheritance is a technique to reuse a language while allowing to modify some
language elements. The amount of modifications within the reused language affects
reusability of the original models, etc. The new language is defined while reusing
knowledge and implementation of the old language.

Language extension is a conservative form of language inheritance, which leads to a higher
degree of black-box reuse. Basically, it abstains from dangerous forms of overriding of
existing nonterminals. Therefore, it is discussed in the forthcoming chapters together
with language inheritance (Example: Java code also compiles with new versions of
the compilers.)

In a language aggregate and a language embedding, we also speak of sublanguages instead
of only language components that are embedded or participate in an aggregation.

It is important to notice that the key focus is to reuse languages and the functionalities
operating on these languages that have been developed and even compiled independently.
The reused languages are now embedded as components or aggregated with a minimal set
of external adaptations while no changes of the reused language components themselves
are necessary.

The focus on reusability is not only on the generated parts, but also on handcoded ex-
tensions of the generated language infrastructure and in particular on algorithms coded
against that language infrastructure. Algorithms transforming and extending the AST of
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~ \Tip 7.1: Wording for Language Composition

2 MontiCore’s language composition techniques are strongly inspired by object ori-
entation. However, due to the composition on two levels, namely grammars and
nonterminals, the terms and wording used for extended and extending languages
needs clarification. The four grammars A, B, C, D below with the nonterminals N,
M, O, P serve as an example.

e A and C are atomic grammars resp. describe basic languages.

e B and D are composed grammars resp. describe composed languages.

e B is then also a part language of D

e A composed grammar, like D, is composed of one or multiple subgrammars.

Composed languages have one or multiple sublanguages. A is also a sublan-
guage of D, because it is transitively included.

A nonterminals defined in a sublanguage is inherited by the composed lan-

guage.
tlgrammar A { N = "n"; }
1|grammar B extends A { M= "m"; }
ijlgrammar C { O = "o"; }
i{grammar D extends B, C { P = "p"; }

To avoid confusion with object orientation the terms "super grammar" or "super
language" are not used.

a language component can be fully reused on language aggregates, extensions, and embed-
dings because they still operate on the AST they know of, the builders are still operable,
and so on.

MontiCore achieves a most crucial aspect in language composition: the actual language
composition is deferred to a late binding point. This is very similar to object-oriented
programming techniques, where the composition of classes is intellectually (semantically)
understood at development time, but the compiler compiles independent artifacts and only
the compiled result needs to be shipped. This enables (1) incremental compilation and thus
more efficiency and (2) a "market" of black-box reusable language components, similar to
the frameworks in today’s programming languages.

Hence, each language component can be mapped to code and compiled independently of
all other components. Neither a re-generation of the component is necessary, when the
component is embedded, nor need the sources of the component to be shipped together
with the language component implementation. Only the grammars need to be shipped
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together with the class files of the generated implementation. This is a crucial prerequisite
for truly modular language composition and for building libraries of languages or even
families of language variants.

r‘/"\JTip 7.2: Composing Languages

-
&We took much effort in the MontiCore language workbench to understand how
to define languages from modular components:

e Component grammars can be defined explicitly.

e Import of grammars allows us to reuse languages as components.

e Language inheritance is achieved by import plus overriding of nonterminals.
o Language extension is a conservative form of language inheritance.

e Language embedding is a form of reuse of at least one language as a sublanguage
of a new one. The models of the new language comprise sub-models of the
embedded langunage.

e Language aggregation allows us to compose multiple languages into a new
language, without embedding them into the same models.

These techniques for composition of languages in the large and a controlled modi-
fication of the reused languages are possible because MontiCore’s grammar language
provides interface nonterminals, abstract nonterminals and external nonterminals.

The composition of languages does not only affect concrete syntaz, but also ab-
stract syntazx, butlders, visitors, contezt conditions, and symbol management infras-
tructure can be composed.

Most important: The actual language composition is deferred to a late binding
point. That means each language component can be generated and compiled in-
dependently. Neither is a re-generation necessary, when a language component is
embedded, nor need the sources of a component to be shipped together with the
language component implementation. This is a crucial achievement for language
composition and for building libraries of languages.

The smart combination of these mechanisms allows us to address various forms of lan-
guage composition and modification of existing components. Some of the composition
forms are conservative (also called safe), while in general manipulations do allow to freely
modify nonterminals deeply integrated in the language. This corresponds to the situation
in object-oriented programming where inheritance provides some assistance for conserva-
tive modifications, but in general developers that modify inherited classes can do harmful
things. On the other hand a controlled, methodically careful form of inheritance is a key
power of modern object-oriented languages. In this spirit, the MontiCore language work-
bench offers powerful, to some extent conservative, but partially also dangerous techniques
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transferring some of the burden to the developers.'

The four techniques for language composition mentioned above of course affect the concrete
syntax of the languages we define. However, language composition affects many aspects
that we need to take into consideration:

e concrete syntaz,

e abstract syntax (AST),

e AST creation (e.g. through builders and their mills),
e navigation infrastructure (e.g. through visitors),

o symbol management infrastructure,

e context conditions,

e handcoded extensions of all these generated parts, and

e analytical or generative backend, implemented against all these generated parts.

This results into a two-dimensional list of issues to discuss, because many of the language
aspects need to be discussed together with most of the composition techniques. We do this
in the following chapters and sections, where each of these includes reuse of the generated
parts as well as handcoded extensions:

Basics Inheritance Embedding Aggregation

Concrete Syntax 4 7.4 7.5 7.3-7.5
AST 5 74 7.5 7.3-7.5
Builder 5.9 7.6 7.6 7.6
Visitors 8 8.2.1 8.2.3 8.2
Symbol Management 9 9.10.1 9.10 9.10.2
Context Conditions 10 - - -
Backend (Generator) | (13) - - -

More details can be found in the respective research results, such as [MSN17, Rot17, Weil2,
Sch12, Voll1, Kral0, HMSNRW16, MSNRR16, HLMSN*15b, RRRW15, HMSNR15].

7.2 Language Composition at a Glance

While the concepts, techniques and methods to deal with language composition are spread
over several chapters, we give an overview of the core mechanism in this section. Conse-
quently, the following is a high-level overview:

Concrete syntax: In language aggregation, concrete syntax is not affected at all. For
language embedding, e.g. Java expressions in automata, we define a new grammar that

'How much power vs. restrictive guidance for a development tool is needed strongly depends on the
skills of the educated developer and can only be understood when using such a tool. This is ongoing
research.
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simply imports all nonterminals from the embedded grammars. Then there are three
possibilities: (1) Use of the nonterminals allows us to directly reuse the sublanguages that
are available; (2) it is also possible to extend nonterminals of the original grammars; and
(3) to override productions that have been defined for the original nonterminals.

Extension (2) allows language developers to add additional alternatives, for example new
operators for expressions. Abstract nonterminals, interface nonterminals and external non-
terminals have especially been designed in the MontiCore grammar infrastructure to fa-
cilitate these forms of extensions. Depending on the choice of the new language starting
nonterminal, the original language may be extended (e.g. SQL statements in Java) or the
original language is embedded (e.g. Java expressions in automata).

Overriding (3) allows to freely modify the original language. It is very powerful, but also
dangerous and may reduce reusability of already existing software components operating
on a language.

The composition of the concrete syntax through grammars is also used for the development
of the new parser for the composed language. In an earlier version of MontiCore [Kral0],
we even developed compositional parsers, but in practice it turned out that it is sufficient
and efficient enough to generate a complete new parser. As a drawback, however, it is
necessary to ship the grammar of the language component together with the language
component implementation. The grammar is composed on the source level (actually their
AST within MontiCore) and the parser is generated completely afresh from the composed
grammar, but all other language component constituents remain untouched.

Parser: The parser itself is generated completely from scratch. That means there is no
reuse of the parsers of the sublanguages. However, the parser facade of each sublanguage
can still be used because a static delegator is silently redirecting to the parser of the
composed language. This leads to a parsing into the composed AST, but since both are
implemented using subtypes, all code written against the sublanguage parser is still usable.

Abstract syntax: From Chapter 5 we know that the definition of a grammar not only
describes the concrete syntax, but is also a blueprint for the abstract syntax. To be able
to use algorithms that have been defined on the abstract syntax classes, such as context
conditions, symbol infrastructure, and any form of constructive or analytical handwritten
code, it is important that the AST classes of the originally used grammars are directly
reusable and not generated anew.

This leads directly to a new composed AST that integrates all AST classes from the original
grammars. However, if the production for a nonterminal is modified, a new AST class is
generated that inherits from the original. Both classes then have the same name, as they
are derived from the same nonterminal, but reside in different packages.

Builder for the abstract syntax: The infrastructure to create new AST objects is
adapted accordingly, such that the builder mill (see Section 5.9) is also composed. From
a developers point of view, who only knows the new language there is one composed
builder mill creating objects for all AST nodes. However, for a reused functionality it is
still possible to rely on the old builder mill of the embedded language, which has now
internally been modified in such a way that it produces AST objects of the extended
language. This is done transparently, such that algorithms on the original embedded
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language including functionality that creates new objects are completely reusable. For
that purpose, we invented the static delegator pattern (see Section 11.1) and designed it
in such a way that it can be adapted through subclassing.

Navigation infrastructure through visitors: Visitors are a core element to navigate
through an AST once it has been created through the parser. Because the AST classes
are completely reused and potentially only modified through subclassing, visitors on sub-
languages may also be reused. Therefore, it is possible to reuse a visitor of a sublanguage
out of the box as well as to modify the behavior of the visitor by building a handwritten
subclass and overriding certain visit methods.

However, when composing several languages, technically such a visitor can only be applied
to the elements of one sublanguage and runs into a type-induced matching problem, when
a node from a foreign language component appears in the AST. For that purpose, we
have created the Traverser (see Chapter 8), which is available for each language and
allows to compose visitors that have been individually developed for sublanguages. The
Traverser manages full traversal over the newly defined language nodes and delegates
only to appropriate sub-visitors, which it is composed of.

Symbols and Scopes: Symbols and their visibility within artifacts, but especially be-
tween artifacts that import each other, are the core binding mechanism to integrate sets of
artifacts into a consistent description. Therefore, it is inevitable to provide a compositional
infrastructure for symbol management.

Language aggregation, therefore, needs efficient mechanisins to define externally visible
symbols from one artifact and allow to use these symbols within another artifact. In
language embedding, symbols defined in one part of the artifact should be used in another
part of the artifact, even if defined in another sublanguage. So even within the same
artifact, symbols cross the borders of languages. The symbol management infrastructure
therefore provides a unified mechanism that allows to cross borders of languages as well as
of artifacts.

As a speciality in a heterogeneous modeling world, it is necessary to understand how
symbols are represented in different languages. This, for example, applies to the Unified
Modeling Language (UML), where over 13 languages have been aggregated and are used
to describe products together. For example, a method in a class can become a message in a
Statechart, or a state in the Statechart may be represented as enumeration value (standard
approach) or as subclass (state design pattern, [GHJV94]). Neither is the mapping always
the same, as the mappings of states show, nor is the mapping always simple because the
symbol may have restrictions or gets additional information along the mapping, e.g. Java
methods need a certain signature to be usable as messages in Statecharts.

To manage this heterogeneous set of symbols, the symbol management infrastructure on
the one side provides concepts for visibility, import, and export. On the other side, it also
provides infrastructure for heterogeneous mappings between different kinds of symbols,
which becomes relevant when a composition of the symbol management infrastructure
together with their languages is necessary.

Context conditions are highly diverse. Therefore, a concrete context condition usually
only applies for an individual language. However, a context condition depends only on a
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small part of the language respectively certain forms of symbols and if that part of the
language has not been modified during composition, the context condition conceptually still
applies. From a technical point of view, context conditions are usually defined using visitors
and as discussed above, visitors can directly be reused and composed in various forms. So
context conditions naturally compose. If the language is extended in a conservative way,
they can be reused easily.

It remains an open question, what happens with context conditions that are defined over a
composed language. However, we think that many of these conditions can be reformulated
in a decomposed form and then be implemented on the sublanguages. As a main technique
for this decomposition, we have developed our symbol management infrastructure in such a
way that it allows to map symbols defined in one sublanguage into the symbols of another
sublanguage [MSN17, MSNRR16, HMSNR15, MSNRR15, V6l11], which naturally applies,
when aggregating or embedding languages.

The backend: The backend of a tool consists of a generator, an interpreter, or analytical
algorithms that retrieve interesting information of a larger and very detailed set of models
or associated data. These techniques are usually highly specific to the domain and the
intended use of the tools. We, therefore, do not believe that their composition is an easy
task. At the moment we do not even really know how to compose generators that target
the same platform. We have ideas, but this remains future research.

7.3 Grammar Constructs for Language Composition

Chapter 4 has introduced all grammar constructs that deal with monolithic definitions
of a grammar in a single artifact. Chapter 5 furthermore discusses the derivation of the
abstract syntax from a monolithic grammar. In this section, we discuss the following
additional grammar constructs and mechanisms that allow language developers to build
language components that import each other:

component is a keyword that allows to mark a grammar as incomplete, which means
that no parser, but everything else, such as AST classes, visitors, or builder mills are
created.

external is a keyword that, attached to a nonterminal, marks that nonterminal as not
defined here, but as an extension point. This nonterminal needs to be bound, when
the grammar is used. Thus, external nonterminals are only allowed in component
grammars. An external nonterminal is therefore a mandatory extension point of a
grammar.

import allows to refer to other grammars and especially component grammars that are
imported and can be extended. Like in Java import may refer to all grammars of
a package using the * extension.

interface nonterminals (and to some extent abstract nonterminals) enable to struc-
ture monolithic grammars, but can also be used to mark extension points of a gram-
mar component. When importing a grammar component, additional alternatives
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can be added to imported interfaces. Interfaces can have predefined bodies that are
meant for AST-conservative extension (see Section 7.9.2).

overriding of nonterminals is a technique to redefine a nonterminal that can also be ap-
plied to imported nonterminals and thus modify imported languages. It is possible
to override nonterminals of all forms, including tokens and fragment tokens. Fur-
thermore, it is possible to override a nonterminal and keep the nonterminals body
but add a new interface that is implemented.

extending nonterminals is technically an overriding of nonterminals, but when applied
carefully and conservatively, the nonterminals are just extended. Depending on the
form of overriding, the extension may affect only the concrete syntax or concrete and
abstract syntax.

7.3.1 Component Grammar

To assist component-based reusability of grammars, we can define grammar components
by using the keyword component as shown in Listing 7.3. A grammar component defines
a sublanguage, i.e., a yet incomplete language that is meant to be extended to form a
complete language. For a grammar component, MontiCore produces AST classes, node
builder mills, context condition infrastructure, and visitors, but does not produce the
parser for models of the defined language. Therefore, a grammar component is allowed to
use interface nonterminals, abstract nonterminals as well as external nonterminals without
any production body.

1| component grammar InvAutomata MCG InvAutomata )
2 extends de.monticore.MCBasics {

3 external Invariant;

4

5 State = "state" Name

6 Invariant

7 (- "<<™ ["initdial"™] ">>" | "<<" ["final"] ">>" )x ";" ;

8| }

Listing 7.3: Example of a grammar component with an external nonterminal

A grammar component either is a collection of basic nonterminals that are meant for reuse,
quite like a library, or it is an extensible — and therefore incomplete — language with ex-
plicitly marked extension points, namely external nonterminals, like a framework. The
concept of grammar components reflects the concepts that object-oriented programming
languages provide to extend classes.

7.3.2 External Nonterminals
An external nonterminal is introduced by the keyword external. It has a name but

no production body that defines its structure (cf. Listing 7.3). An external nonterminal
defines an extension point in the grammar, i.e., it can be used like all other nonterminals
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in the body of a production, but its syntax is defined in another grammar. In fact, ex-
ternal nonterminals need to be bound when defining a complete grammar. In Listing 7.3,
Invariant is an external nonterminal and is used in the body of production for the
nonterminal State. It essentially only introduces the nonterminal Invariant and ex-
plicitly defines an extension point in the grammar. This extension point has to be filled to
complete the language.

For the external nonterminal called Invariant, MontiCore creates an AST representation
as an (empty) interface that needs to be implemented when the language is completed:

1|package invautomata._ast; [Java «gen» ASTInvariantExt ™)
2

3|public interface ASTInvariantExt

4 extends ASTNode, ASTInvAutomataNode {

5

6 // ... only clone, equals and scope signatures are given

7|}

Listing 7.4: External nontermials are mapped to interfaces in the AST

Please note that for external nonterminals, we translate the nonterminal name into a
class by also attaching an "Ext" suffix. Therefore, Listing 7.3 leads to the Java interface
ASTInvariantExt shown in Listing 7.4.

External nonterminals can only be defined in component grammars, as explained in Sec-
tion 7.3.1. They cannot be combined with abstract or interface keywords, and
cannot have a right-hand side, but it is possible to bind them to any form of nonterminals
in a composition. It is also possible to declare an external nonterminal as scope.

If an extension point shall be bound, language embedding is used.

o N
grammar Automata2 extends InvAutomata {

start Automaton;

Invariant = LogicExpr | ["-"]

1
2
3
4
5 // use this production as Invariant in Automata
6
7
8 interface LogicExpr;

9

Truth implements LogicExpr = tt:["true"] | ff:["false"] ;
10 And implements LogicExpr = LogicExpr "&&" LogicExpr ;
11 Not implements LogicExpr = "!" LogicExpr ;

12 Var implements LogicExpr = Name ;

Listing 7.5: Language embedding with binding the external nonterminal

In line 6, the grammar combines the newly defined nonterminal LogicExpr with the
imported, but not yet bound nonterminal Invariant. The new grammar is complete
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and a parser is generated. Furthermore, new AST classes are generated and Invariant
leads to an implementation as a class in Listing 7.6.

package automataZ._ast; Java «gen» ASTInvariant %

public class ASTInvariant extends ASTCNode
implements ASTInvariantExt, ASTAutomata2Node {

protected Optional<ASTLogicExpr>
logicExpr = Optional.empty () ;
protected boolean mINUS;

© 0w N oA W N

Listing 7.6: Implementation of the Invariant nonterminal

The nonterminal Invariant is now mapped to a normal AST class with the specialty
that it also has to implement the interface ASTInvariantExt which allows all of its
objects to be included in the AST from the original grammar and thus integrates ASTs on
the object level.

~ \Tip 7.7: External Nonterminal or Interface as Explicit Grammar Extension Hook
:Y Point

There are two main forms of hook points for explicit grammar extension:
e using an external nonterminal NT1, and

e defining a reusable interface nonterminal NT2 in a commonly available, sepa-
rate grammar G2.

When composing grammars an external nonterminal NT1 needs to be explicitly
filled as shown in line 6 in Listing 7.5. This approach leads to an extra AST class
EXTNT1 with additionally instantiated objects implementing the delegated pattern.

The second approach needs to define the generally available and commonly known
extra grammar G2 with a reusable nonterminal NT2, which is usually an interface
nonterminal. All potential extensions can then be implemented in new additional
grammars and upon composing these grammars, the interface automatically gets its
alternatives composed. The second approach simplifies composition, but leads to a
tighter coupling because grammar G2 is commonly shared.

7.3.3 Importing and Extending Grammars

A modular definition of grammars is based on references between grammars. This can be
achieved either by explicit import statements and then using the unqualified grammar namne
or by a fully qualified grammar name in the extends clause. This was, e.g., used for basic
grammar components that MontiCore provides, such as de.monticore.MCBasics.
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When using the MontiCore command line interface, the source path of grammars are

specified using the the "-mp" options.

s Technical Info 7.8: How Grammars are Imported, Extended and Composed

When a grammar shall be extended, the compiler searches the grammar path
(specified with the "-mp" options). The provided path list needs to contain all
imported (extended) grammars. No other files of the imported grammars need to
exist at the time MontiCore is executed.

The result is that all newly defined nonterminals are mapped to code accordingly
and a full parser is generated.

However, the imported grammars are not(!) mapped to code because MontiCore
assumes that a generator management system, such as Gradle or make will organize
redundancy free, incremental generation more efficiently.

As a consequence, the order of processing grammars is not relevant, but each
grammar needs to be processed by MontiCore individually.

7.4 Language Inheritance

Language inheritance is a rather powerful feature of MontiCore grammars. Language in-
heritance allows to extend already existing languages by new nonterminals as well as to
redefine existing nonterminals. This way it allows a modular definition of languages by
reusing language components. To extend a grammar, a new grammar is created that uses
the keyword extends after the name of the grammar followed by the name of the original
grammar (cf. Listing 7.9). In this example, the language HierarchicalAutomata ex-
tends the language Automatal. This way, the new grammar HierarchicalAutomata
inherits all productions defined in the original grammar Automatal. All nonterminals of
the original grammar can be used the same way as nonterminals defined directly in the
new grammar. Furthermore, inherited nonterminals can be redefined.

grammar HierarchicalAutomata extends Automatal ({ [MCG Hierarchical Automata )

// keep the old start
start Automaton;

// redefine a nonterminal
@Override
State = "state" Name
( "<<"™ ["initial"™] ">>" | "<<" ["final"] ">>" )=«
10 («";" "{" (State | Transition)=* "}" );

11| }

Listing 7.9: Language inheritance: One grammar extending another and redefining an in-
herited nonterminal
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By default, the new parser uses the first nonterminal that is defined in the grammar as
start and assumes that this is the starting point for describing the overall language. If we
want to preserve the original language, but modify it in some of its concepts, we have to
explicitly define the start by using the start statement as shown above.

7.4.1 Redefining / Overriding Productions of Grammars

A production for nonterminal NT is redefined by (a) either defining a new production for the
same nonterminal NT, thus overriding the nonterminal (cf. Listing 7.9) or (b) by extending
the nonterminal NT in a production for a new nonterminal NT2. In the first case the new
production for NT in the new grammar overrides and thus shadows the original production
for NT. The original is completely replaced. This is the case for the nonterminal State
as the grammar Automatal already defined the nonterminal State, but the grammar
HierarchicalAutomata has a production redefining this nonterminal.

For the abstract syntax, there will be a new ASTState class that realizes the new pro-
duction body. To be a useful replacement, the new class is a subclass of the old one. Both
classes have the same name, but are located in different packages (see Listing 7.10).

| Java «gen» ASTState B]

package hierarchicalautomata._ast;

public class ASTState extends automatal._ast.ASTState
implements ASTHierarchicalAutomataNode {

protected String name;

protected java.util.List<ASTState> states;
protected java.util.List<ASTTransition> transitions;
protected boolean initial;

protected boolean r__ final;

e e e -

=
= o

12| }

Listing 7.10: The new ASTState class extends the old ASTState class and serves as a
substitute

Through the extension mechanism in the AST classes, it is ensured that the new ASTState
nodes can be used in all places, where the old ones are expected. This, however, also
imposes that the functionality of the new class subsumes the functionality of the old one.
This in particular means that the body of the production may be extended, but not
completely changed. We may introduce new language entities, but are not allowed to
remove nonterminals on the right-hand side nor change their cardinality. As a remark: it
is possible, but not recommended, to omit nonterminals or adapt their cardinalities. See
Section 7.9 for the discussion about conservative extension.

However, the abstract syntax is not affected by introducing additional terminals, rear-
ranging the order in the production and similar modifications. This of course affects the
concrete syntax and that leads to the situation that models of the original language are
not models of the adapted language.
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We therefore distinguish these forms of redefinition of a nonterminal:

Free modification of the production with the risk that some of the functionality of the
original language does not work anymore.

Conservative extension of the AST preserves all nonterminals in their cardinalities as
well as semantically relevant terminals. It, however, is allowed to extend the AST
by additional semantically relevant entities.

The goal that is achieved by AST-conservation is that all functionalities for the old
AST still can be used on the new AST.

Conservative extension of the concrete syntax preserves and only extends the concrete
syntax. This means that basically the production needs to be preserved as is and
can only be extended by optional entities (A?) or lists (Ax).

Goal of CS-conservation is that the old models are also models of the new language
and all models can be reused.

Concrete and abstract syntax compliance. It may be that both, concrete and abstract
syntax are preserved, but the AST representation of the same model differs in the
original and the extended languages. Omne minimal example would be a produc-
tion A = n:Name t:Name thatisoverridden by 2 = t:Name n:Name. CS-AST-
compliance enforces that the same model results in the same tree structure.

For the process of overriding productions a couple of context conditions apply (cf. Sec-
tion 4.4). For example, a nonterminal can only be overridden by a production of the same
kind (except external nonterminals). Thus, productions of abstract nonterminals can only
be overridden by productions of abstract nonterminals.

grammar HierarchicalAutomaton extends Automaton { MG
@Override
State = "state" Name
("<<" ["initial"] ">>" | "<<" ["final"] ">>" )*
("; " | "{" State* n}u ) ;
}

redefining nonterminal HierarchicalAutomaton ‘ AST—CD‘T
State to allow substates @ <gen»
String name 9
State Transition
\: boolean initial String from
boolean final String input
* | String name String to

Figure 7.11: Language inheritance

As a final remark, it should be noted that it is formally impossible to completely remove
a nonterminal, but overriding the nonterminal by a secret production has the same effect
because when the user does not know this secret production, no instance of the respective
nonterminal is parsed anymore. For example:
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\| Transition = "THIS-IS-A-SECRET-77616E636B";

would forbid transitions. However, this can only be applied to a nonterminal that occurs
only in lists, alternatives, or optional clauses because if it would be mandatory, no valid
model would exist anymore. For example, certain nonterminals implementing an interface
such as Expression can be ruled out this way. While in principle this effect could also
be achieved by using the formally cleaner form of context conditions, the latter does not
work, when at the same time a new and similar alternative should be added because that
could lead to parsing problems.

7.4.2 Extending the Implementation Structure of a Nonterminal

If the body of an imported nonterminal NT1 is already defined in perfect shape, but the
nonterminal should implement a given interface NT2 then it is possible to simply declare
this additional interface implementation in form of a production without a right hand side,
i.e., NT1 implements NT2 does not change the body of NT1, which leaves the concrete
syntax unaffected, but adds the desired implements relation on the AST.

In the Automata4 grammar shown in Listing 7.12 the production for the nonter-
minal State that is originally defined in Automatal is overridden by the produc-
tion in Automata4. The new production now implements the interface nonterminal
AutElement, which expresses that the State nonterminal should additionally implement
the specified interface nonterminal. As shown there is no right hand side of the produc-
tion, thus no body is defined for the state production. The omitted body indicates that
the original body should continue to be used. As a result, the concrete syntax of the state
production is not changed. For the abstract syntax a subclass of the original ASTState is
generated which is also called ASTState but located in the package automatad._ast
and additionally implements the interface generated for AutElement. Thus, this exten-
sion is conservative in both aspects concrete and abstract syntax as models of Automatal
are valid models of Automata4 and also the infrastructure for Automatal can still be
used for models of Automatad.

I
grammar Automata4 extends Automatal {

interface AutElement;

@Override

1
2
3
4 //Override and add interface but keep original body
5
6 State implements AutElement;

7

}

Listing 7.12: Language inheritance: One grammar extending another and redefining an
inherited nonterminals inheritance structure without modifying the body

In case the body of the nonterminal should be altered, this is possible as well. To elim-
inate the body an empty body can be defined as shown in Listing 7.13. In contrast to
the grammar Automata4 shown in Listing 7.12 the grammar Automatab in Listing 7.13
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overrides a nonterminal and does eliminate its body. As shown the two cases differ such
that Automatab explicitly defines an empty body =; for the overridden Automaton non-
terminal while Automata4 only redefined the State productions head by implementing
the interface AutElement and no body is defined, i.e. no equals sign is used. Overrid-
ing the nonterminal State with an empty body however would lead to an error as the
Automaton production uses the state nonterminal with a *-cardinality. In this case a
parser generation is not possible. Eliminating the body is in general a non-conservative
extension except for the case the original production defined a body without concrete or
abstract syntax as well.

i1|grammar Automatab5 extends Automatal {
2 //Override and eliminate the body

3 @Override

4 Automaton = ;

5}

Listing 7.13: Language inheritance: One grammar extending another and redefining an
inherited nonterminals by eliminating the body

Of course both options, i.e. overwriting a nonterminal to change the body and adding
an interface can also be used in combination. Listing 7.14 demonstrates this case. Here
the State production is supplemented by an interface and a new body is defined. The
adaptation shown here is not conservative with respect to the concrete syntax, because the
markers for final and initial states were moved to the front, while the abstract syntax is
conservatively extended.

1|grammar Automata6 extends Automatal ({
2| interface AutElement;

3

4 //Override and define a new body

5 @Override

6 State implements AutElement =

7 ( ["initial"] | ["final"] )* "state" Name;

8

}

Listing 7.14: Language inheritance: One grammar extending another and redefining an
inherited nonterminals inheritance structure as well as the body

7.4.3 Extending Multiple Inherited Grammars

It is possible to extend multiple grammars, which strongly corresponds to multiple inher-
itance in OOP. This is done by defining a comma separated list of grammars after the
extends keyword (cf. Listing 7.15). Here, the grammar Automata3 extends the gram-
mars InvAutomata and Expression. Unlike the example in Listing 7.5, this time we
reuse an existing language for invariants.
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grammar Automata3 extends InvAutomata, Expression { MCG Automaton3 —)

1
2

3 // LogicExpr is defined in grammar Expression and now
4| // bound to the external NT

5 @Override

6 Invariant = LogicExpr;

7

8

Listing 7.15: Language embedding: Filling extension points

As before, all productions of the original grammars are inherited. If two nonterminals
have the same name in the original grammars the order in which the original grammars
are listed after the extends keyword is relevant. The definition of the first (leftmost)
grammar defining the nonterminal is taken as the valid definition, while all following ones
are ignored. In our example, if both grammars InvAutomata and Expression define
the same nonterminal, the definition in grammar InvAutomata would be taken.

If a grammar extends several other grammars, those grammars may share common sub-
grammars. Thus, diamond extension works. A nonterminal imported through two different
extension paths is imported only once. If a nonterminal is imported through different paths,
having different definitions, then the first imported definition takes precedence. This even
plays a role, when the body of the defining production is the same in both imported gram-
mars because the objects that are instantiated belong to the package of the first grammar.

7.5 Language Embedding

With the presented mechanisms of language extension and overriding of nonterminals, we
can achieve specific effects, such as embedding one language into another. This is especially
interesting when both languages have been independently developed and there was no joint
definition of the abstract syntax, the context conditions, or any other elements of these
languages before.

We can assume that this is the case for the languages Expression and InvAutomata
already used and composed in Section 7.4. The nonterminals of both languages now co-
exist. Through the selection of the new starting nonterminal (using the start statement)
the master language can be defined. For a combination of the languages it would then be
necessary to either fill external nonterminals or override already implemented nonterminals
in such a way that nonterminals of both languages refer to each other.

Because language InvAutomata (Listing 7.3) has an extension point Invariant, we
can embed the expression language for those invariants by mapping the extension point
to the existing nonterminal. In line 6 of Listing 7.15, the extension point Invariant of
the imported grammar InvAutomata is bound by the nonterminal LogicExpr of the
imported grammar Expression.

The above example has shown that it is possible to embed one language into another. It is
of course also possible to define a completely new start and reuse nonterminals from both
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sublanguages in its production body. Or we can also embed given languages in our newly
defined ones, what we regularly do, when importing MCBasics, etc.

There are, however, limitations that a developer should consider:

1. A keyword defined as token in one language remains a keyword in all parts of the
composed language, even if the other languages regarded that as a normal name.

2. Whitespaces and forms of comments must be identical in all sublanguages, because
they are processed by the composed lexer in a uniform way.

3. Token definitions should also be shared, for instance, if two languages define the
same integers using different token nonterminal names then the parser generator has
to announce an ambiguity because tokens are parsed free of the context of their use.

4. Grammars yield a flat namespace for nonterminals, which means that all nontermi-
nals of an imported grammar are merged into the new version. As already mentioned,
when a nonterminal is defined in two grammars, then the first one takes precedence.
This may lead to unintended changes of the languages because this unintended form
of overriding could affect the second language that normally also uses that nonter-
minal.

7.6 Composing the Builder Infrastructure

A builder for any AST object belonging to a grammar G1 is created using the language mill,
called G1Mil1, as discussed in Section 5.9. The language mill uses the static delegator
pattern (see Section 11.1) to map the static call to retrieve a builder to an internal mill
object. This enables MontiCore to also compose the language mills in all forms of language
composition, aggregation, and inheritance.

Consequently, for a developer knowing the composed grammar G2, for which we assume it
extends G1, builders for all nonterminals can be retrieved from G2Mil1l. However, for old
functionality, which was developed only for grammar G1, all G1Mil1l builders still work
and thus functionality can be reused without changes.

/ \Tlp 7.16: Builder in Composed Languages provide Excellent Reusability

% One of the big advantages of the MontiCore language composition technique is

the possibility to reuse functionality that has been developed on sublanguages.

This is assisted by the code generator using various techniques, including reusabil-
ity of the builders. I.e. functionality that creates new objects through the provided
builder mills can normally be reused in black-box form, without any need of source
code adaptation, even though it will then operate on the extended and composed
languages and even create AST nodes of the composed language.

Furthermore, this functionality can be extended when relying on the visitor com-
position techniques as described in Chapter 8.
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In case a nonterminal S of G1 has been redefined or extended, then G1Mi11 now produces
new g2._ast .ASTS objects instead of old g1._ast .ASTS objects. As g2._ast.ASTS
is a subclass of g1._ast.ASTS, the old functionality does not recognize anything.

To ensure this, the language mill GIMil1l has to be initialized accordingly. For this
purpose, each language mill is equipped with a static initialization method init that
initializes the mill (here G2) and all mills of the languages it depends on (here: G1) to
deliver objects of that language. So an G2Mill.init () statement ensures that all calls
of the form G1Builder.sBuilder () deliver g2._ast.ASTSBuilder objects. The
mill pattern is further explained in Section 11.5.

Please note that a mill initialization can be overridden by initializing another mill that
depends on the mill. So only one language mill should be initialized at the program start.

If the extension of nonterminal S is AST-conservative (see Section 7.9), then the new
builder completes the build process with exactly the same attributes being set as by the
old builder. This works because in an AST-conservative extension all new attributes are
optional or lists.

If the extension is not AST-conservative, then either (1) the G1Mi11 methods may not be
used anymore or (2) the builder needs to predefine values for the new, hidden attributes.
In the latter case, handwritten extensions of the GIMi11 class of the builders, e.g., using
the TOP mechanism are recommended.

To complete the picture, it is worth mentioning that overriding of nonterminals,
e.g., S, not only leads to a subclassing relationship between g2._ast.ASTS and
gl._ast.ASTS, but also the builder g2._ast.ASTSBuilder becomes a subclass of
gl._ast.ASTSBuilder. This is helpful and necessary, to inject the subclass builders
into the functionality knowing the superclass only.

7.7 Composing Parsers

The language mill offers a method called parser to get the parser of a language. Each
sublanguage G1 has its own parser in class G1Parser. If G2 extends G1, then a class
G2Parser exists that provides the parsing methods for the nonterminals of G2.

When languages are composed or extended, MontiCore actually does not compose the
parsers, but creates a new complete parser for each composition of languages. G2Parser
is independent of G1Parser’s functionality. This is why language composition needs the
subgrammars as sources (i.e., the .mc4-files). However, this is hidden for developers.

For language composition, in addition to the complete G2Parser a subclass of the
GlParser called G2ForGlParser is generated. This subclass overrides the parsing
methods of G1Parser that are impacted by G2. The mill pattern ensures that when ini-
tializing the mill of G2 a subclass G2ForG1Mill of the GIMi11 is injected in the GIMi11
that overrides the internal _parser () method of GIMi11. The new implementation of
_parser () returns an instance of the G2ForGlParser. So if the GIMi11 is used to get
a parser, the instance of a subclass of the parser is provided, which delegates to the parser
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of the composed language for nonterminals which have been changed in the composed lan-
guage. Thus the functionality for G1 can be reused and parses nonterminals changed by
the composition with the parser of the composed language.

Consequently, for a nonterminal NT from a sublanguage G1 of a composed language G2,
the method GlParser.parseNT has the same effect as using G2Parser.parseNT.
Furthermore, when restricting to standard use of visitors etc., functions developed against
the sublanguage G1 will never experience differences in the AST even though the resulting
AST may contain additional AST objects belonging to G2 only. This also holds if NT itself
is conservatively redefined. Hence, composition remains fully transparent and parsers,
builders, and the later discussed visitors of a sublanguage need not to be aware of their
embeddings in a composition. They can be fully reused and do not even need to be
recompiled.

There is, however, some caution necessary: The parsing only works well, if the concrete
syntax is conservatively extended (see Section 7.4.1). Section 7.4.1 also discusses some
precaution necessary to ensure that type incompatibilities do not prevent compilation of
the composed AST classes.

G1
AST, builder, mill,
visitor, etc.

G1
language

grammar
A G1

parser

G2
AST, builder, mill,
visitor, etc.

G1+2
language
G2 G2 /
generate G2Parser G2Parser package
G2ForG1Parser | compile | G2ForG1...

\ extends

grammar

Figure 7.17: Composition of a language is executed as late as possible: late binding

Figure 7.17 shows that both, the generation and the compile processes of sublanguages are
decoupled and, thus, it is possible to ship language components as pre-compiled libraries.
In MontiCore 3 even the parsers were compositional and decoupled. However that did not
work too well because the scanners had limited capabilities for composition. We therefore
decided to early compose grammars and create monolithic parsers. This is acceptable for
several reasons (1) MontiCore leaves parser frontends intact, while allowing to use the
composed parser, (2) the parser does have a very limited signature (namely the parsing
methods) and a well encapsulated functionality, and (3) the parser is not supposed to be
manually adapted e.g. through subclassing.

7.8 Composition of Visitors and Context Conditions

When composing a language, it is relevant that every element of the language can be
composed. This does not only include concrete and abstract subjects, but especially also
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technical infrastructure that allows to define functionality on the language models.

A good composition means that the original functionality can be reused without having
to touch the source code, even though it may be useful and necessary to extend the func-
tionality.

This is why we have realized our visitor infrastructure in a compositional form. It is
described in the following Chapter 8. That means the visitor even for a specific sublanguage
can easily be extended with additional functionality on the new nonterminals, without
adapting the source code or even recompiling the sources.

Many context conditions built on visitors and are therefore easily reusable and composed
languages as well.

7.9 Conservative Extension

It is worth examining the conservative extension properties defined in Section 7.4.1 for
ASTs as well as concrete syntax in greater detail. Conservative extension is generally
interesting when a nonterminal already has a definition that shall be extended, but its
properties shall be conserved. This, therefore, does not apply to an external nonterminal,
which can be implemented freely, but to normal and abstract nonterminals.

Let us for the following discussion assume that we have a number of languages LG« ex-
tending language LG1 (where "*" stands for any number). For a better understanding, we
attach a suffix to each nonterminal, to describe where it comes from. Please be aware that
this suffix is not present in the grammar themselves.

grammar LGl {
Mrg1 = Decimal;
Npgi = "one" Mrgi;
Prgi = "some" Mrgi*;
Qrg1 = "optional" Mpgi1?;

}
grammar LGx extends LGl ({

Mrgs = «..
}

© 0 N Ot s W N

7.9.1 Conservative Extension of the Concrete Syntax

Conservative extension of the CS is a property of the set of models parsed by a grammar.
It means?: Sem(1.G1)CSem(LG2). Such a property on grammars is generally undecidable
[HMUO6]. However, a set of sufficient criteria can be defined that ensures this property.
To assist the developer, we thus describe these criteria in the following.

2Let us denote the language, i.e. the set of words, of a grammar L by Sem(L)
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1| grammar LG+ extends LGl {
2 // we describe a bunch of grammars LG+ here,

3 // each grammar has one nonterminal M

4|  Mpgoz = Decimal; // CS—-conservative
5| Mpgos = Decimal P?; // CS—-conservative
6| Mpgos = "-"? Decimal; // CS—-conservative
7| Mpgos = Px Decimal P?; // CS—-conservative
8 Mrgos = Name; // not cons.

9| Mpgor = Decimalx; // CS—conservative
10| Mrgos = Decimal?; // CS—conservative
11|  Mpgog = Decimal | Name; // CS-conservative
12 Mrgio = Decimal d:Decimal?; // CS—-conservative
13| Mpgi1 = d:Decimal; // CS—-conservative
14| }

The above examples of redefining nonterminal M demonstrate what is allowed. The
Decimal nonterminal needs to be retained, although it might be given another name
(LG11), which affects only the AST.

If Decimal changes its cardinality, the cardinality may only be widened. That means
from mandatory (N) to optional (N?) or nonempty list (N+), and from all three to list
(Nx). Separators may be added, like in (N || ", ™) *. Alternatives like in LG09 count
as a switch to optional.

Before, between, and after the existing terminals and nonterminals it is allowed to add
optional and list nonterminals because their omission is generally allowed (LG03-LGO05).

It is, however, not allowed to omit nonterminals (LG06) or rearrange their order (LG21).
But, it is allowed to add more optional variants of an already existing nonterminal (LG22,
LG23).

1|grammar LG* extends LGl {
2|  Npgzo = "one" M?; // CS—-conservative

3| Npgz1 = M "one"; // not cons.

4|  Npggz = M? "one" M; // CS—-conservative

5| Npges = x:M? "one" M; // CS-conservative

6|}

Many of those conservative extensions on the CS are, however, no conservative extensions

on the AST.

Please note that obviously a conservative extension also needs to keep the original starting
nonterminal. By default, MontiCore takes the first explicitly defined nonterminal as start.
Thus, a start statement is usually needed to set the starting nonterminal correctly and
retain conservative extensions of the CS.
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7.9.2 Access-Conservative Extension of the Abstract Syntax

Conservative extension of the AST is a property of the data structures and it comes in two
important variants:

e The AST data structures that a programmer expects under LG1 are still valid under
LG2. That means when navigating an AST, e.g. with a visitor and accessing children,
no surprises occur. We call that AST-access-conservation.

e All operations on an AST that a programmer might use to manipulate an LG1 AST
are having the same effect under LG2. We call that AST-modification-conservation.

Fortunately, some conservation properties are already ensured by the extensible OO type
system. Unfortunately, the Java type system is not powerful enough to fully support all
potentially interesting forms of language extension, such that the AST is conserved. We
discuss the problems and some workarounds with a few examples in Section 7.9.4.

AST-access-conservation basically means that given an AST object with a certain type
information, the object may be from a subtype, but behaves like the known type. That
means all getters and value retrievers work as from then known type, navigation to chil-
dren works as normal and applying a visitor works. This is generally the case, when the
cardinality of a nonterminal stays untouched. For the examples from above, this is as
follows:

1| grammar LGx extends LGl {
2|  Mpgo2 = Decimal; // AST-conservative
3| Mpgos = Decimal P?; // AST-conservative
4|  Mpgos = "-"? Decimal; // AST-conservative
5| Mpgos = Px Decimal P?; // AST-conservative
6| Mrcos = Name; // not cons.

7|  Mpgor = Decimalx; // not cons.

8|  Mpgos = Decimal?; // not cons.

9| Mrgog = Decimal | Name; // not cons.

10 Mrgio = Decimal d:Decimal?; // AST-conservative
11|  Mpgin = d:Decimal; // not cons.

12

13|  Npgeo = "one" M?; // not cons.

14|  Npger = M "one"; // AST-conservative
15|  Npgee = M? "one" M; // not cons.

16 Nrges = x:M? "one" M; // AST-conservative
17| }

The modifications of the languages LG02 to LG05 are AST-access-conservative because
they basically leave the inherited nonterminal(s) unchanged. Any changes of the cardinality
of the nonterminal, such as in LG0O7 to LG09, LG20, LG22, omitting the nonterminal
(LG08), or renaming the nonterminal (LG11) is not AST-access-conservative.

LG22 ist not access-conservative because it extends the cardinality of M to M* (even though
it is restricted to 1-2). In contrast, LG23 is access-conservative, because the new instance
of M has a different name x.
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Relaxing the cardinality is generally not access-conservative because the accessor could
rely on an assumption that there is exactly one, at most one, or potentially a nonempty
list. This also holds, but will in practice not necessarily be a problem, if the cardinality is
only relaxed through a different min and max definition (see Section 4.2.9).

On the other hand, strengthening the cardinality would in principle be access-conservative.
It works, when using the min/max definitio