
RWTH Aachen University
Software Engineering Group

MontiCore
Language Workbench and Library
Handbook

Edition 2021

Bernhard Rumpe
Katrin Hölldobler
Oliver Kautz

http://www.se-rwth.de/
http://www.monticore.de/

ii

Foreword

MontiCore is a language workbench, which is developed since 2004. We have started its
development because at that time the available tools for model management where often
very poor in their functionalities and also not extensible, but closed shops. In 2004 the
�rst version of the UML/P was published (and is now available as [Rum16, Rum17]) and
demonstrated that the family of languages that the UML is made of can be substanti-
ated with useful transformation, re�nement, refactoring and semantic di�ng techniques
[KRW20, BEK+18b]. Code and test code generation as well as �exible combination of
language fragments, such as OCL within Statecharts or Class Diagrams for typing in Com-
ponent and Connector Diagrams, were the techniques of primary interest. However, at
that time available modeling tools were mainly editors and thus not helpful in realizing
these advanced and smart techniques. This was the original motivation for MontiCore that
can also be found in the �rst foundational theses in [Kra10, Völ11, Sch12, Höl18].

Later, it became apparent that the UML will be complemented by SysML as well as domain
speci�c languages (DSLs) that will be connected to software development or execution in
various ways. The de�nition of DSLs encounters the same di�culties as the de�nition of
the UML faced, i.e., they are often built from scratch, reuse is pretty bad, and the same
concepts get di�erent syntactic shapes. Thus, combining DSLs is rather impossible. We
therefore extended the focus of MontiCore to become a general language workbench that
allows to de�ne languages and language fragments and to derive as much as possible from
an integrated and therefore compact de�nition.

In this version of the MontiCore Reference Manual, the core facilities of MontiCore
are described. Extensions are available through various projects either using or en-
hancing MontiCore with more functionality. MontiCore provides sophisticated tech-
niques to generate transformation languages and their transformation engines based on
DSLs [Höl18, HRW15, AHRW17b, RRW15, HHRW15, Wei12, HMR+19], MontiCore
was used to explore tagging languages [Loo17, MRRW16, GLRR15, HMR+19], various
forms of the UML and its derivatives [Sch12, Wor16, Hab16, Rei16, Rot17, HMR+19],
sophisticated forms of language composition and derivation techniques including the
generated code [GHK+15a, HLMSN+15a, HMSNRW16, MSN17, HRW18, BEK+18a,
BEK+18b, BEK+19]. MontiCore also explored novel comfortable code generation tech-
niques [MSNRR16, EHRR19] as well as plenty of domain speci�c languages.

Despite MontiCore originated as academic tool to explore modeling and meta-modeling
techniques, after 17 years of development, it has reached an extraordinary strength and
is thus increasingly used in industrial projects. The small excerpt of topics below demon-
strates this: energy management [Pin14], program planning in the television domain
[DHH+20], modelling and execution of tax laws, assistive systems [MRV20], AutoSAR

i

communication and architecture modelling, autonomous driving [KKRZ19, KKR19], ac-
counting and management [GMN+20, AMN+20, SHH+20], orchestrating digital twins
[JvdAB+21, DMR+20, BDH+20], internet of things, as well as in scienti�c projects of en-
tirely di�erent nature, such as simulation of city scenarios for autonomous driving [Ber10]
or human brain modeling [PBI+16]. MontiCore, however, does not primarily focus on
comfort, e.g., graphical editing, but advanced functionality for model-based analysis or
synthesis of software intensive systems and quick textual editing for experienced users.

We would like to thank all current and former members of our group as well as all students
and apprentices who helped to develop MontiCore in its current shape. Namely, we would
like to thank Kai Adam, Daoud Ali, Vassily Aliseyko, Professor Dr. Christian Berger,
Vincent Bertram, Miriam Boÿ, Arvid Butting, Joel Charles, Manuela Dalibor, Anabel
Derlam, Niklas Dienstknecht, Imke Drave, Robert Eikermann, Christoph Engels, Arkadii
Gerasimov, Dr. Timo Greifenberg, Dr. Hans Grönniger, Dr. Tim Gülke, Dr. Arne Haber,
Guido Hansen, Olga Haubrich, Malte Heitho�, Dr. Lars Hermerschmidt, Dr. Christoph
Herrmann, Gabi Heuschen, Ste�en Hillemacher, Nico Jansen, Hendrik Kausch, Christian
Kirchhof, Carsten Kolassa, Dr. Anne-Therese Körtgen, Thomas Kurpick, Evgeny Kus-
menko, Dr. Holger Krahn, Dr. Stefan Kriebel, Achim Lindt, Dr. Markus Look, Daniel
Maibach, Professor Dr. Shahar Maoz, Matthias Markthaler, Dr. Dan Matheson, Dr.
Judith Michael, Joshua Mingers, Dr. Klaus Müller, Dr. Pedram Mir Seyed Nazari, An-
tonio Navarro Pérez, Lukas Netz, Mathias Pfei�er, Nina Pichler, Dr. Claas Pinkernell,
Dr. Dimitri Plotnikov, Deni Raco, Professor Dr. Jan Ringert, Dr. Holger Rendel, Dr.
Dirk Reiss, Dr. Daniel Retkowitz, Dr. Alexander Roth, Dr. Martin Schindler, David
Schmalzing, Ste� Schrader, Dr. Frank Schroven, Dr. Christoph Schulze, Igor Shumeiko,
Brian Sinkovec, Sebastian Stüber, Simon Varga, Dr. Steven Völkel, Louis Wachtmeister,
Dr. Ingo Weisemöller, Dr. Michael von Wenckstern, and Professor Dr. Andreas Wort-
mann. The individual contributions to MontiCore and its derivatives resulted in numerous
publications1. Special thanks go to Marita Breuer and Galina Volkova, who maintain and
extend MontiCore, and in particular to Sylvia Gunder and Sonja Müÿigbrodt, who en-
sure that all �nancial and project activities supporting our language workbench project
MontiCore are running perfectly.

We also would like to thank the authors or co-authors of several chapters, for describing
relevant parts of MontiCore directly in this handbook.

To all readers of this handbook: We hope you enjoy reading this manual and trying out
our language workbench MontiCore as well as the tools generated with MontiCore. In case
you have any suggestions or questions do not hesitate to contact us.

Aachen, 27.03.2021

Bernhard Rumpe, Katrin Hölldobler, Oliver Kautz

1www.se-rwth.de/publications/

ii

Contents

Contents

1 Introduction to Tool Generation 1
1.1 MontiCore Language Workbench . 1
1.2 Notational Conventions . 3
1.3 Textual Modeling . 4
1.4 Methodical Considerations: Agile Modeling 5

2 Getting Started with MontiCore 7
2.1 Prerequisites: Installing the Java Development Kit 7
2.2 Install and Use the MontiCore Command Line Interface 8

2.2.1 Installation . 9
2.2.2 Inspect the Example Grammar . 9
2.2.3 Run MontiCore . 12
2.2.4 Compile the Target . 22
2.2.5 Run the Tool . 28

2.3 Using MontiCore via Gradle From the Command Line 29
2.4 Using MontiCore in Eclipse . 29

2.4.1 Setting up Eclipse . 30
2.4.2 Importing the Example . 30
2.4.3 Running MontiCore . 30

2.5 Using MontiCore in IntelliJ IDEA . 31
2.5.1 Setting up IntelliJ IDEA . 31
2.5.2 Importing the Example . 31
2.5.3 Running MontiCore . 32

3 Architecture of a Model Processor 33
3.1 Structure of a Model Processor - External View 33
3.2 Internal Architecture of a Generator - Component View 34
3.3 Tool Work�ow . 36

4 MontiCore Grammar for Language and AST De�nitions 39
4.1 Lexical Tokens for the Scanner . 40

4.1.1 De�nition of Tokens using Regular Expressions 41
4.1.2 Actions to Process a Token . 42
4.1.3 Prede�ned Tokens in Importable Grammars 43

4.2 Productions in the Grammar . 46
4.2.1 Terminals . 48
4.2.2 Enumeration . 49
4.2.3 Nonterminals . 50
4.2.4 Interface Nonterminals: implements 51

iii

Contents

4.2.5 Extending Nonterminals: extends . 52

4.2.6 Abstract Nonterminals . 52

4.2.7 Starting Nonterminal . 54

4.2.8 In�x Operations and Priorities . 54

4.2.9 Restricting the Cardinality of a Nonterminal 55

4.2.10 Symbols and Scopes . 56

4.2.11 Passing Code to the ANTLR Parser 57

4.2.12 Annotations for Nonterminals and Grammars 58

4.2.13 Prede�ned Nonterminals in Importable Grammars 59

4.3 Additional Control Directives in the MCG Language 59

4.3.1 Splitting Tokens . 60

4.3.2 Local Keywords: Avoid handling Keywords as Tokens 61

4.4 Context Conditions for the MCG Language 62

4.5 Semantic Predicates and Actions . 69

4.6 EBNF of the MCG Language . 70

5 Abstract Syntax Tree 77

5.1 Mapping Nonterminals to the AST . 78

5.2 Interface and Abstract Nonterminals . 79

5.3 Extending Nonterminals: astimplements, astextends 79

5.4 Extending the Abstract Syntax Implementation 81

5.5 Terminals in the AST . 83

5.6 Enumerations . 84

5.7 ASTNode: A Base Interface for AST Classes 85

5.8 Generated ASTNode Subclasses . 86

5.9 Node Construction Using the Node Builder Mill 91

5.10 Handwritten Extension of AST Classes and Node Builders 96

5.10.1 Handwritten Extension of AST Classes: TOP-Mechanism 96

5.10.2 Handwritten Extension of AST Builders and Mills 97

6 Parser Generation and Use 101

6.1 Generating a Parser and a Lexer, as done in MontiCore 101

6.2 Interface of the Generated Parser Classes 104

6.3 Executing a Generated Parser . 106

7 Language Composition 109

7.1 Introduction to Language Composition . 109

7.2 Language Composition at a Glance . 113

7.3 Grammar Constructs for Language Composition 116

7.3.1 Component Grammar . 117

7.3.2 External Nonterminals . 117

7.3.3 Importing and Extending Grammars 119

7.4 Language Inheritance . 120

7.4.1 Rede�ning / Overriding Productions of Grammars 121

7.4.2 Extending the Implementation Structure of a Nonterminal 123

7.4.3 Extending Multiple Inherited Grammars 124

iv

Contents

7.5 Language Embedding . 125

7.6 Composing the Builder Infrastructure . 126

7.7 Composing Parsers . 127

7.8 Composition of Visitors and Context Conditions 128

7.9 Conservative Extension . 129

7.9.1 Conservative Extension of the Concrete Syntax 129

7.9.2 Access-Conservative Extension of the Abstract Syntax 131

7.9.3 Modi�cation-Conservative Extension of the Abstract Syntax 132

7.9.4 AST Signatures Causing Java Type Errors 133

8 Visitors for AST Traversal 135

8.1 Visitor Infrastructure for a Language . 136

8.1.1 Traverser Interface and Implementing Class 136

8.1.2 Visitor2 Interface . 140

8.1.3 Handler Interface . 141

8.1.4 Inheritance Handler for Explicit Visit of Supertypes 142

8.2 Visitors for Composed Languages . 144

8.2.1 Visitor Infrastructure for Language Inheritance and Extension 145

8.2.2 Visitor for Language Inheritance with Overriding Nonterminal 147

8.2.3 Visitors for Compositional Language Embedding 149

9 Symbol Management Infrastructure 155

9.1 Introduction to Symbol Table Concepts . 157

9.1.1 Symbols . 157

9.1.2 Scopes . 158

9.2 De�ning Symbols . 160

9.2.1 Runtime (RTE) Classes For Symbols 162

9.2.2 Generated Classes For Symbols . 164

9.2.3 De�ning Additional Symbol Attributes via symbolrule 166

9.3 De�ning Scopes . 167

9.3.1 Artifact Scope and Global Scope . 167

9.3.2 Runtime Environment Classes for Scopes 168

9.3.3 Generated Classes For Scopes . 172

9.3.4 De�ning Scope Attributes and Methods via scoperule 175

9.4 Collaboration between AST, Symbol, and Scope 176

9.5 Using Symbols . 177

9.6 Instantiating Symbol Tables . 179

9.6.1 Phase 1: Symbols and Scope Skeletons 179

9.6.2 Phase 2+: Filling Symbols with Value 182

9.7 Loading and Storing Symbol Tables . 182

9.7.1 Stored Symbol Tables . 183

9.7.2 RTE Classes For Symbol Table Persistence 184

9.7.3 Generated Classes for Symbol Storage and Their Adaptation 187

9.7.4 Loading Symbol Tables . 190

9.7.5 Storing Symbol Tables . 191

9.7.6 Realizing Custom Serialization Strategies 192

v

Contents

9.8 Resolving Symbols in Scopes . 195
9.8.1 How to Use Symbol Resolution . 195
9.8.2 Concept Of Symbol Resolution . 196
9.8.3 Generated Implementation for Symbol Resolution 199
9.8.4 Customizing Symbol Resolution . 201

9.9 Visitors Also Handle Symbol Tables . 203
9.10 Symbol Tables in Composed Languages . 204

9.10.1 Symbol Management Infrastructure for Language Inheritance 205
9.10.2 Symbol Management Infrastructure for Language Aggregation 206
9.10.3 Symbol Adapters . 206
9.10.4 Resolving for Adapted Symbols . 208

10 Context Conditions 211
10.1 Context Condition Infrastructure . 212
10.2 Implementation of Context Conditions . 214
10.3 Testing Context Conditions . 216

10.3.1 Testing a Context Condition on a Valid Model 217
10.3.2 Testing a Context Condition on an Invalid Model 218

11 Design Patterns Used and Invented for MontiCore 221
11.1 Static Delegator Design Pattern . 221
11.2 RealThis Object Composition Pattern . 223
11.3 Attribute and Association Access Pattern 227

11.3.1 Attribute Access Pattern . 227
11.3.2 Association Access Pattern . 230
11.3.3 The Extended Builder Pattern . 231

11.4 Template Hook Pattern . 232
11.5 Mill Pattern to Assist Composition . 233
11.6 Multiple Interface Composition Pattern . 236

12 FreeMarker 237
12.1 The FreeMarker Template Languages . 237
12.2 Expressions in FreeMarker . 238
12.3 Control Directives in FreeMarker . 240
12.4 FreeMarker Add Ons . 242

13 Generator Engine using Flexible Templates 245
13.1 Methodical Considerations . 245
13.2 Generator API . 247
13.3 Con�guring the Generation Process . 250
13.4 MontiCore APIs for Templates . 252

13.4.1 Shortcuts: Aliases in Templates . 252
13.4.2 The TemplateController . 254
13.4.3 Logging within a Template . 259
13.4.4 Variables in the Templates with GlobalExtensionManagement 260

13.5 Hook Points for Adaptation . 262
13.5.1 The Concept of Hook Points . 262

vi

Contents

13.5.2 Forms of Hook Points . 266

13.5.3 De�ning Explicit Hook Points in Templates 268

13.5.4 Binding Hook Points . 270

13.5.5 Replacing and Decorating Hook Points 272

13.5.6 HookPoint Replacement and Decoration Strategy 272

13.5.7 A HookPoint Replacement and Decoration Example 274

14 Integrating Handwritten Code 279

14.1 Integration of Handwritten Code . 279

14.2 Adaptation of Generated Code by Subclassing 280

14.3 Adaptation of Generated Code using the TOP Mechanism 281

15 Error Handling, Logging and Reporting 285

15.1 Where to �nd Concrete Help for an Error, Warning, or other Message . . . 285

15.2 Errors, Warnings and Log Messages . 286

15.2.1 Errors . 286

15.2.2 Warnings and Information . 287

15.2.3 Form of Errors, Warnings and Log Messages 288

15.3 The Error and Logging Component . 289

15.4 Logging Con�gurations in MontiCore . 292

15.4.1 Selecting one of the given Con�gurations 292

15.4.2 Using a Custom logback Con�guration 293

15.4.3 Initializing the Log within Java . 293

15.4.4 Providing a Custom Log Implementation 294

15.5 Reports . 294

15.5.1 Where to Find Reports . 294

15.5.2 How to Con�gure Reporting . 294

15.5.3 Identi�ers contained in the Reports 295

15.5.4 List of the Reports . 297

15.6 For Developers: How to Deal with Errors and Warnings 300

16 MontiCore Use and Con�guration from CLI or Gradle 303

16.1 MontiCore from Commandline . 304

16.1.1 How to Call the CLI . 304

16.1.2 Parameters of the CLI . 305

16.2 Embedding the CLI in a Make�le Build Process 306

16.3 MontiCore Used via Gradle Plugin . 310

16.3.1 De�ning a MontiCore Task . 311

16.3.2 Compilation and Packaging . 314

16.3.3 De�ning external Dependencies . 314

16.3.4 Example Build Script . 315

16.4 MontiCore in Maven . 317

16.5 MontiCore Work�ow Con�guration with Groovy 318

16.5.1 The Standard Groovy Generation Script 319

16.5.2 MontiCore Base Class for Groovy Scripts 321

16.5.3 Methods Available within Groovy Scripts 323

vii

Contents

16.5.4 Variables Available within Groovy Scripts 324

16.5.5 Available preimported Classes within Groovy Scripts 325

17 Example MontiCore Grammars 327

17.1 Component Grammar MCBasics.mc4 . 328

17.2 Component Grammar StringLiterals.mc4 . 329

17.3 Component Grammars for Numbers . 331

17.3.1 Component Grammar MCNumbers.mc4 331

17.3.2 Component Grammar MCHexNumbers.mc4 333

17.4 Component Grammars for UML Languages 334

17.4.1 Component Grammar UMLStereotype.mc4 335

17.4.2 Component Grammar Cardinality.mc4 335

17.4.3 Component Grammar UMLModi�er.mc4 336

17.4.4 Component Grammar Completeness.mc4 337

17.4.5 Component Grammar MCCommon.mc4 338

18 Expression and Type Language Components 339

18.1 Literals as Basis for Expressions . 340

18.1.1 MCLiteralsBasis . 341

18.1.2 MCCommonLiterals . 341

18.1.3 MCJavaLiterals . 345

18.2 Expressions in various Variants . 346

18.2.1 ExpressionsBasis . 347

18.2.2 CommonExpressions . 348

18.2.3 BitExpressions . 349

18.2.4 AssignmentExpressions . 349

18.2.5 JavaClassExpressions . 350

18.3 Symbols . 352

18.3.1 BasicSymbols . 352

18.3.2 OOSymbols . 354

18.4 Types: From Simple To Generic . 355

18.4.1 MCBasicTypes . 356

18.4.2 MCCollectionTypes . 357

18.4.3 MCSimpleGenericTypes . 358

18.4.4 MCFullGenericTypes . 358

18.4.5 MCArrayTypes . 359

18.5 Using Base Grammars . 359

18.6 Type Checking in MontiCore Languages . 361

18.6.1 Types in a Symbol Table: SymTypes 362

18.6.2 Using Type Checks: the Type Check API 363

18.6.3 How the Type Check is Con�guered 365

19 Statement Language Components 371

19.1 MCStatementsBasis . 372

19.2 MCVarDeclarationStatements . 373

19.3 MCArrayStatements . 374

viii

Contents

19.4 MCCommonStatements . 374
19.5 MCReturnStatements . 376
19.6 MCAssertStatements . 376
19.7 MCSynchronizedStatements . 377
19.8 MCExceptionStatements . 377
19.9 MCLowLevelStatements . 378
19.10 MCFullJavaStatements . 379

20 The JavaLight Language 381
20.1 Sublanguage Hierarchy of JavaLight . 381
20.2 Nonterminals of JavaLight . 382

20.2.1 Methods, Constructors, and Attributes 383
20.2.2 Java Annotations . 386
20.2.3 Java-Speci�c Array Initialization . 387

21 Some Demonstrating Example Languages 389
21.1 A Simple Automata Language . 389
21.2 Hierarchical Automata . 396
21.3 A Language for Automata with Invariants 398
21.4 Scannerless Parsing to Handle Complex Tokens 400

21.4.1 Parsing with Whitespaces . 400
21.4.2 Temporarily Parsing with Whitespaces 402
21.4.3 Preventing Whitespaces between Tokens 403

21.5 Tip: Testing Grammars and their Models 404
21.6 ColoredGraph Language . 405
21.7 Questionnaire Language . 408

22 Developer's View on MontiCore 413
22.1 MontiCore's GitHub Repository . 414
22.2 For External Developers: How to Contribute 416
22.3 MontiCore's Gradle Projects . 416
22.4 Further Source Code Locations . 417

23 Further Reading and Related Work 419

List of Figures 429

Listings 433

References 441

Index 463

ix

Chapter 1

Introduction to Tool Generation

This handbook describes how to generate tools that deal with language processing.

These tools are partially generated by the language workbench MontiCore and partially
need handcoded extensions. This handbook explains how to do this e�ciently.

We assume that the reader is familiar with a variety of computer science concepts, such as
grammars, UML and in particular their class diagrams and Java. If not, [HMU06] is
suggested for grammars, [Rum16] for UML, and [GJS05] for Java.

As we will further explain, MontiCore is a meta-tool, actually a language workbench: It
generates tools. It may well be that the generated tooling is itself a generator. That
is �ne, but in order to avoid confusion, we should be clear that there are two levels.
Furthermore, the generated tooling can not only be a generator, but can be used for
transformation, simple and complex analysis, simulation or the connection of runtime data
with the originating models.

All the tooling is about processing models in standard or domain speci�c languages (DSLs).
MontiCore generates infrastructure, such that many models as well as heterogeneous mod-
els, that means of di�erent languages, can be processed. Modeling in the large is well
assisted.

MontiCore is not only about generation of tools, but in particular about reuse of tool
components that have been developed independently. In particular MontiCore provides a
number of techniques to systematically reuse language components by composing, extending
or inheriting them. MontiCore assists an easy development and extension of languages and
thus should be a good solution for tool development.

MontiCore also includes a number of plug-ins e.g. for Eclipse or EMF-compatible gen-
eration and thus supposedly has a rather useful development environment. We strongly
encourage the reader to download and install MontiCore.

1.1 MontiCore Language Workbench

The MontiCore language workbench can be used both as a closed product out-of-the-
box for the generation of software as well as an open, customizable framework for tool
development. MontiCore itself is a generator with the speciality that the products it
produces are generators themselves. As already said, MontiCore is therefore a meta-tool.

1. Introduction to Tool Generation

Tip 1.1: Where to �nd MontiCore

The MontiCore language workbench as well as a number of language components
are available as open source. More interesting information can be found at:

1 www.monticore.de // Newest info about
2 // MontiCore and the
3 // MontiCore generator
4 https://github.com/MontiCore // Sources of the core
5 // project on GitHub

At a glimpse, the features of MontiCore are:

� Modular de�nition of languages and language components

� Explicit interfaces between models, allowing heterogeneous composition of models.

� Techniques for composition of languages, thus allowing:

� independent language development,

� language extension,

� language inheritance including concept replacement, and

� composition of language tools.

� Assistance for model analysis.

� Assistance for model transformation by reusing the concrete syntax of the modeling
language.

� Only a single source is necessary for the de�nition of concrete syntax, abstract syntax,
parser and internal representation of models.

� Easy de�nition of e.g. Eclipse language speci�c editors.

� Explicit management of variability in both, languages and their generation tools.

Numerous tools for domain speci�c modeling languages as well as general purpose languages
have been developed by using MontiCore. Among them are MontiCore itself, a larger part
of the UML set of languages, the architectural description language MontiArc, Java, a
subset of Ansi-C++ and a feature diagram DSL (see e.g. Figure 1.2). Various applications
in engineering domains (AutoSar, autonomous driving simulation, �ight control, building
facilities, energy management, cloud service con�guration) and natural science (human
brain, control software for physical experiments) demonstrate the usability of MontiCore.

In addition to the above mentioned bullets this document also discusses:

� How a generator architecture looks like

� Out-of-the box use of MontiCore

2

1.2. Notational Conventions
Prof. Dr. B. Rumpe

Lehrstuhl für

Software Engineering

RWTH Aachen

Page 3

MontiCore: Selected Languages

� MontiCore
• Bootstrapping

� UML
• Class diagrams
• Object diagrams
• Statecharts
• Activity diagrams
• Sequence diagrams
• OCL

� MontiArc
• Architectural models /

ADL, function nets
• + automata + Java + views

� Java
• Java 5.0

� C++
• Ansi-C++

� MontiCore transformations

• Pattern matching

• Extended by Java

� FeatureDSL

• Feature diagram & config.

� AutosarDSL

• Components, deployment,
interfaces

� Flight control: constraint language

� Building facility specification

� Curriculum

� Cloud Service Configurator

• Management of Services

x x

x

Figure 1.2: Some languages MontiCore provides

� Language de�nition

� How an abstract syntax (AST) looks like

� Managing symbols and visibility of de�nitions

� Model composition

� Language components and their composition

� Navigation an manipulation of the AST with compositional visitors

� Generation using FreeMarker's templates

� Integration of handwritten code

There is more to say about MontiCore. However, this document explicitly omits the
internal architecture of MontiCore, how to de�ne and apply transformations in concrete
syntax, how to manage variability of languages, and various application languages, such
as UML, MontiArc etc. The MontiCore website provides additional information.

1.2 Notational Conventions

Although MontiCore mainly relies on textual models, a diagrammatic representation is
sometimes convenient. To be clear to what language the model, code snippet, etc. belongs
to, it will be marked with a �ag. An example is shown in the upper right corner of
Listing 1.3, which is an excerpt of a generated Java class called Person.

We use various abbreviations, such as CD for class diagrams, etc. Especially class diagrams
serve multiple purposes, therefore, it is necessary to understand precisely, what is modeled
by a CD. In several chapters we use the modeling language Class Diagrams for Analysis
(abbreviated: CD4A) as source for the generation process. But, we also use class diagrams

3

1. Introduction to Tool Generation

Java �gen� Person1 class Person {
2 private String firstname, surname;
3 Adress adr;
4 }

Listing 1.3: Example in Java

to exhibit concrete situations in the tool or product, such as for example the extension of
a generated class GroupTOP by the handcoded class Group, which are both present in
the product, i.e., the �nal target of the development process. We notate this as depicted
in Figure 1.4

Prof. Dr. B. Rumpe

Lehrstuhl für

Software Engineering

RWTH Aachen

Page 2

Notational Conventions

GroupTOP

Group

Product-CD

«hc»

«gen»

This is a class diagram that shows
classes in the product

This class is generated

… hand coded

Figure 1.4: Notational conventions

1.3 Textual Modeling

Many experts think that the mental model in the conscious human brain is the most
important form of models. Thus, it is not so important how to represent the model-
ing information on the screen or on paper, but that the model communicates the right
information and concepts. However, for easy understanding, quick adaptations, logical
manipulations, refactorings or similar purposes, it seems not so unimportant to use an
appropriate representation.

It is an ongoing debate, whether and where textual or graphical models are better for
software development. It also depends on the background of the reader, which model is
easier to be used. Both forms of models do have advantages. Experts for example are
quicker to produce the model in text form, because they are not distracted by "pushing
boxes around" to produce nice diagrams. And for tool developers it is easier to write a
text processor than a diagram processing tool, especially when using this handbook.

Our experience is that computer scientists tend towards textual models due to higher
compactness, more e�cient creation, refactoring and use and less dealing with graphical
layout.

Diagrams and text will coexist in the future and may be even closely integrated. MontiCore
currently focusses on text as the main form of input and output. Thus, the infrastructure
is easier for tool development.

4

1.4. Methodical Considerations: Agile Modeling

1.4 Methodical Considerations: Agile Modeling

There are a variety of development processes, ranging from traditional document oriented
approaches, such as the V-Model, up to several incarnations of agile development, such
as Extreme Programming (XP) [BA04] and Scrum [SB01]. It would go beyond the scope
of this handbook to talk about methodological issues. However, we would like to hint
towards discussions that a development job could well be assisted by models and high-level
modeling languages, if the generation process for code and tests is e�cient and robust. In
[Rum11, Rum12, Rum16] this is discussed in detail.

[Rum12] for example suggests to combine the advantages of agile development with use
of models by concentrating on a set of complementing models with as little redundancy
as possible in order to represent each piece of information only once and as compact as
possible. Figure 1.5 depicts this idea in an abstract form, mainly focussing on the UML.

Prof. Dr. B. Rumpe

Lehrstuhl für

Software Engineering

RWTH Aachen

Page 4

Agile use of Models for Coding and Testing:

Usage of UML-Diagrams

consistency

analyser

“smells” &

errors

statecharts
class

diagrams C++,

Java ,

parameterized

code

generator

system

architecture

diagram

sequence

diagrams

object

diagrams

__:

__:

__:

OCL

test code

generator

tests

Figure 1.5: Agile use of models for coding and testing

Some generators concentrate on the system while other generators derive automatically
running testing code similar to JUnit tests [Bec15]. If the software to be developed is part
of a larger system, it would also be possible to derive automatically running simulations
for the complete product or some of its components to check the correctness of the system,
e.g. done in [BR12b].

As a consequence, we suggest to base larger parts of the development project on modeling
artifacts. Models can be used for

� rapid prototyping,

� code generation,

� generation of automated tests,

� documentation,

5

1. Introduction to Tool Generation

� static analysis, and

� refactoring and evolution.

In a generative software development project, models serve as central artifacts. They are
used for programming, testing and specifying.

Tip 1.6: Agile Model-Based Development

Agile software development and model-based generation �t together.
First and foremost, generation obviously increases the speed of development.

However, this only becomes an advantage, when two important criteria are ful�lled:
(1) It is important to easily rerun the generator each time a slight change was

made in the models. A one-shot generation is not helpful, because it does not assist
any form of evolution, but only the waterfall model. So, it is best to not manually
touch generated code.

(2) To keep the pace of development, generation must be quick. In particular when
generating lots of code from lots of models, incremental generation based on detected
changes is necessary. So, it is optimal to use an intelligent dependency management
that allows automatic incremental and thus e�ciently minimal re-generation.

Then agile generative software development becomes possible.

Tip 1.7: Current Version of this Document is Online

MontiCore is an evolving tool. Therefore, more material describing the capabili-
ties and forms of usage will evolve over time.

Therefore, you might also have a look at MontiCore's website.
However, your feedback will de�nitely be appreciated, e.g. by emails to

monticore@se-rwth.de or through sending a printout with comments.

6

Chapter 2

Getting Started with MontiCore

This chapter describes the technical installation and usage of MontiCore for language
developers. This chapter further inspects a simple example grammar and the Java classes
and other artifacts generated from this grammar. After installing MontiCore as described
in this chapter, it can be used to develop new modeling languages and generators as
described in subsequent chapters.

MontiCore provides a command line interface (CLI) tool and can easily be used with Gra-
dle. The Gradle integration enables developers to easily employ MontiCore in commonly
used integrated development environments (IDEs), such as Eclipse and IntelliJ IDEA. We
strongly recommend to work through the section about the CLI tool �rst. The CLI sec-
tion contains information about an example MontiCore project and the �les generated by
MontiCore. It also shortly explains some key features of MontiCore.

A potentially newer explanation can be found on the MontiCore website. Detailed infor-
mation about all con�guration options that can be used in the MontiCore CLI tool and
in MontiCore Gradle projects are explained in Chapter 16. More information about the
example Automata language are available in Section 21.1.

Tip 2.1: MontiCore Website: Where to �nd MontiCore

The MontiCore language workbench as well as a number of language components
are available as open source. More interesting information can be found at:

1 www.monticore.de/ // Newest info about
2 // MontiCore and the
3 // MontiCore generator
4

5 www.monticore.de/gettingstarted // Introductory tutorial

2.1 Prerequisites: Installing the Java Development Kit

We start with the JDK: Please perform the following steps to install the Java Development
Kit (JDK) and validate that the installation was successful:

2. Getting Started with MontiCore

Tip 2.2: MontiCore Website: Best Practices

Many best practices for the development with MontiCore can be found on the
website.

1 www.monticore.de/bestpractices

� Install a JDK with at least version 8 provided by Oracle or OpenJDK.

� Make sure the environment variable JAVA_HOME points to the installed JDK, and
not to the JRE, e.g., the following would be good:

� /usr/lib/jvm/java-8-openjdk on UNIX or

� C:\Program Files\Java\jdk1.8.* on Windows.

You will need this in order to run the Java compiler for compiling the generated Java
source �les.

� Also make sure that the PATH system variable is set such that the Java compiler can
be used from any directory. JDK installations on UNIX systems do this automati-
cally. On Windows systems, the bin directory of the JDK installation needs to be
appended to the PATH variable, e.g. %PATH%;%JAVA_HOME%\bin .

� Test whether the setup was successful. Open a command line shell in any directory.
Execute the command javac -version. If this command is recognized and the
shell displays the version of the installed JDK (e.g., javac 1.8.0_192), then the
setup was successful.

Now we have the prerequisites to run MontiCore from the command line. The JDK instal-
lation is also required for using MontiCore with Gradle.

2.2 Install and Use the MontiCore Command Line Interface

This section describes instructions to perform the following �rst steps to use MontiCore as
an CLI tool:

� Installation of the MontiCore distribution �le.

� Grammar inspection

� Running the MontiCore generator

� Compiling the product

� Running the product, i.e. the Automata tool with an example model
example/PingPong.aut.

8

2.2. Install and Use the MontiCore Command Line Interface

2.2.1 Installation

For installing MontiCore, perform the following steps:

1. Download the example Automata MontiCore project:

1 // MontiCore zip distribution source
2 http://www.monticore.de/download/monticore.tar.gz

2. Unzip the archive. The unzipped �les include a directory called mc-workspace
containing the executable MontiCore CLI monticore-cli.jar along with a di-
rectory src containing handwritten Automata DSL infrastructure, a directory hwc
containing handwritten code that is incorporated into the generated code, and a
directory example containing an example model of the Automata DSL.

1 // MontiCore zip distribution content in directory mc-workspace
2 Automata.mc4
3 monticore-cli.jar
4 src/automata/AutomataTool.java
5 src/automata/visitors/CountStates.java
6 src/automata/prettyprint/PrettyPrinter.java
7 src/automata/cocos/AtLeastOneInitialAndFinalState.java
8 src/automata/cocos/StateNameStartsWithCapitalLetter.java
9 src/automata/cocos/TransitionSourceExists.java
10 hwc/automata/_ast/ASTState.java
11 hwc/automata/_symboltable/AutomatonSymbol.java
12 hwc/automata/_symboltable/AutomataSymbols2Json.java
13 hwc/automata/_symboltable/AutomatonSymbolDeser.java
14 hwc/automata/_symboltable/AutomataGlobalScope.java
15 example/PingPong.aut

2.2.2 Inspect the Example Grammar

MontiCore is a language workbench. It supports developers in developing modular model-
ing languages. The core of MontiCore is its grammar modeling language (cf. Chapter 4),
which is used by developers for modeling context-free grammars. A MontiCore grammar
de�nes (parts of) the abstract and concrete syntax of a language. Each grammar contains
nonterminals, production rules, and may extend other grammars. At most one rule is
marked as the start rule.

It is a key feature of MontiCore that it allows a grammar to reuse and extend other gram-
mars. In an extension all of the nonterminals de�ned in the extended grammars can be
reused or even overridden. This form of extension allows to achieve several e�ects:

� Language (i.e. grammar) components can be reused and integrated in larger lan-
guages, composed of several components.

� Individual nonterminals can be reused (like classes) from a library.

9

2. Getting Started with MontiCore

� A given language can be extended, which enables developers to add additional alter-
natives inside a language.

Component grammars and grammar extensions are detailedly discussed in Chapter 4.

MCG1 grammar Automata extends de.monticore.MCBasics {
2

3 symbol scope Automaton =
4 "automaton" Name "{" (State | Transition)* "}" ;
5

6 symbol State =
7 "state" Name
8 (("<<" ["initial"] ">>") | ("<<" ["final"] ">>"))*
9 (("{" (State | Transition)* "}") | ";") ;
10

11 Transition =
12 from:Name "-" input:Name ">" to:Name ";" ;
13 }

Listing 2.3: The Automata grammar

In the following, we inspect the MontiCore grammar of the Automata language. Navigate
your �le explorer to the unzipped mc-workspace directory. The directory contains the
�le Automata.mc4. This �le contains the MontiCore grammar depicted in Listing 2.3.
MontiCore grammars end with .mc4.

The de�nition of a MontiCore grammar starts with the keyword grammar, followed by
the grammar's name (l. 1). In this example, the grammar is called Automata. The
grammar's name is optionally followed by the keyword extends and a list of grammars
that are extended by the grammar. In this example, the Automata grammar extends the
grammar de.monticore.MCBasics.

Tip 2.4: MontiCore Key Feature: Composition

The MontiCore language workbench allows to compose language components by
composing grammars and also to reuse all infrastructure, such as context conditions,
symbol table infrastructure, generator parts and handwritten extensions.

In the example the Automata grammar extends the grammar
de.monticore.MCBasics and thus reuses its functionality.

MontiCore comes with an extensive library of prede�ned language components.

Grammars can also have a package and import other grammars. If a grammar has a
package, then the package declaration must be the �rst statement in the grammar and
is of the form package Quali�edName where package is a keyword and Quali�edName
is an arbitrary quali�ed name (e.g., de.monticore). The optional grammar imports
follow the package de�nition. Every import is of the form import Quali�edName. The
Automata example grammar �le does neither contain a package declaration nor imports.
The grammar extended by the Automata grammar is speci�ed by its fully quali�ed name.

10

2.2. Install and Use the MontiCore Command Line Interface

automata1 automaton PingPong {
2 state NoGame <<initial>>;
3 state Ping;
4 state Pong <<final>>;
5

6 NoGame - startGame > Ping;
7

8 Ping - stopGame > NoGame;
9 Pong - stopGame > NoGame;
10

11 Ping - returnBall > Pong;
12 Pong - returnBall > Ping;
13 }

Listing 2.5: A model conforming to the Automata grammar

As usual in context-free grammars, production rules have a left-hand side and a right-hand
side. The left-hand side contains the possibly annotated name of a nonterminal. The left-
hand side is followed by the terminal = and the right-hand side. Nonterminal names start
with an upper-case letter. For instance, the Automata grammar contains the nonterminals
Automaton, State, and Transition. A single nonterminal can be annotated with the
start keyword. Then, the nonterminal is the starting symbol of the grammar. If no
nonterminal is annotated with start, then the �rst nonterminal of the grammar becomes
the starting symbol by default. In the Automata grammar, the Automaton nonterminal
is the starting symbol.

The other possible annotations for nonterminals in�uence the generated classes for the
abstract syntax tree as well as the generated symbol table infrastructure. Details can be
found in Chapter 4 and Chapter 9. For example, the Automaton nonterminal is anno-
tated with symbol and scope. The annotation symbol makes the MontiCore generator
generate a symbol class for the nonterminal. Intuitively stated, the annotation scope
instructs MontiCore to construct a symbol table infrastructure that opens a scope when
the production is processed. The following sections explain the e�ects of annotating the
Automaton nonterminal with the keywords symbol and scope in more detail. Termi-
nals are surrounded by quotation marks. The Automata grammar, for example, inter alia
contains the terminals automaton, state, {, }, and ;.

The right-hand sides of grammar productions consist of nonterminals, terminals, and se-
mantic predicates, may use cardinalities (*, +, ?), and introduce alternatives via the
terminal | as known from regular expressions. Details can be found in Chapter 4. The
right-hand side of the production de�ning the nonterminal Automaton, for example, uses
the terminal automaton and the nonterminals Name, State, and Transition. The
nonterminal Name is not de�ned in the grammar Automata. Thus, it must be de�ned in
one of the extended grammars. In this case, Name is de�ned in the grammar MCBasics
and is reused by the grammar Automata. For distinguishing di�erent usages of nonter-
minals on right-hand sides, they can be named. For example, the right-hand side of the
production de�ning the nonterminal Transition uses the Name nonterminal twice. The
�rst usage is named input and the second usage is named to. MontiCore also supports

11

2. Getting Started with MontiCore

interface and external nonterminals for introducing extension points as detailedly
described in Chapter 4. However, the example grammar does not use these concepts.

Listing 2.5 depicts an example model conforming to the Automata grammar in its concrete
syntax. You can �nd the model in the �le PingPong.aut contained in the example
directory of the unzipped mc-workspace directory.

2.2.3 Run MontiCore

The MontiCore generator takes a MontiCore grammar as input and generates an infras-
tructure for processing models conforming to the grammar. When a grammar E extends
another grammar G, then all of the infrastructure generated for the grammar G is reused
and only the extending part from E is generated.

Tip 2.6: Infrastructure Generated by MontiCore

MontiCore itself as well as the infrastructure generated by the MontiCore gener-
ator are implemented in Java. This infrastructure includes:

� a parser for parsing models conforming to the grammar and transforming tex-
tual models into abstract syntax tree instances abstracting from the concrete
syntax.

� a symbol table infrastructure to handle the symbols introduced or used by
models conforming to the grammar. The symbol table infrastructure is used
for resolving dependencies between model elements that are possibly de�ned
in di�erent �les.

� a context-condition checking framework for checking well-formedness rules that
cannot be captured by context-free languages.

� a visitor infrastructure for traversing models respectively their abstract syntax
instances. The abstract syntax of a model consists of its internal representation
as an abstract syntax tree abstracting from the concrete syntax of the model
(the instance of the data structure obtained from parsing) and the symbol
table of the model.

� a mill infrastructure for retrieving objects for language processing, such as
parsers, builders for abstract syntax trees, visitors and objects for the sym-
bol tables of the language. The possibility to con�gure the mills is crucial
for reusing the functionality implemented for a sublanguage (cf. Section 5.9,
Section 5.10.2, and Section 11.5 for details).

� a code generating framework that extends the FreeMarker template engine
[Fre21] by various modularity enhancing features.

For executing MontiCore using the Automata grammar as input, perform the following
two steps:

12

2.2. Install and Use the MontiCore Command Line Interface

1. Open a command line shell and change the working directory to the unzipped direc-
tory (mc-workspace).

2. Execute the following command in order to generate the language infrastructure of
the Automata DSL:

shelljava -jar monticore-cli.jar Automata.mc4 -hcp hwc/

The only required argument Automata.mc4 denotes the input grammar that shall
be processed by MontiCore. The processing includes the generation of the language
infrastructure. Using the option -hcp enables specifying the path to a directory
containing the handwritten code that is to be incorporated into the generated in-
frastructure. In this case, passing the argument hwc/ to the option -hcp makes
MontiCore consider the handwritten code located in the directory hwc/. Provid-
ing handwritten code enables to easily incorporate additional functionality into the
generated code. For example, this enables developers to extend generated abstract
syntax classes as detailedly described in Section 5.10.

Executing the command launches MontiCore, which results in the executing of the
following steps:

a) The speci�ed grammar is parsed and processed by MontiCore.

b) Java source �les for the corresponding DSL infrastructure are generated into
the default output directory out. This infrastructure consists of the directories

� out/automata/ containing the mill (cf. Section 5.9, Section 5.10.2, Sec-
tion 11.5).

� out/automata/_ast containing the abstract syntax tree data structure
(cf. Chapter 5).

� out/automata/_auxiliary containing adapted mills of sublanguages,
which are required for con�guring the mills of sublanguages (cf. Chap-
ter 11).

� out/automata/_cocos containing the infrastructure for context condi-
tions (cf. Chapter 10).

� out/automata/_od containing the infrastructure for printing object di-
agrams for reports produced during processing the models.

� out/automata/_parser containing the generated parsers, which are
based on ANTLR (cf. Chapter 6).

� out/automata/_symboltable containing the infrastructure for the
symbol table (cf. Chapter 6).

� out/automata/_visitor containing the infrastructure for visitors (cf.
Chapter 9).

� out/reports/automata containing reports created during the process-
ing of the grammar.

13

2. Getting Started with MontiCore

c) The output directory also contains a log �le of the executed generation pro-
cess monticore.YYYY-MM-DD-HHmmss.log with the generation time in its
name.

In the following, we review the classes and interfaces generated from the Automata gram-
mar that are relevant for language engineers in more detail. We do not review the classes
and interfaces that are only internally relevant for MontiCore and are usually not intended
to be used by language engineers.

Abstract Syntax Tree Data Structure

The abstract syntax tree data structure is generated into the directory
out/automata/_ast. Details about the generation of AST classes can be found
in (cf. Chapter 5). For each nonterminal contained in the grammar, the MontiCore
generator produces AST and corresponding builder classes. The AST classes implement
the abstract syntax tree data structure.

The builder classes implement the builder pattern for constructing instances of the re-
spective AST classes as usual. For example, the class ASTAutomaton is the AST
class generated for the Automaton nonterminal (cf. Listing 2.3, l. 3) and the class
ASTAutomatonBuilder is the corresponding generated builder class.

Prof. Dr. B. Rumpe

Lehrstuhl für

Software Engineering

RWTH Aachen

Page 4

GenAutomataAST

ASTAutomaton

String name

* *

CD

states transitions

«interface»

IAutomataScope

AutomatonSymbol

String name

enclosingScope spannedScope1 1

1 symbol

ASTState ASTTransition

Figure 2.7: Parts of the AST data structure generated for the Automata grammar

The contents of the AST and builder classes are generated systematically from the gram-
mar. The attributes of each AST class resemble the right-hand side of the corresponding
production rule. In the following, we mainly speak of attributes, but please be aware that
all attributes come fully equipped with access and modi�cation methods, which should
normally be used.

For instance, Figure 2.7 depicts parts of the generated AST infrastructure for the
Automata grammar. The class ASTAutomaton contains the attributes name, states,
and transitions. The AST class does not contain an attribute for the terminal
automaton as it is part of every word conforming to the production of the Automaton
nonterminal. The type of the attribute name is String whereas the attributes states
and transitions are lists of the types of the AST classes corresponding to the used non-
terminals. This is the case because exactly one Name is parsed with the right-hand side

14

2.2. Install and Use the MontiCore Command Line Interface

of the production of the nonterminal Automaton, whereas multiple states and transitions
can be parsed.

The ASTAutomaton class further contains the attributes symbol, spannedScope, and
enclosingScope. These attributes are speci�c to the symbol table of Automatamodels
and are used for linking the symbol table of a model with its abstract syntax tree. Details
can be found in Chapter 9.

Tip 2.8: Generated Symbols and Scopes in the AST

Each AST class contains access to the enclosingScope.
When a production contains the keyword symbol, the generated AST class con-

tains the attribute symbol (see Chapter 9).
Keyword scope indicates that a nonterminal also de�nes a new local scope,

stored in attribute spannedScope.
The parser builds the abstract syntax tree of a model and the available scope

genitor creates the symbol table of the model, consisting of symbols and scopes.

The ASTAutomaton class further contains several straight-forward methods for checking
di�erent instances for equality and accessing the attributes. Similar to the ASTAutomaton
class, the ASTAutomatonBuilder class contains attributes resembling the right-hand
side of the corresponding production. It further contains methods for changing the values
of the attributes (e.g., addState), checking whether the AST instance that would be
constructed from the current builder state is valid (cf. isValid), and for building the
AST instance corresponding to the builder's state (cf. build). The contents of the other
AST and Builder classes are constructed analogously.

Tip 2.9: Handwritten AST Class Extensions

If the generator detects that an AST class for a nonterminal is already imple-
mented in the handwritten code, then it produces a corresponding TOP AST class
instead.

This TOP mechanism allows developers to add handwritten extensions to any
generated class, while reusing the generated TOP class via extension.

This gives a very close integration between handwritten and generated code that
even adapts builders accordingly, while preventing the very bad habit of performing
manual changes to the generated code.

Option -hcp tells the generator where to look for handwritten integrations.

The following section presents the methods of the classes for parsing textual models (pos-
sibly stored in �les) into AST class instances at runtime. For now, it su�ces for you to
understand that (1) MontiCore generates an extensible AST data structure that resembles
the nonterminals and productions of the grammar in a straight-forward way and (2) that
all models of a grammar have an AST data structure representation for internal processing.

15

2. Getting Started with MontiCore

Parser

The parser infrastructure is generated into the directory out/automata/_parser. De-
tails about the generated parsers and their uses are described in Chapter 6.

Prof. Dr. B. Rumpe

Lehrstuhl für

Software Engineering

RWTH Aachen

Page 5

GenAutomataParser

AutomataParser

Optional<ASTAutomaton> parse(String fileName)

Optional<ASTAutomaton> parse(Reader reader)

Optional<ASTAutomaton> parse_String(String str)

Optional<ASTState> parseState(String fileName)

Optional<ASTState> parseState(Reader reader)

Optional<ASTState> parse_StringState(String str)

CD

Figure 2.10: Parts of the class AutomataParser, which is generated from the Automata
grammar

Parts of the generated class AutomataParser are depicted in Figure 2.10. The class
implements the generated parser for the Automata grammar. Usually, developers are
solely concerned with the methods parse(String) and parse_String(String). For
now, it su�ces if you remember that parsing textual Automata models stored in �les is
possible by calling the method parse(String) of an AutomataParser object with the
fully quali�ed name of the �le as input.

Tip 2.11: Methods for Parsing

The class AutomataParser contains the methods

� parse(Reader r),

� parse(String filename), and

� parse_String(String content).

All of the methods return an object of type Optional<ASTAutomaton>, where
absence means failure of parsing and errors have been issued.

For each nonterminal in the grammar, the class further contains methods for
parsing a sub-model described by this nonterminal.

Symbol Table

The symbol table infrastructure is generated into the directory
out/automata/_symboltable. Details about the generated symbol table in-
frastructure and its use are described in Chapter 9. The symbol table infrastructure
is used for resolving cross-references concerning information de�ned in di�erent model
elements that are potentially de�ned in di�erent models stored in di�erent �les.

16

2.2. Install and Use the MontiCore Command Line Interface
Prof. Dr. B. Rumpe

Lehrstuhl für

Software Engineering

RWTH Aachen

Page 6

GenAutomataScopes

CD

AutomataScope

AutomataGlobalScope AutomataArtifactScope

«interface»

IMCBasicsScope

«interface»

IAutomataScope

«interface»

IAutomataGlobalScope

«interface»

IAutomataArtifactScope

«interface»

IMCBasicsArtifactScope

Figure 2.12: The scope classes generated from the Automata grammar

Tip 2.13: Scope Classes

For the Automata grammar, the generator produces the classes

� AutomataScope,

� AutomataArtifactScope, and

� AutomataGlobalScope

as well as respective interfaces. The relationships between these classes and in-
terfaces are depicted in Figure 2.12.

The singleton AutomataGlobalScope contains all
AutomataArtifactScopes of all loaded Automata artifacts.
AutomataScopes represent scopes spanned inside of models.Prof. Dr. B. Rumpe

Lehrstuhl für

Software Engineering

RWTH Aachen

Page 7

GenAutomataSymbols

CD

AutomatonSymbolTOP

String name

«interface»

IAutomataScope

StateSymbol

String name

AutomatonSymbol

String name

enclosingScope enclosingScope1 1

spannedScope

1

spannedScope

1

Figure 2.14: Parts of the symbol classes generated from the Automata grammar

Figure 2.14 depicts parts of the symbol classes generated for the Automata grammar.
As the nonterminal State is annotated with symbol in the Automata grammar, the

17

2. Getting Started with MontiCore

generator produces the class StateSymbol. The StateSymbol class, inter alia, con-
tains the attributes name, enclosingScope, and spannedScope. The attribute name
stores the name of the symbol. The attributes enclosingScope and spannedScope
store the enclosing and spanned scopes of the symbol. The class further contains meth-
ods for accessing and setting the attributes. For all symbol classes, the MontiCore
generator also produces builder classes (e.g., AutomataArtifactScopeBuilder and
StateSymbolBuilder).

Tip 2.15: Extending Symbol Classes

It is possible to add further methods and attributes in two ways:

� adding a symbol rule in the grammar (described in Chapter 9) or

� using the TOP mechanism applied to the generated symbols.

The generated class AutomataScopesGenitor is responsible for creating the scope
structure of Automata artifacts and linking the scope structure with the correspond-
ing AST nodes. For this task, it provides the method createFromAST that takes an
ASTAutomaton instance as input and returns an IAutomataArtifactScope instance.
The returned IAutomataArtifactScope instance can be added as a subscope to the
(during runtime unique and administrated by the mill) AutomataGlobalScope instance.

Developers can create visitors for complementing the symbol table (creating symbols and
�lling the extensions introduced via symbol rules or the TOP mechanism) of an Automata
artifact. After creating the scope structure, the visitor should be used to traverse the AST
instance of the artifact for complementing the symbols and scopes. The following sections
explain the generated visitor infrastructure in more detail.

Java1 Optional<AutomatonSymbol> resolveAutomaton(String name)
2 List<AutomatonSymbol> resolveAutomatonMany(String name)
3 Optional<StateSymbol> resolveState(String name)
4 List<StateSymbol> resolveStateMany(String name)

Listing 2.16: Di�erent resolve methods

For each nonterminal annotated with symbol in the grammar Automata, the scope in-
terfaces contain a symbol-speci�c resolve method taking a string as input. The method
can be called to resolve symbol instances by their names. The name given as input to
a resolve method should be as quali�ed as needed to �nd the symbol. For instance,
Listing 2.16 lists the signatures of four of the resolve methods provided by the interface
IAutomataScope.

For now, it su�ces for you to understand that (1) MontiCore generates an extensible
symbol table data structure that resembles the scope and symbol structure as speci�ed
in the grammar in a straight-forward way and (2) that all models of a grammar have a
symbol table data structure representation for internal processing and (3) that symbols
can be resolved from scopes via calling the resolve methods.

18

2.2. Install and Use the MontiCore Command Line Interface

(De)Serialization of Symbol Tables

MontiCore also supports the serialization and deserialization of symbol tables. The
(de)serialization is crucial for incremental code generation and e�cient language com-
position via aggregation. Details about this are explained in Chapter 7 and Chapter 9.

For the (de)serialization, the generator produces the class AutomataSymbol2Json. It
provides the public methods store and load. The former can be used to serialize
IAutomataScope instances into their string representations encoded in JSON and per-
sisting these to a �le at a location that is passed as method argument. The latter can
be used to load a stored IAutomataScope into its objects representation. For now, it
su�ces that you understand which methods to call for the (de)serialization.

Visitor
Prof. Dr. B. Rumpe

Lehrstuhl für

Software Engineering

RWTH Aachen

Page 8

GenAutomataVisitors

CD

AutomataTraverserImplementation

«interface»

AutomataTraverser

void add4Automata(AutomataVisitor2 v)

void add4MCBasics(MCBasicsVisitor2 v)

void setAutomataHandler(AutomataHandler h)

void setMCBasicsHandler(MCBasicsHandler h)

void visit(ASTAutomatonNode n)

void endVisit(ASTAutomatonNode n)

void handle(ASTAutomatonNode n)

void traverse(ASTAutomatonNode n)

«interface»

AutomataHandler

void handle(ASTAutomatonNode n)

void traverse(ASTAutomatonNode n)

«interface»

AutomataVisitor2

void visit(ASTAutomatonNode n)

void endVisit(ASTAutomatonNode n)

0..1 *automataHandler automataVisitorList

Figure 2.17: Parts of the visitor infrastructure generated from the Automata grammar

The visitor infrastructure is generated into the directory out/automata/_visitor. De-
tails about the generated visitor infrastructure are described in Chapter 8. For each gram-
mar, the generator systematically produces several classes and interfaces implementing the
visitor infrastructure. For the Automata grammar, for example, the generator produces
the interfaces AutomataTraverser, AutomataVisitor2, and AutomataHandler
and the class AutomataTraverserImplementation. The relationships between these
interfaces and classes are depicted in Figure 2.17.

The interfaces Traverser, Visitor2 and Handler together realize the Visitor pattern.
Conceptually, the traverser is the entry point for traversing. The traverser manages visi-
tors for the di�erent sublanguages and realizes the default traversing strategy. Whenever
an AST node is traversed, the traverser delegates the visit to the corresponding visitor
implementation. If a special traversal is to be implemented that di�ers from the default,
it is possible to add handlers to the traverser that realize the alternative traversal. For a
more detailed explanation consider reading Chapter 8.

19

2. Getting Started with MontiCore

Tip 2.18: Visitors

MontiCore provides the visitor pattern in a detangled and thus �exible variant.
AutomataTraverser is traversing the AST. AutomataVisitor2 contain the

actual functionalities, added through subclassing. Many visitors can be added to
the traverser for parallel execution via the method add4Automata.

The visitors are compositional, allowing to maximize reuse of visitors from sub-
languages, and they can be adapted through the TOP mechanism.

For example, the handwritten class PrettyPrinter, which can be found in the di-
rectory mc-workspace/src/automata/prettyprint, implements functionality for
pretty printing an Automata model, which is given by its abstract syntax tree. List-
ing 2.19 depicts the attributes and the constructor of the class. The PrettyPrinter
class implements the AutomataHandler interface. Its constructor instantiates a printer
(a helper for printing indented strings) and retrieves an AutomataTraverser object
from the mill (which is explained later on). It sets the handler of the traverser to itself.
This ensures that the pretty printer becomes the handler of the traverser. We will execute
it in a following section.

Java �hw� PrettyPrinter1

2 public class PrettyPrinter implements AutomataHandler {
3 private final IndentPrinter printer;
4 private AutomataTraverser traverser;
5

6 public PrettyPrinter() {
7 this.printer = new IndentPrinter();
8 this.traverser = AutomataMill.traverser();
9 traverser.setAutomataHandler(this);
10 }
11 }

Listing 2.19: Attributes and constructor of the PrettyPrinter for the Automata lan-
guage

For now, you should understand that (1) for implementing visitors it is often su�cient to
implement the visitor interfaces and to add them to a traverser and (2) custom traversals
can be realized by implementing handlers and adding those to the traverser.

Context Conditions

The context condition infrastructure is generated into the directory
out/automata/_cocos. Details about the generated context condition infrastructure
are described in Chapter 10.

For each nonterminal of a grammar, the generator produces a context condition interface
for implementing context conditions for this nonterminal. For the Automata grammar, for

20

2.2. Install and Use the MontiCore Command Line Interface

example, the generator produced the interface AutomataASTStateCoCo. The interface
solely contains the method check(ASTState). Each class implementing the interface
should represent a predicate over subtrees of abstract syntax trees starting at a node with
the type corresponding to the nonterminal.

The check method should be implemented such that it reports an error or a warning if
the input node does not satisfy the predicate. Thus, context conditions implement well-
formedness rules that cannot be captured by context-free grammars (or that are intention-
ally not captured by the grammar to achieve a speci�c AST data structure). For producing
the error or warning, the static methods error and warning of the MontiCore runtime
class Log should be used.

For the Automata grammar, the generator also produced the class
AutomataCocoChecker. For each nonterminal of the grammar, the class con-
tains a method for adding context condition instances to an AutomataCocoChecker
instance. For checking whether an AST node satis�es all registered context conditions,
the method checkAll can be called with the AST node as input. Calling the method
makes the checker traverse the abstract syntax tree and check whether each node satis�es
the context conditions registered for the node. Thus, AutomataCocoChecker instances
represent sets of context conditions that are required to be satis�ed by abstract syntax
tree instances.

For now, you should understand that (1) implementing context conditions is possible via
implementing the generated CoCo interfaces and (2) context conditions can be checked via
instantiating the Checker class, adding the CoCos, and calling the checkAll method.

Mill as Factory for Builders

The mill for the Automata language is generated into the directory out/automata/.
Details about the generated mill and the mill pattern in general are described in Sec-
tion 11.5. The generated mill class AutomataMill is responsible for providing ready
to use and correct parser, scope genitor, scope, and builder instances. The mill of each
language is a singleton.

Tip 2.20: Mill Use and Automatic Initialization

A mill is a factory for builders and other commonly used functions, such as parsers
or visitors. The mill was introduced to ensure compositionality of languages, while
retaining reusability of functions developed for sublanguages.

Only one mill instance exists, even though in composed languages it is available
under several static signatures. Let language G2 extend another language G1. Then
G2Mill initializes the G1Mill appropriately, such that all of the code of the sub-
language G1 can be reused in the tools developed for the language G2, even when
creating new AST nodes, symbols, etc.

Cool mechanism and the developers don't have to bother.

21

2. Getting Started with MontiCore

Java �gen� AutomataMill1 public static IAutomataGlobalScope globalScope()
2 public static IAutomataArtifactScope artifactScope()
3 public static IAutomataScope scope()
4 public static AutomataScopesGenitor scopesGenitor ()
5 public static AutomataScopesGenitorDelegator
6 scopesGenitorDelegator()
7 public static ASTAutomatonBuilder automatonBuilder()
8 public static AutomatonSymbolBuilder automatonSymbolBuilder()
9 public static AutomataParser parser()
10 public static AutomataTraverser traverser ()

Listing 2.21: Some methods of the AutomataMill API

Developers should retrieve all instances of the classes and interfaces provided by the mill
by using the mill. Instances of the classes and interfaces that are provided by the mill
should never be instantiated manually. Otherwise, it may be the case that not all of the
code implemented for the language can be reused as expected in other languages extending
the language. Listing 2.21 shows some signatures of the methods of the AutomataMill.

Tip 2.22: Mill Methods

A mill provides public static methods for retrieving the instances of the
parsers, scope genitors, scopes, and builders. For that is acts like a factory. Because
a mill is realized using the static delegator pattern (cf. 11.1), it still can be adapted
at will.

This combines the advantage of general availability with the advantage of being
able to override the functions.

For now, you should understand that (1) the methods of the mill should be used for creating
ready to use and correct parser, scope genitor, scope, and builder instances and (2) how
to call these methods.

2.2.4 Compile the Target

Section 2.2.3 describes how to generate the desired Java code from a MontiCore grammar.
For compiling these Java classes, generated for the Automata DSL, execute the following
command:

shelljavac -cp monticore-cli.jar -sourcepath "src/;out/;hwc/" \
src/automata/AutomataTool.java

Please note, on Unix systems paths are separated using ":" (colon) instead of semicolons.

Providing the option -cp with the argument monticore-cli.jar makes the
Java compiler consider the compiled MontiCore runtime classes contained in the �le
monticore-cli.jar.

22

2.2. Install and Use the MontiCore Command Line Interface

The option -sourcepath enables to specify paths to directories containing the source
�les that should be considered during the compilation.

In this case, executing the command makes the Java compiler consider all generated classes
located in out and all handwritten classes located in src and hwc. The last argument
instructs the Java compiler to compile the class src/automata/AutomataTool.java.

Please note that the structure of the handwritten classes follows the package layout of the
generated code, i.e. there are the following subdirectories (Java packages):

� src/automata contains the top-level language realization for using the generated
DSL infrastructure. In this case the class src/automata/AutomataTool.java
constitutes a main class executable for processing automata models with the au-
tomata DSL.

� src/automata/cocos contains infrastructure for context condition of the au-
tomata DSL.

� src/automata/prettyprint contains an exemplary use of the generated visitor
infrastructure for processing parsed models for pretty printing.

� src/automata/visitors contains an exemplary analysis using the visitor infras-
tructure. The exemplary analysis counts the states contained in the parsed automata
model.

� hwc/automata/_ast contains an exemplary usage of the handwritten code inte-
gration mechanism for modifying the AST for the automata DSL. Details about the
integration mechanism are described in Section 5.10.

� hwc/automata/_symboltable contains handwritten extensions of the generated
symbol table infrastructure. Details about implementing handwritten symbol table
infrastructure extensions are described in Chapter 9.

Please, also do not mix the code for the Automata tool vs. the code for the �nal product,
generated from that tool, although both have a similar package structure.

We already described the contents of the directories hwc/automata/_ast and
hwc/automata/_symboltable in the previous section. They contain handwritten ex-
tensions of the abstract syntax of the Automata language.

Java �hw� CountStates1

2 public class CountStates implements AutomataVisitor2 {
3 private int count = 0;
4

5 @Override
6 public void visit(ASTState node) {
7 count++;
8 }
9

10 public int getCount() {
11 return count;
12 }

23

2. Getting Started with MontiCore

13 }

Listing 2.23: The CountStates visitor implementation

The directory src/automata/visitors contains the �le CountStates.java. The
class is depicted in Listing 2.23. It implements a simple visitor for counting the num-
ber of states contained in an Automata model. To this e�ect, it implements the
AutomataVisitor2 interface. It has an attribute count of type int for storing the cur-
rent number of counted nodes. It overrides the visit method for ASTState to increase
the counter whenever a state is visited.

The directory src/automata/cocos contains the context-condition implementations for
the Automata language.

Java �hw� AtLeastOneInitialAndFinalState1

2 public class AtLeastOneInitialAndFinalState
3 implements AutomataASTAutomatonCoCo {
4 @Override
5 public void check(ASTAutomaton automaton) {
6 boolean initialState = false;
7 boolean finalState = false;
8

9 for (ASTState state : automaton.getStateList()) {
10 if (state.isInitial()) {
11 initialState = true;
12 }
13 if (state.isFinal()) {
14 finalState = true;
15 }
16 }
17

18 if (!initialState || !finalState) {
19 // Issue error...
20 Log.error("0xA0116 An automaton must have at least one "
21 + "initial and one final state.",
22 automaton.get_SourcePositionStart());
23 }
24 }
25 }

Listing 2.24: Context condition implementation for checking that there exist at least one
initial and at least one �nal state

Listing 2.24 depicts the class AtLeastOneInitialAndFinalState. The class imple-
ments a context condition for checking whether an Automata model contains at least
one initial and at least one �nal state. To this e�ect, the class implements the interface
AutomataASTAutomatonCoCo. The class StateNameStartsWithCapitalLetter
is implemented similarly.

24

2.2. Install and Use the MontiCore Command Line Interface

Java �hw� TransitionSourceExists1 public class TransitionSourceExists
2 implements AutomataASTTransitionCoCo {
3

4 @Override
5 public void check(ASTTransition node) {
6

7 IAutomataScope enclosingScope = node.getEnclosingScope();
8 Optional<StateSymbol> sourceState =
9 enclosingScope.resolveState(node.getFrom());
10

11 if (!sourceState.isPresent()) {
12 // Issue error...
13 Log.error(
14 "0xADD03 Source state of transition missing.",
15 node.get_SourcePositionStart());
16 }
17 }
18 }

Listing 2.25: Context condition implementation for checking that states used in transitions
exist

Listing 2.25 presents the implementation of the class TransitionSourceExists. The
class implements a context condition for checking whether the source states used in tran-
sitions are de�ned. To this e�ect, the class uses the resolving mechanisms of the symbol
table. For each transition, the context conditions tries to resolve the state symbol corre-
sponding to the source state of the transition. If the resolving fails for the state, then the
context condition logs an error.

The class AutomataTool is the main class of the Automata language. It is de�ned in
the �le AutomataTool.java contained in the directory src/automata.

Java �hw� AutomataTool1 public ASTAutomaton parse(String model) {
2 try {
3 AutomataParser parser = new AutomataParser() ;
4 Optional<ASTAutomaton> optAutomaton = parser.parse(model);
5

6 if (!parser.hasErrors() && optAutomaton.isPresent()) {
7 return optAutomaton.get();
8 }
9 Log.error("0xEE840 Model could not be parsed.");
10 }
11 catch (RecognitionException | IOException e) {
12 Log.error("0xEE640 Failed to parse " + model, e);
13 }
14 System.exit(1);
15 return null;
16 }
17

18 public IAutomataArtifactScope createSymbolTable(ASTAutomaton ast) {

25

2. Getting Started with MontiCore

19

20 IAutomataGlobalScope globalScope = AutomataMill.globalScope();
21 globalScope.setModelPath(new ModelPath());
22 globalScope.setFileExt("aut");
23

24 AutomataScopesGenitorDelegator symbolTable = AutomataMill
25 .scopesGenitorDelegator();
26

27 return symbolTable.createFromAST(ast);
28 }

Listing 2.26: Methods for parsing and creating symbol tables

Listing 2.26 presents the implementation of the methods parse and
createSymbolTable of the AutomataTool class. The methods can be used for
parsing and creating symbol tables for Automata. The methods also demonstrate the
usage of the mill for retrieving global scopes and genitors.

Java �hw� AutomataTool1 public static void main(String[] args) {
2 // delegate main to instantiatable method for better integration,
3 // reuse, etc.
4 new AutomataTool().run(args);
5 }
6

7 public void run(String[] args) {
8 // use normal logging (no DEBUG, TRACE)
9 Log.ensureInitalization();
10

11 // Retrieve the model name
12 if (args.length != 2) {
13 Log.error("0xEE7400 Arguments are: (1) input "
14 +"model and (2) symbol store.");
15 return;
16 }
17 Log.info("Automata DSL Tool", "AutomataTool");
18 String model = args[0];
19

20 // parse the model and create the AST representation
21 ASTAutomaton ast = parse(model);
22 Log.info(model + " parsed successfully!", "AutomataTool");
23

24 // setup the symbol table
25 IAutomataArtifactScope modelTopScope =
26 createSymbolTable(ast);
27

28 // can be used for resolving names in the model
29 Optional<StateSymbol> aSymbol =
30 modelTopScope.resolveState("Ping");
31

32 if (aSymbol.isPresent()) {
33 Log.info("Resolved state symbol \"Ping\"; FQN = "

26

2.2. Install and Use the MontiCore Command Line Interface

34 + aSymbol.get().toString(),
35 "AutomataTool");
36 } else {
37 Log.info("This automaton does not contain a state "
38 +"called \"Ping\";", "AutomataTool");
39 }
40

41 // setup context condition infrastructure
42 AutomataCoCoChecker checker = new AutomataCoCoChecker();
43

44 // add a custom set of context conditions
45 checker.addCoCo(new StateNameStartsWithCapitalLetter());
46 checker.addCoCo(new AtLeastOneInitialAndFinalState());
47 checker.addCoCo(new TransitionSourceExists());
48

49 // check the CoCos
50 checker.checkAll(ast);
51

52 // Now we know the model is well-formed and start backend
53

54 // store artifact scope and its symbols
55 AutomataSymbols2Json deser = new AutomataSymbols2Json();
56 deser.store(modelTopScope, args[1]);
57

58 // analyze the model with a visitor
59 CountStates cs = new CountStates();
60 AutomataTraverser traverser = AutomataMill.traverser();
61 traverser.add4Automata(cs);
62 ast.accept(traverser);
63 Log.info("Automaton has " + cs.getCount() + " states.",
64 "AutomataTool");
65

66 // execute a pretty printer
67 PrettyPrinter pp = new PrettyPrinter();
68 AutomataTraverser traverser2 = AutomataMill.traverser();
69 traverser2.setAutomataHandler(pp);
70 ast.accept(traverser2);
71 Log.info("Pretty printing automaton into console:",
72 "AutomataTool");
73 // print the result
74 Log.println(pp.getResult());
75 }

Listing 2.27: Main method of the AutomataTool class

The AutomataTool provides a main method, which can be called from the command
line. The implementation of the method is depicted in Listing 2.27. It expects two inputs.
The �rst is the name of a �le containing an Automata model. The second input is the
name of the �le in which the tool should store the symbol table of the model that is given
as �rst input.

27

2. Getting Started with MontiCore

The method

� parses the input model (l. 21),

� creates the symbol table (l. 25),

� resolves a state (l. 29),

� executes context conditions (ll. 41-50),

� stores the symbol table by using the serialization (ll. 54-56),

� executes the visitor for counting the states (ll. 59-64), and

� pretty prints the model to the standard output (ll. 66-74).

Inspect the main method and try to understand the implementation for the executed tasks.
Read the above descriptions again if necessary.

2.2.5 Run the Tool

The previous command compiles the handwritten and generated code including the
Automata tool class AutomataTool. For running the Automata DSL tool, execute
the following command:

shelljava -cp "src/;out/;hwc/;monticore-cli.jar" \
automata.AutomataTool example/PingPong.aut \
st/PingPong.autsym

Please note again, on Unix systems paths are separated using ":" (colon) instead of semi-
colons. Executing the command runs the Automata DSL tool.

Using the option -cp makes the Java interpreter consider the compiled classes contained
in the paths speci�ed by the argument.

The argument automata.AutomataTool makes the Java interpreter execute the main
method of the class automata.AutomataTool contained in the directory src.

The argument example/PingPong.aut is passed to the main method of the Automata
DSL tool class as input. Inspect the output on the command line, which displays log
messages concerning the processing of the example Automata model.

The last argument st/PingPong.autsym is also passed to the main method. It
makes the tool store the serialized symbol table of the input model into the �le
example/PingPong.aut.

The shipped example Automata DSL (all sources contained in mc-workspace/src and
mc-workspace/hwc) can be used as a starting point for creating your own language. It
can easily be altered to specify your own DSL by adjusting the grammar and the hand-
written Java sources and rerunning MontiCore as described above.

28

2.3. Using MontiCore via Gradle From the Command Line

2.3 Using MontiCore via Gradle From the Command Line

It is possible to execute MontiCore via the MontiCore Gradle plugin. A detailed description
about using the MontiCore Gradle plugin is given in Chapter 16. This section describes
the execution of MontiCore via a Gradle plugin from the command line shell by example.

First, install Gradle via executing the instructions mentioned on the following website and
make sure that the PATH system variable is set such that the gradle command can be
used from any directory:

1 // Gradle installation
2 https://gradle.org/install/

The shipped example Automata DSL can be used as a starting point and can be down-
loaded here:

1 http://www.monticore.de/download/Automaton.zip

The build script (�le build.gradle) can easily be adapted for creating build scripts for
other languages. For executing MontiCore via the Gradle plugin from the command line
shell by example of the Automata DSL, perform the following steps:

1. Download the Automata example (cf. Listing 2.3).

2. Unzip the downloaded zip �le into an arbitrary directory.

3. Open a shell and change your working directory to the directory in which you un-
zipped the downloaded �le (the directory containing the �le build.gradle).

4. Execute Gradle in the shell:

� If you are using a Windows shell, execute the command gradle build.

� If you are using a Unix shell, execute the command ./gradle build.

When executing the above commands, MontiCore launches, which results in the execution
of the following steps:

1. The grammars speci�ed in the build.gradle are incrementally parsed and processed
by MontiCore.

2. Java source �les for the corresponding DSL infrastructure are generated into
the default output directory ../target/generated-sources/monticore
/sourcecode. The contents of this generated directory are equal to the contents
of the generated directory out as described in Section 2.2.3.

2.4 Using MontiCore in Eclipse

The MontiCore Gradle plugin can be used in Eclipse. Section 2.4.1 describes the process
of setting up Eclipse. Section 2.4.2 presents how to import the example project in Eclipse.
Finally, Section 2.4.3 explains how the MontiCore Gradle plugin can be executed in Eclipse.

29

2. Getting Started with MontiCore

2.4.1 Setting up Eclipse

Before you import the example project and run MontiCore as a Gradle plugin, please make
sure that a current version of the Gradle plugin is installed in Eclipse. When installing
a new version of Eclipse, the Gradle plugin is installed by default. If the Gradle plugin
is not yet integrated into your Eclipse installation, download the latest Eclipse version or
perform the following steps to install the Eclipse plugin:

1. Download and install Eclipse (or use an existing one).

2. Open Eclipse.

3. Install the needed Plugins.

� Help > Eclipse Marketplace...

� Type 'gradle' in the search box and click Enter.

� Install the 'Buildship Gradle Integration' plugin.

4. Make sure to con�gure Eclipse to use an JDK instead of an JRE.

� Window > Preferences > Java > Installed JREs.

2.4.2 Importing the Example

The shipped example Automata DSL can be used as a starting point. Once imported into
Eclipse, it can easily be altered to specify your own DSL by adjusting the grammar and
the handwritten Java sources and rerunning MontiCore as described in Section 2.4.3. To
import the example, perform the following steps:

1. Download and unzip the Automata example (cf. Listing 2.3)

2. Open Eclipse and select

� File > Import > Gradle (if you are required to choose a Gradle version, then
choose version 6.7.1) > Existing Gradle Projects > Next.

� Click on the Browse.. button and import the directory that contains the �le
build.gradle from the Automata example.

2.4.3 Running MontiCore

To execute the MontiCore Gradle plugin, perform the following steps:

� Select the Gradle Task menu (at the top or bottom, depending on your installed
Eclipse version).

� There select automaton > build > build (double click).

This makes Eclipse execute the MontiCore Gradle plugin as described in Section 2.3.
After installing and executing MontiCore in Eclipse, your workspace should look similar
to Figure 2.28.

30

2.5. Using MontiCore in IntelliJ IDEA
Prof. Dr. B. Rumpe

Lehrstuhl für

Software Engineering

RWTH Aachen

Page 1

Eclipse

Figure 2.28: Eclipse after importing the example project and executing MontiCore

2.5 Using MontiCore in IntelliJ IDEA

The MontiCore Gradle plugin can be used in IntelliJ IDEA. Section 2.5.1 describes the
process of setting up IntelliJ IDEA. Afterwards, Section 2.5.2 presents how to import the
example project in Eclipse. Finally, Section 2.5.3 explains how the MontiCore Gradle
plugin can be executed in IntelliJ IDEA.

2.5.1 Setting up IntelliJ IDEA

For setting up IntelliJ IDEA, perform the following steps:

1. Download and install IntelliJ IDEA (or use your existing installation).

� Hint for Students: You get the Ultimate version of IntelliJ IDEA for free.

2. Open IntelliJ IDEA.

2.5.2 Importing the Example

The shipped example Automata DSL can be used as a starting point. Once imported into
IntelliJ IDEA, it can easily be altered to specify your own DSL by adjusting the grammar
and the handwritten Java sources and rerunning MontiCore as described in Section 2.5.3.
For importing the example, perform the following steps:

1. Download and unzip the Automata Example (cf. Listing 2.3).

2. In the IDE select: File > Open.

3. Select the directory containing the build.gradle (if you are required to choose a Gradle
version, then choose version 6.7.1).

31

2. Getting Started with MontiCore

2.5.3 Running MontiCore

To execute the MontiCore Gradle plugin, perform the following steps:

� Select the Gradle Projects menu on the right.

� From there select automaton > Tasks> build > build (double click).

This makes IntelliJ IDEA execute the Gradle plugin as described in Section 2.3. If you do
not see the Gradle Projects menu yet, right-click on the build.gradle �le and select 'Import
Gradle Project'. Now the Gradle Projects menu should occur on the right side and you
can follow the above mentioned steps for the execution. After installing and executing
MontiCore in IntelliJ IDEA, your workspace should look similar to Figure 2.29.

Prof. Dr. B. Rumpe

Lehrstuhl für

Software Engineering

RWTH Aachen

Page 2

IntelliJ IDEA

Figure 2.29: IntelliJ IDEA after importing the example project and executing MontiCore

32

Chapter 3

Architecture of a Model Processor

This chapter provides an overview of the standard architecture of the MontiCore tool, in-
cluding which features and capabilities it provides. This is a prerequisite for understanding
the de�nition, usage and adaptation of model-based tool processors.

Note that MontiCore as well as its components and derivates are not exclusively used
for generation, but also for deep analysis techniques, general transformations or language
interpretation at runtime. This chapter focusses on the widely used generative aspect.

Familiarity with the concepts of model, modeling language, model transformation and gen-
erator, as discussed in [CFJ+16, Rum16, Rum17], is a prerequisite to understand the
contents of this chapter.

3.1 Structure of a Model Processor - External View

There are many forms of model processing, but a typical processor would function like this:
�rstly process one or more models, then apply some internal transformations to them in
order to produce related artifacts. Often these are partially or even completely executable
programs written in a General Purpose Language. It is also possible to produce models
of another language, websites in HTML, relevant documentation, overview drawings, or
proof obligations to be handled by a model checker or veri�er.

The generated code typically makes use of the generators operating system, some existing
frameworks and other platform speci�c code. However, generators need high �exibility
and intelligence in order to enable the incorporation of handwritten code, platform speci�c
adaptations, prede�ned components, and potentially even project or user speci�c prefer-
ences.

Classical compilers embed concepts to manage these features within a programming lan-
guage through the import of external frameworks, compiler directives or a macro prepro-
cessor. Model-based generation contrast this by normally only carrying domain knowledge
in the model, whilst the parameterized generator adds technical details and allows for �lling
of adaptation points in form of generator scripts and templates.

Figure 3.1 shows the external view of a generator along with the artifacts used and pro-
duced. Within a model-based generative project, people may adopt di�erent roles in order
to provide and use artifacts within it.

3. Architecture of a Model Processor
Prof. Dr. B. Rumpe

Lehrstuhl für

Software Engineering

RWTH Aachen

Page 2

generated code

+ included

code snippets

Structure of a Generator: External View

manually

written code

runtime system

Predefined

components
Predefined

components
Predefined

components
Parame-

terized

generator

models Target system: the product

Scripts +

templates

code

snippets

application
programmer

component
provider

tool
provider

generator
customizer
(“tool smith”)

application
modeler

Figure 3.1: Structure of a generator - external view

The tool provider develops the generator as well as the runtime system that interacts with
the generated code.

The tool smith customizes the generator. The customization can be used to add many
project-speci�c scripts in order to orchestrate code generation or to introduce templates
which provide code snippets to be copied into the generated code. Both, scripts and
templates, are usually dependent on the target platform, operating system, hardware,
frameworks, and external components included into the system, etc. Unlike scripts and
templates, models only contain application or domain speci�c information, but are inde-
pendent of the target technology.

3.2 Internal Architecture of a Generator - Component View

A generator is typically decomposed into several components as shown in Figure 3.2.

A model loader handles the loading of all needed models and their subsequent transforma-
tion into an internally accessible structure. The MontiCore language workbench mainly
uses parsers, assuming that the models are stored textually in individual �le artifacts. This
assumption may be violated if the models are stored in a database or only one large �le is
used to store all models.

Parsers produce the internal representation, called abstract syntax (AST)1 of the loaded
models. Secondly the frontend contains a library of data structures and functions needed
to check the context conditions on the input models, to load further needed models, or to
ensure the resulting input AST is well formed.

The central part of a generator transforms the input AST into an output AST. This
may be a rather complex transformation, mapping one kind of model to another, or a

1"AST" traditionally also stands for abstract syntax tree, but our ASTs are often full graphs, because
they contain a spanning sub-tree plus useful extra information and links.

34

3.2. Internal Architecture of a Generator - Component View
Prof. Dr. B. Rumpe

Lehrstuhl für

Software Engineering

RWTH Aachen

Page 3

Architecture of a Generator

Frontend:

read

Center:

transform

Backend:

generate

templates

models

Function

library

Output

AST

Template

Engine

Code,

Reports,

etc

Model

loader

control-

script

Workflow

execution

Input

AST

Figure 3.2: Internal architecture of a generator

relatively simple augmentation like adding additional information. MontiCore provides the
capability to translate between di�erent kinds of ASTs including the translation from any
source language to Java. MontiCore also supports the attachment of speci�c templates to
AST nodes, such that parts of the generators intelligence can be deferred to the templates
themselves, while selection of the appropriate templates is done as part of the augmentation
of the output AST and is consequently decided in the transformation part.

The backend of a generator focuses on the generation of artifacts such as code, analy-
sis results, documentation or other forms of models. It consists of a template engine that
processes the output AST together with a number of standardized and project-speci�c tem-
plates, which describe the concrete shape of the resultant artifacts. This process is highly
con�gurable and adaptive, e.g. using the hook point mechanism provided by MontiCore.

The three processing steps are connected via a main control as shown in Section 3.3 or
a work�ow written in a Groovy script. These work�ows control code generation and
transformation, as well as storing of a larger function library that facilitates the building
of symbol tables, arrangement of transformations, and the setting of speci�c template
con�gurations, etc. Section 16.5 describes the standard Groovy script that MontiCore
uses and that is explicitly dedicated for customization.

Figure 3.2 is of course an abstraction of the real MontiCore infrastructure that also contains
components for reporting, logging, the symbol table infrastructure including symbols and
scopes, parametrization and customization techniques, and mechanisms for adapting the
template-based generation, such as hook points described in the subsequent chapters.

Figure 3.3 provides an overview of all the chapters containing relevant information on how
to develop components for your own model parser.

35

3. Architecture of a Model Processor
Prof. Dr. B. Rumpe

Lehrstuhl für

Software Engineering

RWTH Aachen

Page 4

Chapter Structure of the Manual

Frontend:

read

Center:

transform

templates

models

Function

library

Output

AST

Template

Engine

Code,

Reports,

etc

Model

loader

control-

script

Workflow

execution

Input

AST

4: MC Grammar
7: Language Composition

5: AST 13: Generator Engine
14: Integrating Handwritten Code

8: Visitors
9: Symbols
10: CoCos16: Groovy,

Gradle

Backend:

generate

12: FreeMarker

Figure 3.3: Chapter structure of the handbook

3.3 Tool Work�ow

Figure 3.2 has shown the general architecture of a tool. However, many tools might the
simpli�ed, for example by not including a Groovy script engine, but being directly coded
within a Java main class.

Listing 3.4 shows such a Java main method that connects di�erent modules of a DSL
tool into a linear work�ow. It de�nes the tool's main control structure and might serve
as a blueprint for other DSL processing tools, although it does not contain any handling
of parameters and only processes a simple language without imports of foreign symbol
tables. This example uses the Automata DSL which is also used and explained later in
this handbook. Details, such as the methods used, can be found in their respective chapters
or the complete example in the MontiCore project.

Line 18 identi�es the �le of an automata model from the arguments passed to the main
method. In line 21 the parser AutomataParser (cf. Chapter 6) parses the automata
model to create the AST. The symbol table (cf. Chapter 9) is then created (l. 26) based
on the resulting AST. Lines 29-39 show an example resolution of a state symbol.

Java �hw� AutomataTool1 public static void main(String[] args) {
2 // delegate main to instantiatable method for better integration,
3 // reuse, etc.
4 new AutomataTool().run(args);
5 }
6

7 public void run(String[] args) {
8 // use normal logging (no DEBUG, TRACE)
9 Log.ensureInitalization();
10

11 // Retrieve the model name
12 if (args.length != 2) {
13 Log.error("0xEE7400 Arguments are: (1) input "

36

3.3. Tool Work�ow

14 +"model and (2) symbol store.");
15 return;
16 }
17 Log.info("Automata DSL Tool", "AutomataTool");
18 String model = args[0];
19

20 // parse the model and create the AST representation
21 ASTAutomaton ast = parse(model);
22 Log.info(model + " parsed successfully!", "AutomataTool");
23

24 // setup the symbol table
25 IAutomataArtifactScope modelTopScope =
26 createSymbolTable(ast);
27

28 // can be used for resolving names in the model
29 Optional<StateSymbol> aSymbol =
30 modelTopScope.resolveState("Ping");
31

32 if (aSymbol.isPresent()) {
33 Log.info("Resolved state symbol \"Ping\"; FQN = "
34 + aSymbol.get().toString(),
35 "AutomataTool");
36 } else {
37 Log.info("This automaton does not contain a state "
38 +"called \"Ping\";", "AutomataTool");
39 }
40

41 // setup context condition infrastructure
42 AutomataCoCoChecker checker = new AutomataCoCoChecker();
43

44 // add a custom set of context conditions
45 checker.addCoCo(new StateNameStartsWithCapitalLetter());
46 checker.addCoCo(new AtLeastOneInitialAndFinalState());
47 checker.addCoCo(new TransitionSourceExists());
48

49 // check the CoCos
50 checker.checkAll(ast);
51

52 // Now we know the model is well-formed and start backend
53

54 // store artifact scope and its symbols
55 AutomataSymbols2Json deser = new AutomataSymbols2Json();
56 deser.store(modelTopScope, args[1]);
57

58 // analyze the model with a visitor
59 CountStates cs = new CountStates();
60 AutomataTraverser traverser = AutomataMill.traverser();
61 traverser.add4Automata(cs);
62 ast.accept(traverser);
63 Log.info("Automaton has " + cs.getCount() + " states.",
64 "AutomataTool");
65

37

3. Architecture of a Model Processor

66 // execute a pretty printer
67 PrettyPrinter pp = new PrettyPrinter();
68 AutomataTraverser traverser2 = AutomataMill.traverser();
69 traverser2.setAutomataHandler(pp);
70 ast.accept(traverser2);
71 Log.info("Pretty printing automaton into console:",
72 "AutomataTool");
73 // print the result
74 Log.println(pp.getResult());
75 }

Listing 3.4: Example tool for the Automata DSL

Since the parser can only identify context-free parsing errors (cf. Chapter 10) addi-
tional context sensitive constraints have to be validated (e.g., there must exist at least
one initial and one �nal state). For this purpose, an AutomataCoCoChecker ob-
ject is created, which can be con�gured with concrete context conditions (ll. 42-47).
The checkAll method checks all registered context conditions (l. 50). After this, a
AutomataScopeDeSer is added, which is used to store the symbols a scope contains in
a speci�c location (cf. 56). Next, the model is analyzed. Visitors provide an appropriate
infrastructure to traverse and operate on the AST (cf. Chapter 8). Here, the number of
states is calculated (l. 59).

Finally, the model is pretty printed (l. 67). Pretty printing serves several purposes: Firstly,
the resulting model may be easier to maintain or to simply store in form of documentation.
Secondly, pretty printing helps to check, whether parsing and the AST construction was
complete and correct. Usually, but not in this example, an executable implementation of
the automata model would also be generated.

This example only covers the essence of working with an implemented DSL. There are
many other possibilities which are covered in their respective chapters.

38

Chapter 4

MontiCore Grammar for Language and

AST De�nitions

In MontiCore, grammars are the central notation from which a lot of infrastructure, in-
cluding the language parser and the internal representation of a model (called the abstract
syntax, short AST), are derived.

This chapter will explain the MontiCore grammar format. It discusses productions de�ning
di�erent types of nonterminals and their relations, context conditions that de�ne the well-
formedness of a grammar, and additional concepts that allow further con�guration of the
code generation process from MontiCore grammars.

MontiCore grammars describe the context-free syntax of languages using notation based
on the Extended Backus-Naur Form (EBNF, [ASU86]) and the ANTLR tool [Par13]. Ad-
ditionally a MontiCore grammar provides convenient constructs for specifying commonly
used options and additional context-sensitive concepts of languages. As MontiCore creates
Adaptive LL(*) parsers, it can also support semantic predicates, which make it possible
to describe common context free parsable languages. However, MontiCore's main pur-
pose is to develop DSLs, most of which have a rather straightforward syntax. Therefore,
MontiCore has been developed with comfort and agility as primary goals.

A MontiCore grammar de�nes the concrete syntax and the abstract syntax of a language
in one artifact. That is to say, MontiCore derives the following from a grammar:

� The parser used for reading the model in the form of concrete syntax and produce
the internal representation, i.e., abstract syntax (cf. Chapter 6).

� The data structure of the abstract syntax (AST, cf. Chapter 5).

� The transformations that are used to �ll an AST when parsing a model.

� The infrastructure needed to manage symbols and scopes.

The majority of the frontend of the generator tool is generated using a MontiCore grammar.
Furthermore, MontiCore provides inheritance, extension and overriding mechanisms for
productions, thus allowing an improved reuse of sublanguages (cf. Chapter 7). However,
this chapter will focus on the syntax and semantics of MontiCore grammars.

Each grammar in MontiCore consists of a head and a body. The head comprises the
package declaration, import statements as well as the name of the grammar. Furthermore,

4. MontiCore Grammar for Language and AST De�nitions

MCG1 grammar MinimalExample extends de.monticore.MCBasics {
2 A = "Hello" B ;
3 B = Name "!";
4 }

Listing 4.1: Minimal grammar example

it may mark a grammar as a component or de�ne grammars that are extended which will
be explained in Chapter 7.

A grammar's body may comprise four kinds of statements that can be speci�ed in any
arbitrary order:

� Productions (like A and B) are the main elements of a grammar and make up the
syntactic speci�cation of the language.

� Lexer productions help describe small tokens, such as names, values and atomic key-
words, which are later read by the grammar.

� Grammar directives which allow con�guration of the grammar.

� Grammar concepts which further extend the capabilities of language speci�cation in
the grammar.

For reference purposes we have included an EBNF version of the MontiCore grammar in
Section 4.6. It describes the MontiCore grammar language using a MontiCore grammar.
To avoid confusion when describing a grammar langauge using grammars, we avoid direct
references to EBNF-nonterminals in the following explanations, instead using examples.

4.1 Lexical Tokens for the Scanner

The �rst step for processing a model is to run a lexer (also called scanner) for the lexical
analysis of the input model. The lexer segments sequences of input characters which
describe a model into a sequence of tokens. These tokens are passed to the parser to create
AST objects [Völ11, ASU86].

Some typical forms of tokens include

� keywords like "if",

� operators like "++", ">>", "*",

� delimiters like "(", ",",

� values like 3.2, 42,

� names like Person and age,

� quali�ed names like de.monticore.dex.Person or

� whitespaces that are ignored by the grammar.

40

4.1. Lexical Tokens for the Scanner

Individual tokens can be directly included as terminals in the productions and thus need no
explicit rules (like "if"). On the other hand, it is possible to introduce nonterminals that
stand for a class of tokens, like all numbers, strings or names. These simple nonterminals are
de�ned via lexical productions and contribute to the abstract syntax in form of attributes,
but are not as AST classes on their own. We sometimes refer to those simple nonterminals
as tokens.

4.1.1 De�nition of Tokens using Regular Expressions

Lexical productions are simpli�ed forms of productions and consist of a left-hand side,
i.e. the name of the token, and a right-hand side, i.e. the body of the production. The
production body de�nes the structure of the token by use of a regular expression. If
not speci�ed through an explicit type in the production (see Listings 4.7 and 4.8), a token
results in a value of type String. The token is later stored as an attribute of the associated
type in the AST named after the token. If the input matches the regular expression de�ning
this token, the lexer recognizes the nonterminal and produces the token.

MCG1 token SimpleName = ('a'..'z'|'A'..'Z')+ ;
2

3 token SimpleString = '"' ('a'..'z'|'A'..'Z')* '"';

Listing 4.2: Lexical productions for SimpleName and SimpleString

Listing 4.2 shows a standard de�nition of two nonterminals as tokens called SimpleName
and SimpleString. SimpleName is de�ned as a sequence of upper and lower case letters
requiring at least one letter to be present. The second lexical production introduces the
nonterminal SimpleString de�ned as a sequence of upper and lower case letters, which
are embedded in quotation marks. In this case, the sequence may be empty.

The de�nitions of lexical rules correspond to the rules of regular expressions as follows:

� Constant strings denote keywords and are surrounded by single or double quotes,
like 'st' or "st".

� A range of characters is given by lowerChar..upperChar.

� The | character separates alternatives.

� Grouping items is done by use of parentheses (and).

� The character ~ is used for negation, meaning the expression matches what is not
part of the negated expression.

� The + sign denotes that the previous item may be added to nonterminals or groups
one or more times.

� The * character denotes the previous item being added zero or more times.

� The ? character denotes the previous item being added zero or one-time.

41

4. MontiCore Grammar for Language and AST De�nitions

MCG1 token NUM_INT =
2 ('0'..'9')+ EXPONENT? SUFFIX? ;
3

4 fragment token SUFFIX =
5 'f'|'F'|'d'|'D' ;
6

7 fragment token EXPONENT =
8 ('e'|'E') ('+'|'-')? ('0'..'9')+ ;

Listing 4.3: Lexical productions for Numbers using token fragments

Lexical de�nitions may be reused in other de�nitions to make them more readable. Lex-
ical productions marked as fragments, as it is the case for SUFFIX and EXPONENT in
Listing 4.3, can only be used in other lexical productions and cannot be nested recursively.
Fragments are not passed to the parser but instead allow a modular de�nition of lexicals.
Therefore, only NUM_INT results in a String that is stored in the AST, however the
string will contain the fragments.

Technical Info 4.4: Limited Scanning Capability

For e�ciency reasons, a scanner does not backtrack. If a token is pre�x of
another token, e.g. ">" and ">>" then an unfortunate combination, e.g. in
"List<List<String>>" will fail. Here grammar directive splittoken can
help.

When you want to use a reserved keyword also as e.g. variable name in another
context, then you can use the nokeyword directive.

Both are discussed in Section 4.3.

4.1.2 Actions to Process a Token

Actions (i.e., Java code) can be embedded into lexical de�nitions to modify the lexers
results directly. Hence actions do not contribute to the de�nition of concrete syntax, but
extend the parser by mapping concrete syntax to elements, which are stored in the abstract
syntax, or to completely di�erent things.

MCG1 token WS =
2 (' '
3 | '\t'
4 | '\r' // Macintosh
5 | '\n' // Unix
6) :{_channel = HIDDEN;};

Listing 4.5: Lexical productions for white spaces

To allow an arbitrary number of white spaces and line breaks in a model, MontiCore has a
prede�ned nonterminal WS (cf. Listing 4.5). The last line encloses Java code to avoid pass-

42

4.1. Lexical Tokens for the Scanner

ing this token to the parser. Alternatively you can replace the Java code with the following
statement "-> skip". Thus, it is not necessary to explicitly place the nonterminal WS in
grammars. For a more detailed discussion, refer to the ANTLR documentation.

MCG1 token STRING = '"'
2 (ESC
3 | ~('"' | '\\' | '\n' | '\r')
4)*
5 '"'
6 :{setText(getText().substring(1, getText().length() - 1));};

Listing 4.6: Lexical production for strings without quotation marks, which are removed in
a Java action

In the example shown in Listing 4.6, the embedding quotation marks are removed from
the token before it is passed to the parser. It is allowed to add actions at the end of a
lexical production for a free computation of the result.

Listing 4.7 shows how to adapt the di�erent types for the generated attributes in the AST. If
the right side of a production is a lexical production like Name, the corresponding attribute
is of type String. We can change the default attribute type by adding a prede�ned type
like float, separated by a colon. Some of the supported prede�ned types are: float,
int and char. The corresponding default conversion methods translate the parsed value
of type String to the derived type.

MCG1 // token results can be converted
2 // here NUMBER becomes type float
3 token NUMBER = ('0'..'9')* '.' ('0'..'9')* 'f': float;
4 A2 = b:NUMBER "," c:NUMBER*;
5

6 // while Name is stored as a String
7 A1 = b:Name "," c:Name;

Listing 4.7: Changing the result type of lexicals

If the default methods do not work, we can implement our own conversion method as
shown in Listing 4.8. The token CARDINALITY should be adapted to the type int. The
declared variable x has the default type String and we can add a Java-Block to convert
the String to the desired type int.

4.1.3 Prede�ned Tokens in Importable Grammars

MontiCore is shipped with some basic grammars meant for reuse as described in Section 7.4.
These are, among others:

� MCBasics

� MCLiteralsBasis,

43

4. MontiCore Grammar for Language and AST De�nitions

MCG1 // token results get adapted:
2 // type conversion to int
3 // by Java code that does the conversion
4 token
5 CARDINALITY = ('0'..'9')+ | '*' :
6 x -> int : { // Java code:
7 if (x.equals("*"))
8 return -1;
9 else
10 return Integer.parseInt(x.getText());
11 };

Listing 4.8: Adding a conversion method for lexical types

� MCCommonLiterals, and

� MCJavaLiterals.

They provide a set of basic literals useful for almost every parse process (MCBasics)
or for expressions that Java programmers know quite well. The grammars described in
Chapter 18 build full expression and statement sublanguages based on these literals.

Tip 4.9: Prede�ned Tokens

Prede�ned tokens can be found in the MontiCore repository, for example in the
following component grammars:

Files1 Repository: MontiCore/monticore github
2 Directory: monticore-grammar/src/main/grammars/
3 Files: de.monticore.MCBasics.mc4
4 de.monticore.literals.MCLiteralsBasis.mc4
5 de.monticore.literals.MCCommonLiterals.mc4
6 de.monticore.literals.MCJavaLiterals.mc4

Some of the ways you can include tokens in a grammar are: use of extends
de.monticore.MCBasics or inclusion of the directory in the grammar path. A
detailed description can be found in Chapter 17.

When including the available basic grammars MCBasics, MCCommonLiterals and
MCJavaLiterals, a number of prede�ned tokens can be used as described in Table 4.10.4

All tokens (cf. Table 4.10, column 1) are stored as String but the MCCommonLiterals
and MCJavaLiterals grammars also provide nonterminals (cf. Table 4.10, column 2)

1fragment, not a complete token
2delimiters are removed
3delimiters are removed
4Please note that the type grammars MCBasicTypes, MCCollectionTypes, etc. do not de�ne

tokens, but only parser nonterminals. The grammars MCCommonLiterals and MCJavaLiterals also
de�ne additional parser nonterminals.

44

4.1. Lexical Tokens for the Scanner

Table 4.10: Some of the prede�ned tokens of the MCBasics, MCCommonLiterals and
MCJavaLiterals component grammars.

Token Value Type De�ned in

WS - MCBasics
SL_COMMENT - MCBasics
ML_COMMENT - MCBasics
NEWLINE -1 MCBasics
Name - MCBasics

Digits - MCCommonLiterals
Char - MCCommonLiterals
String -2 MCCommonLiterals
CharLiteral char MCCommonLiterals
BooleanLiteral boolean MCCommonLiterals
StringLiteral String 3 MCCommonLiterals
NatLiteral int MCCommonLiterals
BasicLongLiteral long MCCommonLiterals
BasicFloatLiteral float MCCommonLiterals
BasicDoubleLiteral double MCCommonLiterals
Num_Int - MCJavaLiterals
Num_Long - MCJavaLiterals
Num_Float - MCJavaLiterals
Num_Double - MCJavaLiterals
IntLiteral int MCJavaLiterals
LongLiteral long MCJavaLiterals
FloatLiteral float MCJavaLiterals
DoubleLiteral double MCJavaLiterals

with respective AST classes that provide methods getValue() in order to convert the
stored String to a more usable type. See Chapter 17 for details.

Furthermore, there are four token nonterminals de�ned in the MCBasics grammar that
are not passed to the parser:

NEWLINE tokens are not stored, but used as token separator

WS tokens are not stored, but used as token separator

SL_COMMENT describes single line comments in Java style, like //.... Those comments
are not passed to the parser, instead they are attached to the AST object which is
created by the parser and therefore can be retrieved if necessary, but need not be
included in productions explicitly (cf. Section 5.7)

ML_COMMENT like /* ... */ do the very same as //, but can span over multiple lines.

45

4. MontiCore Grammar for Language and AST De�nitions

Multi line comments are not nested like in Java (as opposed to C++). In case that this
form of comment is not desired, the MCBasics grammar should not be used.

The type grammars MCBasicTypes, MCCollectionTypes,
MCSimpleGenericTypes MCFullGenericTypes, and MCArrayTypes gram-
mars de�ne nonterminals that provide di�erent kinds of data types. Some examples of
this are:

� primitives types such as int or boolean,

� collection types such as MCListType or MCSetType,

� widely reusables types MCImportStatement or MCQualifiedName,

� data structures such as generics or arrays.

See Table 4.11 for the list of the most interesting nonterminals.

Table 4.11: Prede�ned nonterminals of Types grammar.

Nonterminal Meaning

MCType Interface for all forms of types

MCQualifiedName Sequence of Names, separated by a "."
MCPrimitiveType "boolean","int" etc.

MCGenericType Interface for all forms of generic types

MCListType for List<T>, but not java.util.List<T>
MCTypeArgument Interface for all forms of type arguments

MCWildcardTypeArgument Single type argument, using the wildcard "?"

4.2 Productions in the Grammar

A production consists of a left-hand side that de�nes a new nonterminal (e.g. A), and the
right-hand side of a production which describes how the nonterminal is de�ned i.e., its
body. Listing 4.12 shows some simple examples of productions, which are rather similar to
lexical productions. In addition, productions support recursion (thus becoming context-
free and not just regular productions, as per the Chomsky hierarchy) and a number of
techniques to control how to map productions to AST classes. The mapping process is
partially introduced here but discussed in more detail in Chapter 5.

MCG1 A = "Hello" "World" "." ;
2 B = ("Good Morning" Name) | A ;
3 C = "Hello" (Name || ",")+ ;
4 D = A B* (C | D)
5 | B* A ;

Listing 4.12: Some production examples

46

4.2. Productions in the Grammar

The body of a production is composed of terminals and nonterminals, both of which may
be used as part of alternatives, may themselves be optionals or occur multiple times. The
MontiCore grammar provides these constructs for the productions:

� Double quotes to de�ne constant strings e.g. "state" and are then used a keywords.

� LowerChar..upperChar to de�ne a range of characters (cf. Listing 4.8).

� The | character to separate alternatives.

� Parentheses (and) to signify grouping.

� + to signify the appearance of a group or nonterminal one or more times.

� * to signify the appearance of a group or nonterminal zero or more times.

� ? to signify the appearance of a group or nonterminal zero or one time.

� [C1 |...| Cn] to express an alternate group of constants (terminals), where
exactly one occurs.

� Shorthand notations (NT || T)* and (NT || T)+ to de�ne repetitions of the left
nonterminal NT being separated by the right terminal T.

� References to other nonterminals, e.g. Name@State, which mean the name refer-
ences an entity that is de�ned by a State nonterminal.

� The key statement key("state") to de�ne a local keyword state. This keyword
is almost identical to a permanent keyword, but name "state" can still be used
as a normal name in other places. The argument of the key(.) statement must
match the Name nonterminal or a list of | separated Name. E.g. key("F"|"f")
describes the �oat su�x for numbers.

Furthermore, nonterminals allow for structuring of the parsing, including mutual recur-
sion (with only a slight restriction on mutual left recursion). The main di�erences from
nonterminals to lexical productions are the ability to use other arbitrary nonterminals, but
also the absence of negation ~.

Several elements on the right-hand side can be decorated to control the AST:

� Names such as n:NT and n:"st" can be attached to terminals and nonterminals,
describing where the attributes will be stored in the AST.

� References to other nonterminals can be attached using @, like Name@NT. For exam-
ple, Name@State expresses that the name references an entity that is de�ned by a
State nonterminal, i.e., elsewhere there will be a State de�ned with this name.
This is also called referencing symbols because the nonterminal which is referenced
to must also de�ne a symbol. For more information on this check Chapter 9.

MontiCore also provides so called semantic predicates, which are in detail discussed in
Section 4.5. However, there are a number of standard methods available that allow us to
control parsing process:

47

4. MontiCore Grammar for Language and AST De�nitions

� Function next("42")? is usable in semantic predicates, such as
{next("42","41")}? Digits, to check if the next token of the model
equals to the string. The token is �rst parsed according to the following non-
terminal (here: Digits) and then the semantic predicate is checked. For Names,
the key(.) shortcut does the same, but next also allows arbitrary many strings
to be listed as alternatives.

� the noSpace(n) function forbids spaces between consecutive token, e.g.
{noSpace(2)}? "-" "-" only accepts "--" and {noSpace(2,3)}? ">"
">" ">" forbids spaces between the angle brackets. This can also be deferred to
extending grammars, using the splittoken keyword.

� Function cmpToken(n,s) can be used to restrict possible consecutive tokens. For
example {cmpToken(1, "st")}? Name speci�es that the name must be st.
While next must be used preceding to the token cmpToken allows to look further
into the forthcoming token using the distance as its �rst argument. cmpToken allows
arbitrary many strings to be compared

� Function {cmpTokenRegEx(n,r)}? is similar to cmpToken(n,s), but interprets
r as regular expression.

Listing 4.13 shows how the prede�ned functions next, cmpToken and cmpTokenRegEx
can be used in conjunction with arbitrary tokens, e.g., the Name nonterminal.

MCG1 D = {next("foon")}? Name ":";
2

3 F = {cmpToken(1, "foon")}? Name ":";
4

5 H = {cmpTokenRegEx(1, "foon|FOO")}? Name ":";

Listing 4.13: next, cmpToken and cmpTokenRegEx

The regular expression passed to cmpTokenRegEx is based on the regular expressions
used in the standard libraries of Java. Thus, regular expression according to the syntax
provided by Java are possible5.

4.2.1 Terminals

Terminals are enclosed in quotation marks (e.g. "if" or "!") and are usually not part
of the abstract syntax (cf. Chapter 5). Semantically relevant terminals can be marked
as such by naming them or surrounding them with square brackets, e.g a terminal in an
alternative (cf. Listing 4.14). In the former, the given name of the terminal is used as the
name of the attribute. In the latter, a boolean stores whether the terminal occurred in the
model. The mapping of relevant terminals to the AST is discussed in Chapter 5.

Introducing "Hello" as explicitly mentioned terminal disallows "Hello" to be used as
ordinare (variable) name elsewhere. The key statement key("Hello") can be used to

5https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html

48

4.2. Productions in the Grammar

MCG1 E = "Hello"
2 (who: "World" | who: "Tom")
3 "!";
4

5 F = ["initial"]?;

Listing 4.14: Augmentation of terminals for storage in the AST

de�ne a local keyword Hello. This keyword is almost identical to a permanent keyword,
but now "Hello" can still be used as a normal name in other places. The argument of
the key(.) statement must match the Name nonterminal or a list of | separated Names.
E.g. key("F"|"f") describes the �oat su�x for numbers and key("World"|"Tom")
is a shortcut usable in Listing 4.14. For an even more convenient alternative see grammar
directive nokeyword in Section 4.3.

4.2.2 Enumeration

If the language describes alternatives of multiple terminals resulting in boolean attributes,
one may instead use alternatives when creating the abstract syntax. Instead of mapping
each terminal to a boolean attribute, an integer with constants mimicking an enumeration
may be used. To use this variant, the alternatives are enclosed within square brackets
(Listing 4.15). If this is the case, it is necessary to add a name in front of the square
brackets, separated by |. As with square brackets, each terminal can be named, e.g.,
PRIVATE:"-", which will result in a name stored as a constant. However, as described
in Chapter 5, MontiCore will derive a name automatically if none is given explicitly, such
as PUBLIC for "public". In case the default derivation is not desirable (e.g. "-" by
default results in MINUS) an explicit name can be added. Please note that adding a
name equivalent to the automatically derived name is allowed. In the following example
(Listing 4.15) the four alternatives would produce only two constants because PUBLIC:"+"
and "public" will coincide.

MCG1 G = vis:[PUBLIC:"+" | "public" |
2 PRIVATE:"-" | "private"];

Listing 4.15: A choice of alternate terminals is stored as integers

Instead of using a list of keywords (i.e. relevant terminals), it is also possible to use an
enumeration nonterminal. As shown in Listing 4.16, the MontiCore grammar language
allows for the de�nition of enumerations directly by using the keyword enum, followed
by a name and a body consisting of a list of constants seperated as alternatives. An
enumeration nonterminal can be used like any other nonterminal.

49

4. MontiCore Grammar for Language and AST De�nitions

MCG1 enum VISIBILITY =
2 PUBLIC:"+" | "public" |
3 PRIVATE:"-" | "private" ;
4 H = vis:VISIBILITY;

Listing 4.16: Explicit de�nition of an enumeration

4.2.3 Nonterminals

A nonterminal is de�ned using a production, where the nonterminal on the left-hand side is
replaced by the body of the production on the right-hand side. A nonterminal can be part of
an alternative (A|B), be optional A? or occur multiple times when indicated by a * or a +
character (at least one). Nonterminals are always mapped to the AST (cf. Chapter 5). For
every nonterminal, there is a class generated for the AST data structure. Nonterminals on
the right-hand side of a production result in compositions stored as attributes with access
methods.

MCG1 Automaton =
2 "automaton" Name "{"
3 (State | Transition)*
4 "}";

Listing 4.17: Automatic naming of unnamed nonterminals

Both terminals and nonterminals can be explicitly named by adding a name and colon. In
case no explicit name is given, the name of the composition is derived from the nonterminal
name by lowercasing the �rst letter. Thus, state:State is equivalent to State in
Listing 4.17, reducing the developer's writing e�ort. If a nonterminal on the right side is
marked with a * or a +, a list of this nonterminal is generated. The name of this lists
attribute is also either derived from the nonterminals name or, if given, from the explicit
name. Additionally, a s will be appended to the name. That means a nonterminal State*
will be stored as a list List<State> with the attribute name states.

If nonterminals are grouped and marked with cardinalities, then each nonterminal will
receive its own list. This means (A|B)* will become two independent list, which store the
order within the As and Bs, but forget the order between them.

A convenient way of de�ning the frequently appearing pattern of lists with separators
is provided by MontiCore in the following construct: use y:(A || ",")+ to de�ne a
comma separated list, which is equivalent to y:A("," y:A)*.

On the left (i.e. the A), there must be a single nonterminal, whilst the right side should con-
tain a terminal. The de�nition of the nonterminal MCQualifiedName is given as (Name
|| ".")+ and demonstrates this feature. Accordingly, y:(A || ",")* is equivalent to
(y:A("," y:A)*)?, as it also allows repetition.

50

4.2. Productions in the Grammar

4.2.4 Interface Nonterminals: implements

An unique feature is the ability to de�ne interface nonterminals. An example of an in-
terface nonterminal is given in Listing 4.19. Here, the production I de�nes an interface
nonterminal and the productions A and B implement the interface I. In production C, the
interface I is used like a normal nonterminal on the production's right-hand side. Seman-
tically, an interface production can be considered equivalent to a production which has its
implementing productions as alternatives on the right hand side, as shown in Listing 4.20

Interfaces can be used to extend languages and thus are a core concepts of language com-
position (cf. Chapter 7). The important main advantage here is that interface I does not
refer to the implementation nonterminal A, but in the opposite direction. This is espe-
cially interesting for language extension, because the extending grammar is de�ned later
and thus the base grammar can be reused black-box without modi�cation.

Tip 4.18: When to use an Interface Nonterminal

Interface nonterminals share a lot of the characteristics of interfaces in program-
ming languages. Using an interface nonterminal allows to decouple the de�nition of
certain structures of a language, while leaving open "holes" (extension points).

It is worth introducing an interface nonterminal for important language elements,
such as Expression or Statement, especially when it is intended to extend the
language later. Interfaces therefore serve as extension points or potentially also
variation points, in case future language extension or embedding is planned.

An interface does not prescribe the possible concrete syntax, while abstract non-
terminals (described in Section 4.2.6) do.

MCG1 interface I ;
2 A implements I = "...1" ;
3 B implements I = "...2" ;
4 C = I "..." ;

Listing 4.19: An interface nonterminal and several nonterminals implementing it

MCG1 I = A | B ;
2 A = "...1" ;
3 B = "...2" ;
4 C = I "..." ;

Listing 4.20: Alternative to interface nonterminal in Listing 4.19 accepting the same con-
crete syntax, but I knows A and B

Furthermore, productions of interface nonterminals can have a body. This body de�nes
which kind of signature all implementing nonterminals need to provide in order to imple-
ment the interface nonterminal. Considering the example in Listing 4.21, the interface
I de�nes the signature x:Integer and y:Name* for all nonterminals implementing I.

51

4. MontiCore Grammar for Language and AST De�nitions

Thus, both entities need to be part of the body of A and B, as they implement I. However,
as demonstrated, the concrete syntax and order of the elements is not prescribed by I,
which allows for �exible adaptation of the concrete syntax of nonterminals implementing
an interface. As such, interface bodies are mainly a mechanism used to add functionality
to the abstract syntax nodes described in Chapter 5.

MCG1 interface I = x:Integer y:Name* ;
2 A implements I = x:Integer "...1" y:(Name || ",")* ;
3 B implements I = y:Name* "...2" x:Integer "..." ;
4 C = I "..." ;

Listing 4.21: Interface nonterminal de�ning its signature

4.2.5 Extending Nonterminals: extends

The MontiCore grammar format allows extending the production of an already de�ned
nonterminal via addition of alternatives which modify the original de�nition. Listing 4.22
shows nonterminal B extending the already de�ned nonterminal A. The production of the
nonterminal C uses A on its right-hand side and thus also includes the alternative of B.
In the context of parsing, extension B is equivalent to adding the extending nonterminal
B as a new alternative to the extended nonterminal A. By choosing a de�nition inverse
to EBNF, we can provide an object-oriented solution where subclasses can extend their
superclasses without any changes in the de�nition of the superclass. This second core
mechanism is used to allow for reuse of grammar and language extensions. Listing 4.23
shows an equivalent alternative to Listing 4.22 that accepts the same concrete syntax for
nonterminal A.

MCG1 A = "...1";
2 B extends A = "...2";
3 C = A;

Listing 4.22: Extending the production of a nonterminal

MCG1 A = "...1" | B;
2 B = "...2";
3 C = A;

Listing 4.23: Equivalent alternative to extension in Listing 4.22 accepting the same concrete
syntax for A, but A knows and thus is coupled to B

4.2.6 Abstract Nonterminals

An abstract nonterminal is similar to an interface nonterminal, but is introduced using the
keyword abstract. Abstract nonterminals can bundle nonterminals together, as shown

52

4.2. Productions in the Grammar

Tip 4.24: When to use Nonterminal Extension

Extension of nonterminals (like A in Listing 4.22) shares characteristics with class
extension. For concrete syntax this means that an already implemented nonterminal
A gets additional alternatives (so to say "subclasses" like B). This can also occur if
the original nonterminal is extended.

The newly introduced nonterminal B is never usually used explicitly in the con-
crete syntax, but plays a role in the abstract syntax.

If A is meant for extension, it is advantageous to make it an interface. But if a
default version of the concrete syntax should exist, an ordinary nonterminal needs
to be de�ned and then extended in sub-nonterminals.

in Listing 4.25. Here, AutomatonElement is an abstract nonterminal. The nonterminals
State and Transition extend the nonterminal AutomatonElement, meaning that
both states and transitions are elements of an automaton. As such, the nonterminal
AutomatonElement can now be used in a production's right side to allow both states
and transitions. Listing 4.26 shows an alternative to Listing 4.25 that accepts the same
concrete syntax.

MCG1 abstract AutomatonElement;
2

3 State extends AutomatonElement = "...1" ;
4

5 Transition extends AutomatonElement = "...2" ;

Listing 4.25: Abstract production in a grammar

Abstract nonterminals can be extended by other (abstract) nonterminals by using the key-
word extends. This mechanism can be used to bundle other productions as alternatives
and can be used to more clearly mark extension points. This means that the grammar
is designed to be extended later by the addition of further nonterminals that extend the
abstract ones. As abstract nonterminals are mapped to abstract classes, a production can
only extend one abstract production but may implement many interfaces. Similarly to
interfaces, an abstract nonterminal having a body means all nonterminals extending the
abstract nonterminal must provide one too.

MCG1 AutomatonElement = State | Transition;
2

3 State = "...1" ;
4

5 Transition = "...2" ;

Listing 4.26: Alternative to abstract nonterminal in Listing 4.25 accepting the same con-
crete syntax

53

4. MontiCore Grammar for Language and AST De�nitions

4.2.7 Starting Nonterminal

By default, the start (axiom) of a MontiCore grammar is the �rst nonterminal de�ned
within the grammar. However, in case a di�erent nonterminal should act as the starting
nonterminal of the language, it can be explicitly marked as such by introducing it with
the keyword start, as shown in Listing 4.27. This is especially helpful, when the starting
nonterminal is inherited.

MCG1 grammar Automata3 extends InvAutomata, Expression {
2

3 start Automaton;
4

5 // ...
6 }

Listing 4.27: Explicitly setting a top-level nonterminal that is inherited with start

4.2.8 In�x Operations and Priorities

MontiCore can of course de�ne an expression language that uses in�x operations. For
their convenient description, MontiCore provides the possibility to attach priorities to
in�x operations and, if necessary, also the keyword <rightassoc>, which marks the
in�x operation as a right associative. Figures 4.28, 4.29, and 4.30 show an example of a
typical expression language using an excerpt of Java.

MCG1 component grammar ExpressionsBasis
2 extends MCBasics, MCLiteralsBasis {
3 interface Expression;
4

5 NameExpression implements Expression <350>
6 = Name;
7

8 LiteralExpression implements Expression <340>
9 = Literal;
10 }

Listing 4.28: Grammar ExpressionsBasis which provides an interface Expression
and basic expressions for the other expression grammars to use

MontiCore allows for de�nition of nonterminals like Expression as an interface and
the subsequent additions of alternatives. Because in the case of Expressions many
alternatives are in�x they should get a priority in form of an integer, e.g. <170>, which
tells the parser how to parenthesize in�x expressions.

In our example a+b*c would parse as a+(b*c), because 180>170. Many of the non-
in�x alternatives do not need explicit priorities assigned to them, but it may be helpful for
further extension later on. However, the priority of pre�x operators, like "!" also in�uences

54

4.2. Productions in the Grammar

MCG1

2 AssignmentExpression implements Expression <60> = <rightassoc>
3 left:Expression
4 operator: ["=" | "+=" | "-=" | "*=" | "/=" | "&=" | "|="
5 | "^=" | ">>=" | ">>>=" | "<<=" | "%="]
6 right:Expression;

Listing 4.29: Excerpt of grammar AssignmentExpressions for several forms of assign-
ments

MCG1

2 MultExpression implements Expression <180>, InfixExpression =
3 left:Expression operator:"*" right:Expression;
4

5 PlusExpression implements Expression <170>, InfixExpression =
6 left:Expression operator:"+" right:Expression;

Listing 4.30: Excerpt of grammar CommonExpressions for common expressions like a+b
including in�x operation priorities

the parsing order. For example "!a && b" would wrongly be parsed as "!(a && b)" if
"!" has lower precedence than "&&".

The advantages of denoting expressions in this form is twofold: (1) The grammar is kept
small and simple, hence fairly readable. (2) As discussed in Chapter 5 the abstract syntax
is structurally rather equivalent to the concrete syntax. For a deeper discussion of how to
deal with parsing of in�x expressions that naturally occur to be left recursive, we refer to
standard literature.

MontiCore is designed for extensibility and thus iteratively allows extending the
Expression language by repeatedly adding more alternatives. In order to add alter-
natives with priorities into the middle of already existing alternatives, MontiCore uses
explicit numbers as priorities instead of approaches like ANTLR, which use the order of
occurrence in the grammar. We also de�ned our Expression language with larger pri-
ority numbers in steps of 10, allowing for additional in�x alternatives to be added where
desired. This is even possible when extending languages through composition.

Unfortunately, it is not possible to use a sub-nonterminal, such as PlusExpression
directly, instead only the main nonterminal, here Expression may be included. Solutions
are: (1) using CoCo's to restrict other forms of expressions (on the top-level only?), or
(2) use a new nonterminal N = Expression + Expression that only looks like a
PlusExpression.

4.2.9 Restricting the Cardinality of a Nonterminal

In order to constrain the number of occurrences of a nonterminal on the right hand side
of a production, the astrule keyword may be used. Using a statement like the one given

55

4. MontiCore Grammar for Language and AST De�nitions

Tip 4.31: Mutual Left-Recursion can be used

The good news is that MontiCore can handle left recursion within its productions.
ANTLR can already handle direct left recursion (like A = A ...).

MontiCore has expanded this feature for mutual left recursion which includes an
interface nonterminal and many implementing alternatives, as shown in Figures 4.28,
4.29, and 4.30.

This is a relevant advantage in MontiCore, because language embedding and ex-
tension allow mutual recursion across language components, i.e. when an already
de�ned nonterminal Expression is to be extended with more variants of expres-
sions in an extending grammar.

in Listing 4.33 (see Fig. 4.32) will create the option to constrain the occurrences of the
nonterminals on the right-hand side by setting a minimum and maximum number of oc-
currences. Line 6 shows such a constraint. Any natural numbers are allowed. It is also
possible to use +, * and ? instead of min and max. The astrule keyword does not
normally a�ect the concrete syntax but this is an exception that we wanted to highlight
before properly introducing the keyword in Chapter 5.

Prof. Dr. B. Rumpe

Lehrstuhl für

Software Engineering

RWTH Aachen

Page 2

Constraining the Cardinality

MG AST-CD

S A
S = y:A*;

A = "...";

astrule S = y:A min=2 max=4;

2..4

y

nonterminals result into
compositions

Figure 4.32: Constraining the cardinality of a nonterminal, when parsing

MCG1 // nonterminals for the concrete syntax
2 S = y:A*;
3 A = "...";
4

5 // constraining occurrences of A in S:
6 astrule S = y:A min=2 max=4;

Listing 4.33: Constraining the cardinality of a nonterminal

4.2.10 Symbols and Scopes

Textual languages use explicit names in order to reference any kind of language entity
(methods, classes, attributes, states, signals, etc.) which has been de�ned elsewhere. For
e�cient management of names and their referenced entities, symbols and their related
management infrastructure is helpful.

For a more detailed explanation of the de�nition and usage of symbols or scopes using
MontiCore's grammar see Chapter 9.

56

4.2. Productions in the Grammar

In order to generate a symbol management infrastructure (cf. Chapter 9), which is usually
not complete, productions can be marked as symbol de�nitions or visibility restrictions.
The keyword symbol, when attached to a production, introduces a new symbol. A symbol
must either have the nonterminal Name directly on the right-hand-side of the production,
otherwise only an abstract symbol class is generated. To use the abstract symbol class,
the getName() method needs to be implemented manually.

The keyword scope, when attached to a production, indicates that the nonterminal in-
troduces a new scope that includes exactly only that AST node and all its child nodes. All
symbols de�ned in these child nodes are restricted in their visibility to this scope.

Furthermore, nonterminal Name, when used as the right-hand side of a production, can
be marked as a reference to another nonterminal by appending @ plus the name of the
nonterminal that is being referenced (e.g. Name@State). See Chapter 9 for details.

The statements symbolrule and scoperule allow to specify further attributes to store
extra information for a symbol or a scope. They are discussed in Section 9.2.3

4.2.11 Passing Code to the ANTLR Parser

It is sometimes necessary to directly specify additional Java code for the underlying
ANTLR parser. For this purpose, MontiCore allows adding Java code as shown in the
following example (Listing 4.34).

It is possible to add methods, attributes and constants to the generated parser class.
Sometimes it is necessary to add variables or methods to be used by the actions de�ned in
the grammar. The variable ltCounter de�ned in Listing 4.34 counts the number of LT
(<) used by type parameters or type arguments and can be used for checking the correct
number of brackets. The method incCounter() enables increasing the counter by the
parameter value passed to the method.

MCG1 concept antlr {
2 parserjava {
3 public int ltCounter = 0;
4

5 public void incCounter(int i){
6 this.ltCounter = this.ltCounter + i;
7 }
8 }
9 }

Listing 4.34: Add Java code to the parser

Similar to extension of the parser shown above, the lexer can be extended with custom Java
code. An example for a lexer extension is shown in Listing 4.35. An additional method
capitalize() is added to the lexer which takes a String and returns it with its �rst
letter capitalized.

Insertions into the lexer have some restrictions. In particular, it is not possible to extend
the list of imports, which means that all references to external classes need to be fully

57

4. MontiCore Grammar for Language and AST De�nitions

MCG1 concept antlr {
2 lexerjava {
3 public String capitalize(String s){
4 return de.se_rwth.commons.StringTransformations.capitalize(s);
5 }
6 }
7 }

Listing 4.35: Add Java code to the lexer

quali�ed. Furthermore, it has proven useful to keep the amount of Java code in grammars
as small as possible by, for example, delegating the execution of complex funcionality to
other Java classes.

The parserjava and lexerjava statements will be mapped to two di�erent classes
and therefore cannot directly be called from one to the other. However, the function
getCompiler() can be used from within the lexer code to access the parser code. Please
note, however, that the lexer uses a lookahead and thus may have progressed much further
than the parser knows. Thus, controlling the lexing mode from the parser is not easy or
sometimes impossible.

4.2.12 Annotations for Nonterminals and Grammars

Annotations in programming languages like Java are used to add additional information
to classes, �elds or methods e.g., whether their deprecated or override functionalities of a
super class. MontiCore o�ers similar annotations as well.

Deprecated Annotation Languages evolve and so do grammars. Similar to the Java
programming language, MontiCore allows to mark a production or a whole grammar as
deprecated with the @Deprecated annotation. It can be added directly before a produc-
tion or before a grammar itself. A comment can be added (e.g. @Deprecated("text
of the comment")).

The @Deprecated annotation is intended to signal the user of a language that this non-
terminal respectively the whole grammar will vanish in a future release and alternatives
exist. As a result, generated Java code will also be annotated as @Deprecated.

Override Annotation When using language inheritance as explained in Chapter 7 it is
possible to rede�ne nonterminals by overriding existing nonterminals (cf. Chapter 7). To
this end, a nonterminal production is marked with the @Override annotation. Omitting
the annotation when overriding a nonterminal results in a warning while adding an override
annotation to a production that does not override an existing nonterminal is considered as
an error.

58

4.3. Additional Control Directives in the MCG Language

4.2.13 Prede�ned Nonterminals in Importable Grammars

MontiCore is shipped with a larger number of basic grammars meant for reuse as described
in Section 7.4.

These grammars provide a set of sublanguages useful for many forms of languages including
expressions, statements, types, etc. that Java programmers know quite well. The grammars
are described in Chapter 18.

Tip 4.36: Prede�ned Nonterminals

Prede�ned nonterminals building useful sublanguages can be found in the Mon-
tiCore repository, for example in the following component grammars:

Files1 Repository: MontiCore/monticore github
2 Directory: monticore-grammar/src/main/grammars/
3 Files: de.monticore.Cardinality.mc4
4 de.monticore.Completeness.mc4
5 de.monticore.JavaLight.mc4
6 de.monticore.UMLModifier.mc4
7 de.monticore.UMLStereotype.mc4

Some of the ways you can include tokens in a grammar are: use of extends
de.monticore.MCBasics or inclusion of the directory in the grammar path. A
detailed description can be found in Chapter 17.

Expressions build on the literals that were mentioned in Section 4.1. An expression lan-
guage is usually di�cult to design and has many in�x, pre�x and post�x operations to be
dealt with. Statements again build on expressions. Chapter 18 describes a larger variety of
grammars that describe composable expression sublanguages for typed Java-like languages.
Statements and Java methods are de�ned in Chapters 19 and 20

4.3 Additional Control Directives in the MCG Language

Besides the possibility to de�ne tokens and nonterminals, there are a few control directives
that allows to adapt the parsing process.

Here, we describe the ones that deal with the parsing of the concrete syntax.

� the nokeyword directive is similar to the key function, but handles all occurrences
of the given keyword list, e.g. nokeyword "state", "automaton"; results in
all occurrences of state and automaton keywords in the grammar to be treated
as local keywords, but also allows these as names in ordinary places, where names
are allowed.

� the splittoken directive is similar to the noSpace function to prevent whitespaces
between individually de�ned tokens. For example splittoken ">>>" handles all
occurrences of this token as three separate token but does not allow spaces in between.

59

4. MontiCore Grammar for Language and AST De�nitions

It is important to note, that both directives can adapt the way how tokens respectively
names are treated even backwards in the grammar inclusion hierarchy.

splittoken was introduced to remove any need to preemptively split all tokens into
single character tokens by a component grammar developer, just because it may be that
some later extension grammar will introduce some constructs that might come into con�ict.
This can then be done by the extension developer.

nokeyword has a similar goal: If a component grammar has not made "state" a local
keyword, this can still be achieved in retrospect by an extending grammar without touching
the original nonterminal.

The further grammar statements symbolrule and scoperule allow to specify further
attributes and thus allow to store extra information in a symbol or a scope. They are
discussed in Section 9.2.3.

4.3.1 Splitting Tokens

If a token consists of multiple special characters (e.g. ">>" in a production like Shift =
">>") then a certain other productions using a pre�x of that token will not be recognized
correctly anymore, e.g. List<List<String>>.

For sake of e�ciency Antlr and therefore MontiCore do not backtrack on token level, which
is if two token > and >> are de�ned, where one is a pre�x of another, in a constellation,
where both are possible in a sequence, only the second will be recognized. To avoid this,
there are three options:

1. Accept that ">>" need spaces inbetween "> >" for correct recognition,

2. Split the token manually and use the nospace function, e.g. Shift =
{nospace(2)}? ">" ">". Now, both token are recognized separately and the
semantic predicate {nospace(2)}? ensures that there is no space before the second
token.

3. Use directive splittoken followed by a comma separated list of tokens that should
be split and a semicolon (cf. Listing 4.37).

Solution 1 is slightly unpleasant to the modeler; solutions 2 and 3 slow down the parsing
process. The splittoken has the considerable advantage, that the split need not be
de�ned initially already in the component grammar, but can be deferred to later extending
grammars, when the problem actually occurs.

In Listing 4.37 the token ":::" is split into single character tokens in all productions,
because of the �nal splittoken directive. Thus, the productions need not be altered to
express a split of this token. When composing languages (see Chapter 7), the splittoken
directive can even be used for tokens inherited from extended grammars such that these
grammars need not be altered if a token produces problems after composing.

Splitting is only allowed for tokens consisting of special characters but not letters or num-
bers. For example "#tag" should use nospace() instead.

60

4.3. Additional Control Directives in the MCG Language

MCG1 A = ":::" Name;
2 B = ":::"* Name;
3 D = foo:":::" | bar:"---";
4 E = foo:":::"* ;
5 F = foo:[":::"];
6

7 splittoken ":::", "---";

Listing 4.37: Add a conversion method for lexical types

4.3.2 Local Keywords: Avoid handling Keywords as Tokens

Tip 4.38: Temporary Keyword with nokeyword "foo";

If a keyword, like "state" is introduced in a production, then state cannot
be used as name anymore. Not for variables, methods, attributes.

To avoid this, a temporary keyword can be introduced using nokeyword
"state";.

The introduction of a keywords like "if" or kg disallows to use the characters if or kg
as normal Name. When composing languages (see Chapter 7), however, this may lead to a
problem, because keywords suddenly in�uence the allowed names in each other languages.
Programming languages are very careful when adding new keywords, e.g. looking at the
Java challenges when introducing the assert statement.

To introduce a temporary keyword key("km") can be used as discussed in Section 4.2. If
this concept is overused, it can slow down the parsing process when the terminals are used
for selection between alternatives.

MontiCore also o�ers the possibility to make keywords local using the nokeyword direc-
tive. Listing 4.39 demonstrates its usage for the automaton keyword, but the arguments
can also be a comma separated list.

MCG1 Automaton =
2 "automaton" Name "{" (State | Transition)* "}" ;
3

4 nokeyword "automaton";

Listing 4.39: Using nokeyword to de�ne "automaton" as a local keyword

Similar to the splittoken directive, the nokeyword directive expresses that all occur-
rences of the listed keywords should not be handled as token and it can be used to decide
this also retroactively for keywords inherited from extended grammars.

61

4. MontiCore Grammar for Language and AST De�nitions

4.4 Context Conditions for the MCG Language

As in any other language, a number of context conditions apply for grammars. For the
MontiCore grammar language these rules mainly deal with nonterminals extending or im-
plementing other nonterminals, or with existence and naming con�icts. The following de-
scriptions provide details on the actual context conditions (i.e., error codes and messages).
The following notation is used to explain the error messages:

� [A] A is a placeholder for a concrete value during runtime,

� [A]? is an optional output of A,

� [A|B] is an alternative A or B,

� [placeholder=A|B] is a named alternative.

Naming

CoCo 0xA4003 (error)
Expl. The grammar name [grammarName] must not di�er from the �le name of

the grammar (without its �le extension).

CoCo 0xA4004 (error)
Expl. The package declaration [package] of the grammar must not di�er from the

package of the grammar �le.

CoCo 0xA4005 (warning)
Expl. The name [name] used for the nonterminal [nonterminalName] refer-

enced by the production [productionName] should start with a lower-case
letter.

CoCo 0xA4090 (error)
Expl. The prod: [productionName] contains di�erent rule components with

the same name: [ruleComponentName] with incompatible types:
[firstType] and [secondType].

CoCo 0xA4018 (error)
Expl. The production [productionName] must not use the keyword [keyword]

without naming it.
Hint Keywords may only be used without explicit naming whenever there could be

a valid attribute name derived from it.

CoCo 0xA4019 (error)
Expl. The production [productionName] must not use a ConstantGroup with

more than one element without naming it.

62

4.4. Context Conditions for the MCG Language

CoCo 0xA4024 (error)
Expl. The production [productionName] extending the pro-

duction [extendedProductionName] must not use the
name [name] for the nonterminal [nonterminalName] as
[extendedProductionName] already uses this name for the nonter-
minal [extendedProductionsNonterminalName].

CoCo 0xA4025 (error)
Expl. The overriding production [productionName] must not use

the name [name] for the nonterminal [nonterminalName] as
the overridden production uses this name for the nonterminal
[overriddenProductionsNonterminalName].

CoCo 0xA4031 (error)
Expl. The nonterminal [name] should not start with a lower-case letter.

CoCo 0xA4033 (warning)
Expl. The grammar's name [grammarName] should start with an upper-case letter.

CoCo 0xA4079 (error)
Expl. The string [keyword] for splittoken may not contain any letters or digits

and must be longer than 2.

CoCo 0xA4091 (error)
Expl. The string [keyword] for key() must be compatible to 'Name'.

CoCo 0xA4093 (error)
Expl. The string [keyword] for nokeyword must be compatible to 'Name'.

CoCo 0xA4058 (warning)
Expl. If the string [digits] is de�ned as terminal, this string can no longer be

part of an expression.

CoCo 0xA4006 (warning)
Expl. The package name [packageName] contains uppercase letters!

CoCo 0xA2008 (error)
Expl. The production [productionName] contains two list nonterminals that re-

sult in the attribute name [name]. But one name is derived from the non-
terminal name and one is set manually. This is not allowed.

Implements/Extends

CoCo 0xA2007 (warning)
Expl. The production [productionName] does not extend the Rule

[superRuleName] in a conservative manner at component
[ruleComponentName]. This can lead to problems in the AST.

63

4. MontiCore Grammar for Language and AST De�nitions

CoCo 0xA2106 (error)
Expl. The abstract nonterminal [name] must not implement the nonterminal

[typeName]. Abstract nonterminals may only implement interface nonter-
minals.

CoCo 0xA2107 (error)
Expl. The abstract nonterminal [name] must not extend the interface nonterminal

[typeName]. Abstract nonterminals may only extend (abstract) nontermi-
nals.

CoCo 0xA2102 (error)
Expl. The nonterminal [name]must not implement the nonterminal [typeName].

Nonterminals may only implement interface nonterminals.

CoCo 0xA2103 (error)
Expl. The nonterminal [name] must not extend the interface nonterminal

[typeName]. Nonterminals may only extend (abstract) nonterminals.

CoCo 0xA2116 (error)
Expl. The interface nonterminal [name] must not extend the

[abstract|external]? nonterminal [typeName]. Interface non-
terminals may only extend interface nonterminals.

CoCo 0xA4001 (error)
Expl. The production [productionName] overriding a production of a sublan-

guage must not extend the production [extendedProductionName].
Hint Overriding productions can only implement interfaces.

CoCo 0xA4002 (error)
Expl. The abstract production [productionName] overriding a pro-

duction of a sublanguage must not extend the production
[extendedProductionName].

Hint Overriding productions can only implement interfaces.

CoCo 0xA4011 (error)
Expl. The nonterminal [name] must not [extend|astextend] more than one

[nonterminal|class].

CoCo 0xA4012 (error)
Expl. The abstract nonterminal [name] must not [extend|astextend] more

than one [nonterminal|class].

CoCo 0xA4013 (error)
Expl. The AST rule for [nonterminalName] must not extend the type

[typeName] because the production already extends a type.

CoCo 0xA4029 (error)
Expl. The nonterminal [name] must not extend and astextend a type.

64

4.4. Context Conditions for the MCG Language

CoCo 0xA4030 (error)
Expl. The abstract nonterminal [name] must not extend and astextend a type.

CoCo 0xA4047 (error)
Expl. The production [productionName] must use the component

[ruleComponentName] from interface [interfaceName].

CoCo 0xA4097 (error)
Expl. It is forbidden to extend the rule [productionName] with the external class

[externalName].

CoCo 0xA4150 (error)
Expl. A grammar must not extend another grammar multiple times.

CoCo 0xA0113 (error)
Expl. The production [productionName] extends or implements a non-existent

production.

Existence

CoCo 0xA2025 (error)
Expl. The nonterminal [nonterminalName] must not be de�ned by more than

one production.

CoCo 0xA2026 (error)
Expl. The nonterminal [nonterminalName] must not be de�ned by more than

one production: nonterminals aren't case-sensitive.

CoCo 0xA2030 (error)
Expl. The production [productionName] must not reference the

[nonterminal|interface nonterminal] [referencedName]
because there exists no de�ning production for [referencedName].

CoCo 0xA2031 (error)
Expl. The production [productionName] must not use the nontermi-

nal [referencedName] because there exists no production de�ning
[referencedName].

CoCo 0xA0276 (error)
Expl. The external nonterminal [name] must not be used in a grammar not marked

as a grammar component.

CoCo 0xA0277 (error)
Expl. The abstract nonterminal [name] must not be used without nonterminals

extending it in a grammar not marked as a grammar component.

CoCo 0xA0278 (error)
Expl. The interface nonterminal [name] must not be used without nonterminals

implementing it in a grammar not marked as a grammar component.

65

4. MontiCore Grammar for Language and AST De�nitions

CoCo 0xA4014 (error)
Expl. Duplicate enum constant: [enumConstant].
Hint The constants of enumerations must be unique within an enumeration.

CoCo 0xA4015 (error)
Expl. The lexical production [productionName]must not allow the empty token.

CoCo 0xA4016 (error)
Expl. The lexical production [productionName] must not reference the non-

terminal [tokenName] because there exists no lexical production de�ning
[tokenName].

CoCo 0xA4017 (error)
Expl. The lexical production [productionName] must not reference the nonter-

minal [tokenName] because [tokenName] is de�ned by a production of
another type than lexical. Lexical productions may only reference nontermi-
nals de�ned by lexical productions.

CoCo 0xA4020 (error)
Expl. There must not exist more than one AST rule for the nonterminal

[nonterminalName].

CoCo 0xA4021 (error)
Expl. There must not exist an AST rule for the nonterminal [nonterminalName]

because there exists no production de�ning [referencedName].

CoCo 0xA4032 (error)
Expl. There must not exist an AST rule for the enum nonterminal

[nonterminalName].

CoCo 0xA4028 (error)
Expl. The AST rule for the nonterminal [nonterminalName] must not use the

same attribute name [attributeName] as the corresponding production
with the type [typeNameInASTRule] as [typeNameInASTRule] is not
identical to or a super type of [typeNameInProduction].

CoCo 0xA4032 (error)
Expl. There must not exist an AST rule for the enum nonterminal [name].

CoCo 0xA4037 (error)
Expl. The production for the referenced symbol [symbolName] does not exist as

a symbol or not at all.

CoCo 0xA4041 (error)
Expl. Symbol or scope is mentioned more than once in the declaration of

[productionName].

CoCo 0xA4056 (error)
Expl. The left recursive rule [productionName] is not allowed in blocks, because

it is not supported by Antlr.

66

4.4. Context Conditions for the MCG Language

CoCo 0xA4101 (error)
Expl. There is no production de�ning a token in Grammar : [grammarName]

CoCo 0xA4102 (error)
Expl. [astrule|symbolrule|scoperule] does not allow the de�nition of

nested generics. Problem in grammar [grammarName], rule for
[ruleType], with additional attribute: [additionalAttributeName]

CoCo 0xA4151 (error)
Expl. A symbolRule must not exist twice for a single nonterminal. Violation by

[ruleType].

CoCo 0xA0112 (error)
Expl. Grammar [grammarName] contains two productions named

[productionName]. Production names must be unique within a grammar.

CoCo 0xA0125 (error)
Expl. The rule [productionName] inherits symbols from more than one class.

CoCo 0xA0117 (error)
Expl. There is no symbol de�ning rule that belongs to symbolrule

[symbolRuleName].

CoCo 0xA0135 (error)
Expl. The rule [productionName] inherits scope properties from more than one

class.

CoCo 0xA4119 (error)
Expl. The production [productionName] should not use the annotation [@Dep-

recated|@Override] twice.

CoCo 0xA4118 (warning)
Expl. The external production [productionName]must not have a corresponding

ASTRule.

Overriding

Please note that overriding of productions is an essential and smart feature of MontiCore
that is explained in Chapter 7.

CoCo 0xA4007 (error)
Expl. The production for the interface nonterminal [name] must not be overridden.

CoCo 0xA4008 (error)
Expl. The production for the abstract nonterminal [name] must not be overridden

by a production for an interface nonterminal.

CoCo 0xA4009 (error)
Expl. The production for the nonterminal [name] must not be overridden by a

production for an abstract nonterminal.

67

4. MontiCore Grammar for Language and AST De�nitions

CoCo 0xA4010 (error)
Expl. The production [productionName] must not be overridden because there

already exist productions extending it.

CoCo 0xA4026 (error)
Expl. The lexical production [productionName] must not use a di�erent type to

store the token than the overridden production.

CoCo 0xA4027 (error)
Expl. The production for the enum nonterminal [productionName] must not be

overridden.

CoCo 0xA0274 (error)
Expl. Production [productionName] from grammar [grammarName] is a sym-

bol and overwritten by the prod [productionName] of the grammar
[grammarName] that also de�nes a symbol. Remove the second symbol
de�nition, because the symbol property is inherited anyway.

CoCo 0xA0275 (error)
Expl. Production [productionName] from grammar [grammarName] is a

scope and overwritten by the prod [productionName] of the grammar
[grammarName] that also de�nes a scope. Remove the second scope de�ni-
tion, because the scope property is inherited anyway.

CoCo 0xA4094 (error)
Expl. The production [productionName] does not override any production.

CoCo 0xA4098 (warning)
Expl. The production [productionName] overrides production

[productionName] without annotation.

References

CoCo 0xA4022 (error)
Expl. The production [name] introduces an inheritance cycle. Inheritance may not

be cyclic.

CoCo 0xA4023 (error)
Expl. The grammar [name] introduces an inheritance cycle.

CoCo 0xA4039 (error)
Expl. You can only refer to other symbols on the nonterminal Name.

CoCo 0xA4100 (error)
Expl. The attributes with the UsageName [name] cannot reference to the di�erent

symbols [symbolName] and [symbolName].

68

4.5. Semantic Predicates and Actions

The unique error identi�er, like 0xA4023, can also be used to �nd the source code where
the context condition is checked. Most of the context conditions for MCG can be found
under the following Java package:

Files1 Repository: MontiCore/monticore github
2 Directory: monticore-generator/src/main/java/
3 Package: de.monticore.grammar.cocos

4.5 Semantic Predicates and Actions

Semantic predicates and actions are Java expressions embedded in curly braces and followed
by a question mark. They allow for checking of constraints on passed model elements or
for the injection of Java code into the parser, e.g. counters to count opening and closing
brackets. The syntax and semantics of semantic predicates, as well as actions have been
adopted from ANTLR, therefore we do not excessively discuss their syntax and usage here,
but refer to the ANTLR documentation available at [Par13] instead.

However, due to the restricted capability of the token lexer to read its input and select
the right token, it is sometimes useful to use semantic predicates to help MontiCore in
selecting the correct parsing form. See Section 21.4.3 for examples.

Several of the above discussed grammar constructs are actually short semantic predicates:

� {next("42","41")}?

� {noSpace(2,3)}? ">" ">" ">"

� {cmpToken(1, "st")}?

� {cmpTokenRegEx(n,r}?

Now, as we know the content of the curly brackets {...} is ordinary Java, we also know,
that we can combine the provided Java functions with our own code as well as with any
other functions.

An additional functions are provided by the MontiCore runtime environment:

� the token(n) function gives access to forthcoming token with number n, e.g. within
a semantic predicate token(1) returns the next token as a string.

We, however, suggest not to overuse semantic predicates, and in particular not to write
too much code in the grammar itself. If complex code is necessary, you may write that in
extra methods in ordinary Java classes and call them from there.

To facilitate writing semantic predicates and avoid fully quali�ed names, a star import
for the package de.monticore.parser.* is included in the parser which allows all
handwritten classes located in this package to be used via their simple name.

69

4. MontiCore Grammar for Language and AST De�nitions

4.6 EBNF of the MCG Language

This section contains the EBNF form of the context free syntax of the MCG language. It
is usable for understanding the concrete syntax, but not meant for parsing.

EBNF MCG1 /*
2 EBNF MCG 7, Version April, 6th, 2021.
3 */
4

5 MCGrammar ::=
6 ('package' QualifiedName ';')?
7 (MCImportStatement)*
8 GrammarAnnotation?
9 'component'? 'grammar' Name
10 ('extends' (GrammarReference || ',')+)?
11 '{'
12 (GrammarOption | Prod | StartRule
13 | ASTRule | SymbolRule | ScopeRule
14 | SplitRule | KeywordRule | Concept)*
15 '}' ;
16

17 GrammarReference ::= QualifiedName ;
18

19

20 //#################### Grammar Options
21

22 GrammarOption ::=
23 'options' '{' (FollowOption | AntlrOption | KeywordOption)* '}' ;
24

25 FollowOption ::=
26 'follow' Name Alt ';' ;
27

28 AntlrOption ::=
29 Name ('=' (Name | String))? ';' ;
30

31 KeywordOption ::=
32 'allkeywords' | 'keywords' (Name)+ ';' ;
33

34 GrammarAnnotation ::=
35 '@Deprecated' Name ('(' String ')')?
36 | '@Override'
37 | '@NonConservative' ;
38

39 StartRule ::=
40 'start' Name ';' ;
41

42

43 //#################### Productions
44

45 Prod ::= GrammarAnnotation*
46 (LexProd | ClassProd | InterfaceProd

70

4.6. EBNF of the MCG Language

47 | AbstractProd | ExternalProd | EnumProd);
48

49 LexProd ::=
50 ('fragment' | 'comment')*
51 'token' Name
52 LexOption? ActionBlock?
53 '=' (LexAlt || '|')+
54 (':' ('->' Name)? ActionBlock?
55 (Name ('->' QualifiedName (':' ActionBlock)?)?)?)? ';' ;
56

57 ClassProd ::=
58 SymbolDefinition* Name
59 (('extends'|'implements') (RuleReference ||',')+
60 | ('astextends'|'astimplements') (MCType || ',')+
61)*
62 ActionBlock?
63 ('=' Alt ('|' Alt)*)? ';' ;
64

65 InterfaceProd ::=
66 'interface' SymbolDefinition* Name
67 ('extends' (RuleReference || ',')+
68 |'astextends' (MCType || ',')+
69)*
70 ('=' Alt ('|' Alt)*)? ';' ;
71

72 AbstractProd ::=
73 'abstract' SymbolDefinition* Name
74 (('extends'|'implements') (RuleReference ||',')+
75 | ('astextends'|'astimplements') (MCType || ',')+
76)*
77 ('=' (Alt || '|')+)? ';' ;
78

79 ExternalProd ::=
80 'external' SymbolDefinition* Name MCType? ';' ;
81

82 EnumProd ::=
83 'enum' Name '=' (Constant || '|')+ ';' ;
84

85 Card ::=
86 '?' | '*' | '+'
87 | 'min' '=' Digits ('max' '=' (Digits | '*'))?
88 | 'max' '=' (Digits | '*') ;
89

90 RuleReference ::= SemanticpredicateOrAction? Name
91 ('<' Digits '>')? ;
92

93

94 //#################### Production body
95

96 Alt ::= '<rightassoc>'? GrammarAnnotation? RuleComponent* ;
97

98 RuleComponent =

71

4. MontiCore Grammar for Language and AST De�nitions

99 NonTerminalSeparator
100 | Block
101 | NonTerminal
102 | Terminal
103 | KeyTerminal
104 | TokenTerminal
105 | ConstantGroup
106 | Eof
107 | SemanticpredicateOrAction
108 | LexNonTerminal
109 ;
110

111 NonTerminalSeparator ::=
112 (Name ':')? '(' Name ('@' Name)? '&'? '||' String ')' ('*'|'+');
113

114 Block ::=
115 '(' (Option ':' | Option? 'init' ActionBlock ':')?
116 Alt ('|' Alt)* ')' ('?'|'*'|'+')? ;
117

118 Option ::=
119 'options' '{' OptionValue+ '}' ;
120

121 OptionValue ::=
122 Name '=' Name ';' ;
123

124 NonTerminal ::=
125 (Name ':')? Name ('@' Name)? ('!!' Name?)? '&'? ('?'|'*'|'+')? ;
126

127 Terminal ::=
128 (Name ':')? String ('?'|'*'|'+')? ;
129

130 KeyTerminal ::=
131 (Name ':')? KeyConstant ('?'|'*'|'+')? ;
132

133 KeyConstant ::=
134 'key' '(' (String || '|')+ ')' ;
135

136 TokenTerminal ::=
137 (Name ':')? TokenConstant ('?'|'*'|'+')? ;
138

139 TokenConstant ::=
140 'token' '(' String ')' ;
141

142 Constant ::=
143 (Name ':')?
144 (String |
145 KeyConstant |
146 TokenConstant
147) ;
148

149 ConstantGroup ::=
150 (Name ':')? '[' (Constant || '|')+ ']' ('?'|'*'|'+')? ;

72

4.6. EBNF of the MCG Language

151

152 Eof ::= 'EOF' ;
153

154 SemanticpredicateOrAction ::=
155 '{' ExpressionPredicate '}' '?' | ActionBlock ;
156

157

158 //#################### Concepts and Control Rules
159

160 Concept ::=
161 'concept' Name MCConcept ;
162

163 SplitRule ::=
164 'splittoken' (String || ',")+ ';';
165

166 KeywordRule ::=
167 'nokeyword' (String || ',')+ ';';
168

169

170 //#################### AST Rules
171

172 ASTRule ::=
173 'astrule' Name
174 ('astextends' (MCType || ',')+
175 |'astimplements' (MCType || ',')+
176)*
177 ('='
178 (GrammarMethod | AdditionalAttribute)*
179)? ';' ;
180

181 GrammarMethod ::=
182 'method' ('public'| 'private'| 'protected')?
183 'final'? 'static'?
184 MCReturnType Name '(' (MethodParameter || ',')* ')'
185 ('throws' (MCType || ',')+)?
186 ActionBlock ;
187

188 MethodParameter ::= MCType Name ;
189

190 AdditionalAttribute ::=
191 (Name ':')? MCType Card? ;
192

193

194 //#################### Lexer
195

196 LexAlt ::=
197 LexComponent* ;
198

199 LexComponent ::=
200 LexBlock
201 | LexCharRange
202 | LexChar

73

4. MontiCore Grammar for Language and AST De�nitions

203 | LexAnyChar
204 | LexString
205 | LexActionOrPredicate
206 | LexNonTerminal
207 | LexSimpleIteration
208 ;
209

210 LexBlock ::=
211 '~'? '('
212 (LexOption ':' | LexOption? 'init' ActionBlock ':')?
213 (LexAlt || '|')+ ')' ('?'|'*'|'+')? ;
214

215 LexCharRange ::= '~'? Char '..' Char ;
216

217 LexChar ::= '~'? Char ;
218

219 LexAnyChar ::= '.' ;
220

221 LexString ::= String ;
222

223 LexActionOrPredicate ::=
224 '{' ExpressionPredicate '}' '?' ;
225

226 LexNonTerminal ::= Name ;
227

228 LexSimpleIteration ::=
229 (LexNonTerminal | LexString | LexChar | LexAnyChar)
230 ('?'|'*'|'+') ('?')? ;
231

232 LexOption ::=
233 'options' '{' Name '=' Name ';' '}' ;
234

235

236 //#################### Symbol Table
237

238 SymbolDefinition ::=
239 'symbol'
240 | 'scope'
241 | 'scope' '(' ('shadowing' | 'non_exporting' | 'ordered')+ ')' ;
242

243 SymbolRule ::=
244 'symbolrule' Name
245 ('extends' (MCType || ',')+
246 | 'implements' (MCType || ',')+
247)*
248 ('=' (GrammarMethod | AdditionalAttribute)*)? ';' ;
249

250 ScopeRule ::=
251 'scoperule'
252 ('extends' (MCType || ',')+
253 | 'implements' (MCType || ',')+
254)*

74

4.6. EBNF of the MCG Language

255 ('=' (GrammarMethod | AdditionalAttribute)*)? ';' ;
256

257

258 // #################### External Productions
259

260 ActionBlock ::= '{' Action '}' ;
261

262 Action ::= ... ;
263

264 ExpressionPredicate ::= ... ;
265

266 MCConcept ::= ... ;
267

268 // #################### Types and References
269

270 QualifiedName ::= (Name ||'.')+ ;
271

272 MCType ::= ...;

Listing 4.40: EBNF of the MontiCore grammar MCG

Tip 4.41: The MontiCore Grammar

The full and reusable MontiCore grammar can be found in the MontiCore repos-
itory here:

Files1 Repository: MontiCore/monticore github
2 Directory: monticore-grammar/src/main/grammars/
3 Files: de.monticore.grammar.Grammar.mc4
4 de.monticore.grammar.Grammar_WithConcepts.mc4

The latter grammar also includes several additional concepts that help to control
the parsing process and related issues.

75

Chapter 5

Abstract Syntax Tree

A MontiCore grammar de�nes the concrete and abstract syntax (AST) of a language in
an integrated fashion. Thus, lexer, parser and the classes for the abstract syntax can be
automatically derived. This chapter explains the structure of the AST classes derived from
a MontiCore grammar.

Besides the AST classes and the parser, MontiCore also generates builders and other helpful
classes by deriving them from a grammar. The generated �les for any given grammar are
summarized in Table 5.1. They can be found in the output folder located in the target
package plus the subpackage given in Table 5.1.

Table 5.1: Files generated from a grammar

File(s) for Explanation Subpackage

AST Classes Classes are generated by MontiCore _ast
and instantiated during parsing

Parser and Lexer Read a �le and produce AST _parser
Node Builders Used to create AST objects (must _ast

also be used to create AST objects
by hand). They can be modi�ed to
inject handcoded AST subclasses.

Mill For providing builders -

Visitors For traversing the AST _visitor
and the symboltable
(see Chapter 8)

Symboltable Symbols, scopes, visitors and _symboltable
symboltable serialization
(See Chapter 9)

Context Condition Environment to implement
Infrastructure context conditions _cocos

(See Chapter 10)

CD Representation Help understanding the grammar report (no subpackage,
of the Grammar and AST structure next to the grammar

(for documentation) package)

5. Abstract Syntax Tree

5.1 Mapping Nonterminals to the AST

As described in Chapter 4 a production de�nes a nonterminal. It comprises a nonterminal
on the left-hand side and the production body on its right-hand side. For every nonterminal
de�ned in a grammar an AST class is generated. Nonterminals on the right-hand side of a
production result in compositions (cf. Figure 5.2). If a nonterminal occurs more than once
or has a cardinality greater than 1, there is an s added to the derived name, i.e. State*
is equivalent to states:State* with the exception of some trailing s di�ering at the
end of some of the methods. Nonterminals that are marked with a * or + will result in list
attributes. Furthermore, several equally named nonterminals are grouped and result in one
single list (cf. Figure 5.2). As a consequence, nonterminals that should be distinguishable
need to be named explicitly with di�erent names.

Prof. Dr. B. Rumpe

Lehrstuhl für

Software Engineering

RWTH Aachen

Page 2

Sequences of Nonterminals in the AST

MG AST-CD

S = x:A "::="

y:A "--" (y:A | ",")*;
S Ax

*

y

1

S A
S = x:A y:A*;

A = "...";

x

*
y

1

Figure 5.2: Sequences of nonterminals in the AST

Optional nonterminals, i.e., nonterminals marked with a question mark or within an alter-
native, are mapped to Java Optionals of the type of the nonterminal (cf. Figure 5.3).
If the Optional is present then the nonterminals occurred in the parsed model. If a
nonterminal occurs several times (even optionally), e.g. A? A?, it is also stored in a list.

Prof. Dr. B. Rumpe

Lehrstuhl für

Software Engineering

RWTH Aachen

Page 3

Optional Nonterminals

MG

A = B? C? C?;

B = "x";

C = (D | E);

is marked as optional

are optional due to the alternative

AST-CD

C
Optional<D> d

Optional<E> e

A
Optional b

List<C> cList

is a list because it is marked as optional two times

Figure 5.3: Optional nonterminals

Storage in lists is e�cient, but forgets some of the information e.g. the order of interleaving.
For example in the pathological cases (A|A) or (A|B)* the alternative taken respectively
the order in which As and Bs occur cannot be fully reconstructed from the AST. In this
case, restructuring the grammar helps.

Finally, tokens de�ned by regular expressions over characters are mapped to Strings. Con-
sider the prede�ned Name token, for example, it does not map to an AST class ASTName
and thus is mapped to a String attribute, when used within a production body.

78

5.2. Interface and Abstract Nonterminals

5.2 Interface and Abstract Nonterminals

Interface and abstract nonterminals are mapped di�erently to the AST. In the AST an
interface nonterminal Imaps to a Java interface I (actually ASTI). If there is a nonterminal
A that implements I (cf. Figure 5.4), ASTA will implement ASTI. Hence, although the
grammars in Listing 4.19 (p. 51) and 4.20 (p. 51) are equivalent regarding the concrete
syntax, their AST data structures di�er signi�cantly.

Similarly, an abstract nonterminal B maps to an abstract Java class B (actually ASTB).
Thus, the nonterminal AutomatonElement in Figure 5.5 is mapped to an abstract class
AutomatonElement in Java. Usually other nonterminals implement or extend those
nonterminals, which will be explained in Section 5.3.

Prof. Dr. B. Rumpe

Lehrstuhl für

Software Engineering

RWTH Aachen

Page 4

Inheritance: Abstract Syntax

«interface»
I A

A

S A

A = "...";

interface I;

A implements I = "...";

S = "...";

A extends S = "...";

«interface»

I

«interface»

J

interface J extends I;

interface I;

MG AST-CD

Figure 5.4: How interfaces in a grammar map to the abstract syntax
Prof. Dr. B. Rumpe

Lehrstuhl für

Software Engineering

RWTH Aachen

Page 5

Abstract Nonterminals

Parser

«abstract»

AutomatonElement

MGabstract AutomatonElement;

State extends AutomatonElement = "..." ;

Transition extends AutomatonElement = "..." ;

TransitionState

State = "..." ;

Transition = "..." ;

AutomatonElement =

State | Transition;

mapped to
an abstract
class

AST-CD

Figure 5.5: How abstract nonterminals in a grammar map to abstract classes

5.3 Extending Nonterminals: astimplements, astextends

The extension mechanism for the AST is straightforward (cf. Figure 5.7 and 5.4). The
keyword extends directly maps to an extension on the AST classes. Interface nontermi-

79

5. Abstract Syntax Tree

Tip 5.6: Interface and Abstract Nonterminals

Interfaces and abstract nonterminals help in structuring the grammar in order to
keep it readable and manageable.

Even more important is that they are excellent mechanisms to extend a language
(cf. Section 5.3 and Chapter 7).

They also help in structuring the abstract syntax, represented in a set of classes
and interfaces. Therefore a well structured AST is based on a good structure of the
grammar.

nals map to Java interfaces. And thus the nonterminal extension on interfaces also maps to
Java interface extension. Therefore, unsurprisingly: Normal productions (cf. Section 4.2.6)
can only be extended by normal productions, while abstract productions can be extended
by normal and abstract productions. Interfaces (cf. Section 4.2.4) can only be extended
by interfaces (cf. Section 4.4), but implemented by normal and abstract nonterminals.

Prof. Dr. B. Rumpe

Lehrstuhl für

Software Engineering

RWTH Aachen

Page 6

Subclassing in the AST

MG AST-CD

S B

A = "foo" ;

S extends A = "bar" y:B* ;
*

y

S inherits all productions of form
„A = …“ (in addition to those
defined explicitly for S)

A

Figure 5.7: Productions extending other productions

The MCG grammar format allows adding interfaces or super classes to the AST classes
without any impact on the concrete syntax. To add an interface to an AST class the
keyword astimplements is used. The keyword astextends is used to extend AST
classes (i.e. derived from normal nonterminals) by other Java classes and AST interfaces
by other Java interfaces.

astimplements and astextends can only be used when followed by a Java class or
interface respectively. They are directly realized in the structure of the generated AST (cf.
Figure 5.8 and 5.9).

In the astimplements statement any Java interface, e.g. Observer, also including
interfaces derived from the grammar, e.g. ASTI, can be used. However, some restrictions
do apply. For instance, given B astimplements IF, the Java interface IF enforces its
methods being implemented by the class ASTB (cf. Figure 5.8). There are three options:
(1) the nonterminal B is declared as abstract, (2) the missing methods are added using the
astrule statement or (3) a handwritten version of class ASTB is provided that implements
these methods (see Section 5.10).

The Java class CL in the statement B astextends CL also obeys restrictions. Because
Java only allows single inheritance, the astextend statement lets CL replace the normal
superclass, which is directly or transitively a subclass of ASTCNode. Therefore, CL must

80

5.4. Extending the Abstract Syntax Implementation
Prof. Dr. B. Rumpe

Lehrstuhl für

Software Engineering

RWTH Aachen

Page 7

Implements in Abstract and Concrete Syntax

ParserMG AST-CD

«interface»

I

Ainterface I;

A implements I = "x";

B implements I = "y";

B

A = "x";

B = "y";

I = A | B

«interface»

I

Ainterface I;

A implements I = "x";

B astimplements Observer = "y";
B

A = "x";

B = "y";

I = A«interface»

Observer
Java interface
(i.e. any Java interface, incl. a
generated one, like “ASTA”)

Figure 5.8: Implements in abstract and concrete syntax

Prof. Dr. B. Rumpe

Lehrstuhl für

Software Engineering

RWTH Aachen

Page 8

Inheritance in Abstract and Concrete Syntax

A = "x";

B extends A = "y";

A = "x" | B;

B = "y";

A = "x";

B astextends CL = "y";

A = "x";

B = "y";

A B

CL B

ParserMG AST-CD

Java class

Figure 5.9: Inheritance in abstract and concrete syntax

implement interface ASTNode. For example it could be de�ned as a subclass of ASTCNode.
Thus, it is not possible to use foreign classes, such as Observable. Additionally, in order
to use a Java class or interface which is being extended or implemented by an AST class,
the used Java class must be fully quali�ed in the grammar.

Please note, that the attributes inherited from CL are ignored by MontiCore's standard
functionality, e.g. when parsing. Therefore, the developer is responsible for completing
the object data. Again, this can be done by (1) declaring the nonterminal B abstract, (2)
using the astrule statement for B, or (3) providing a handwritten version of ASTB.

If B is declared as an interface, it is allowed to use arbitrary Java interfaces for IF. For
example in interface B astextends IF, Java interface IF can be chosen freely.

5.4 Extending the Abstract Syntax Implementation

AST rules start with the keyword astrule and enable the de�nition of additional at-
tributes and methods for the generated AST classes, but do not have an impact on the
concrete syntax of the language. The notation is aligned to the grammar format, i.e. AST
rules are de�ned similar to productions but start with the keyword astrule (cf. Fig-
ure 5.10). Here it is also possible to use the keywords astextends or astimplements
as described above.

81

5. Abstract Syntax Tree
Prof. Dr. B. Rumpe

Lehrstuhl für

Software Engineering

RWTH Aachen

Page 9

Extending the AST Structure

«interface»

I
BB = "...";

interface I;

astrule I =

y:B*;

*

y

astrule-statement
adds element to signature of
class I

Figure 5.10: Extending the AST structure

The extensions de�ned with astrule will result in additional method signatures in the
AST interface and corresponding attributes and methods implementations in the AST
classes for all implementing productions.

Prof. Dr. B. Rumpe

Lehrstuhl für

Software Engineering

RWTH Aachen

Page 10

Additional Attributes

grammar Automata {

Automaton = "automaton" Name

"{" (State | Transition)* "}" ;

State = "state" Name

("<<" ["initial"] ">>" | "<<" ["final"] ">>")* ";" ;

Transition = from:Name "-" input:Name ">" to:Name ";" ;

astrule State =

reachableState:State*;

}

MG

State

boolean initial

boolean final

String name

List<State> reachableStates

Automaton

String name

Transition

String from

String input

String to

* *

additional attribute
in the abstract syntax
(not part of the
concrete syntax)

AST-CD

Figure 5.11: Adding attributes in the AST with the astrule statement
Prof. Dr. B. Rumpe

Lehrstuhl für

Software Engineering

RWTH Aachen

Page 11

Additional Methods

grammar Automata {

State = "..." ;

astrule State =

reachableStates:State*

method public boolean isReachable(ASTState s) {

return reachableStates.contains(s);

};

}

MG

State

List<State> reachableStates

public boolean isReachable(ASTState s)

Automaton

*

AST-CD

...

...

additional method
(including implementation)

Figure 5.12: Adding methods in the AST with the astrule statement

In AST rules, nonterminals can be used in the same way as they are used in productions (cf.
Figure 5.11). AST rules produce additional attributes and methods in the generated class.
However, this does not a�ect the concrete syntax and when the parsing is complete, any

82

5.5. Terminals in the AST

newly de�ned attributes, like reachableStates, will not have a de�ned value directly
after parsing.

Additional methods are introduced by the keyword method followed by the usual Java
syntax for method declarations (cf. Figure 5.12). If an attribute n (derived e.g. from
nonterminal n:A) was already present within the normal production, the type (e.g. n:B)
speci�ed in the AST rule has precedence. This allows us to override the type chosen by
the attribute derivation.

Tip 5.13: AST Rules, like astextends and astrule

When the resulting abstract syntax (which results in a tree of nodes) does not
fully accommodate the developers needs, additional attributes may be added directly
in the grammar.

After parsing, the AST objects then, however, need to be completed, for example
by using a visitor (see Chapter 8) that �lls all the additional attributes.

Methods can also be added using the astrule statement, but for complex meth-
ods there is a more comfortable approach, using handcoded extensions (see Chap-
ter 14).

Both, methods and getters/setters for attributes that are added using astrule
are visible in the public signature of a generated AST class.

Please note that the mechanism for a handcoded extension of the AST allows roughly the
same e�ects as adding methods in the product. However, it is usually more comfortable
because the handcoded extension can be written directly within a comfortable Java IDE
of your choice.

5.5 Terminals in the AST

As stated before, terminals are usually not part of the abstract syntax. In case a terminal is
semantically relevant, e.g. like a terminal in an alternative, there are two options to mark
it as relevant: (1) Adding an explicit name or (2) surrounding it with square brackets
(cf. Figure 5.14). In the �rst case there will be an attribute with the given name of type
String in the abstract syntax holding the terminal as value (cf. Figure 5.14). The second
variant is usually preferable, as it results in a boolean attribute named like the terminal.
In this case the name of the attribute is derived from the terminal. In Figure 5.14 the
terminal "Hello" is not re�ected by the AST, but the attribute who is. If the terminal in
square brackets is not a suitable attribute name, but e.g. an operator like "++", a name
can be added explicitly within the square brackets.

Please note that terminals marked as relevant are usually optional or part of an alternative.
Otherwise, these terminals are mandatory in the model and thus the attribute will always
hold the same value, providing no information.

83

5. Abstract Syntax Tree
Prof. Dr. B. Rumpe

Lehrstuhl für

Software Engineering

RWTH Aachen

Page 12

Terminals

MG AST-CD

A = "Hello"

(who: "World" | who:"Tom")

"!";

A

String who

MG AST-CD

B = ["initial"]?; B

boolean initial

Figure 5.14: Terminals included in the AST

5.6 Enumerations

A list of terminals within square brackets mimics an enumeration and results in an at-
tribute of type int in the abstract syntax as shown in Figure 5.15. Furthermore, for
each terminal in the alternative there is a constant stored in an extra class created for
such constants (e.g. ASTConstantsGr for a grammar called Gr). If an explicit keyword
name is omitted it is derived automatically from the keyword e.g. PUBLIC from public.
Letters are capitalized. For other symbols, such as "+", there are default names used, e.g.
plus. It is possible to choose the same name for di�erent keywords meaning that they are
semantically equivalent as shown in Figure 5.15 for "+" and "public". Since no name
can be determined for the constant group, the group is given the name vis .Prof. Dr. B. Rumpe

Lehrstuhl für

Software Engineering

RWTH Aachen

Page 13

Multiple Alternate Keywords

MG AST-CD

grammar Example {

A =

vis:[PUBLIC:"+" | "public" |

PRIVATE:"-" | "private"];

}

ConstantsExample

DEFAULT = 0;

PUBLIC =1;

PRIVATE = 2

A

int visIf several values can be
chosen, they are represented
by int constants

Figure 5.15: Choice of one of several values stored as int

In the grammar an enumeration introduced by the enum keyword results in an explicit
Java enumeration holding the corresponding constants (cf. Figure 5.16). Enumeration
nonterminals are used in productions like other nonterminals. Again, it is possible to use a
keyword in an enumeration repeatedly, because alternatives with equal names are mapped
to the same constant.

84

5.7. ASTNode: A Base Interface for AST Classes
Prof. Dr. B. Rumpe

Lehrstuhl für

Software Engineering

RWTH Aachen

Page 14

Keyword Enumeration

MG AST-CD

enum VISIBILITY =

PUBLIC:"+" | "public" |

PRIVATE:"-" | "private" ;

A = vis:VISIBILITY;

«enum»

VISIBILITY

PUBLIC

PRIVATE

A

VISIBILITY vis
enumerations

Figure 5.16: Explicit de�nition of an enumeration

5.7 ASTNode: A Base Interface for AST Classes

All AST classes implement a common interface called ASTNode (cf. Figure 5.18). This
interface, respectively the default implementations behind it, allows us to compare AST
nodes, store comments from the original �le and the source position, from where the AST
node and its substructure has been parsed.

The ASTNode interface shown in Figure 5.17 provides the common signature implemented
by all AST classes.

Java �RTE� ASTNode1 public interface ASTNode {
2 // Cloning
3 ASTNode deepClone(ASTNode result);
4 ASTNode deepClone();
5

6 // Forms of equalities
7 boolean equalAttributes(Object o);
8 boolean equalsWithComments(Object o);
9 boolean deepEquals(Object o);
10 boolean deepEqualsWithComments(Object o);
11 boolean deepEquals(Object o, boolean forceSameOrder);
12 boolean deepEqualsWithComments(Object o, boolean forceSameOrder);
13

14 // Managing the attached source position (start)
15 boolean isPresent_SourcePositionStart();
16 SourcePosition get_SourcePositionStart();
17 void set_SourcePositionStart(SourcePosition start);
18 void set_SourcePositionStartAbsent();
19

20 // Managing the attached source position (end)
21 boolean isPresent_SourcePositionEnd();
22 SourcePosition get_SourcePositionEnd();
23 void set_SourcePositionEnd(SourcePosition end);
24 void set_SourcePositionEndAbsent();
25

26 // Managing attached comments
27 boolean add_PreComments(Comment precomment);
28 // in total ~30 methods for managing List<Comment> pre
29

85

5. Abstract Syntax Tree

30 boolean add_PostComments(Comment postcomment);
31 // in total ~30 methods for managing List<Comment> post
32 }

Listing 5.17: Signature of the ASTNode superclass of all AST nodes

There are several groups of methods available in the interface ASTNode: There are methods
for cloning and checking the quality of two nodes respectively node hierarchies (ll. 3�. and
ll. 7�.). By default, the deepEqualsmethods enforce the same order of children occurring
in the AST, but the comparison with a boolean stating whether the order should be
considered can also be used.

The source position is internally stored as an optional and thus the usual four methods
for their management are provided. Because the source position consists of start and end,
we have in total eight methods (ll. 15�. and ll. 21�.). The source position is usually only
set by the parser, which knows where the AST node comes from. The AST also stores
comments before and after an AST node. Both may be a list with more than one element.
ASTNode thus provides over 30 methods for list management for the comments before and
after a node. Figure 5.18 shows a part of the signature and data structure of all ASTNodes.

Prof. Dr. B. Rumpe

Lehrstuhl für

Software Engineering

RWTH Aachen

Page 15

MontiCore AST: Common Base Classes

AST-CD

«interface»

ASTNode

ASTNode deepClone()

boolean deepEquals(Object o)

boolean deepEquals(Object o, boolean considerOrder)

boolean deepEqualsWithComments(Object o)

boolean deepEqualsWithComments(Object o,

boolean considerOrder)

0

Comment

SourcePosition

pre

post *

*

start

end 0..1

0..1

Figure 5.18: Common interfaces of AST classes

For a default implementation of several functions provided by ASTNode objects, the Mon-
tiCore runtime environment also provides an abstract subclass ASTCNode that implements
Cloneable. While it is helpful to know that this standard functionality is provided by all
AST objects, in concrete projects they need not be implemented by hand, but the generated
subclasses that are derived from the grammar provide already complete implementations.

Files1 Repository: MontiCore/monticore github
2 Directory: monticore-runtime/src/main/java/
3 Files: de.monticore.ast.ASTNode.java
4 de.monticore.ast.ASTCNode.java

5.8 Generated ASTNode Subclasses

Given a production, one can schematically infer the interface provided by the subclass
of ASTNode that is created. We demonstrate this on the ASTState class derived from

86

5.8. Generated ASTNode Subclasses

the State production (from an enhanced automaton, where states can have priorities,
sub-states and transitions enclosed in curly brackets):

MCG Automata31 State = "state" Name prio:NatLiteral?
2 (["initial"] | ["final"])*
3 (("{" (State | Transition)* "}") | ";") ;

The signature of the generated class ASTState directly implements all functions to access
the parsed information, that is retrieved from the right-hand side of the production. The
class furthermore implements all methods from ASTNode and it also provides functions
that allow to deal with the language speci�c symbol and scope structure. This will be
discussed in Chapter 9. Listing 5.19 and 5.20 show the (beauti�ed) signature without the
method bodies.

Java �gen� ASTState1 package automata3._ast;
2

3 public class ASTState extends ASTCNode implements ASTAutomata3Node
4 {
5 // Storing the parsing result:
6 protected String name;
7 protected Optional<ASTNatLiteral> prio = Optional.empty();
8 protected List<ASTState> states = new ArrayList<>();
9 protected List<ASTTransition> transitions = new ArrayList<>();
10 protected boolean initial;
11 protected boolean r__final;
12

13 // Constructor (but we use builders):
14 protected ASTState();
15

16 // Visitor management:
17 void accept(Automata3Traverser visitor);
18 void accept(MCBasicsTraverser visitor);
19 void accept(MCCommonLiteralsTraverser visitor);

Listing 5.19: Signature of the generated AST class to represent states: part 1

Like any other nonterminal, ASTState extends the MontiCore RTE class ASTCNode.
Furthermore, each grammar generates an abstract interface ASTAutomata3Node named
after the grammar. While this interface is empty it can be used by visitors that want to
visit exactly all nodes de�ned in a certain grammar.

The attributes de�ned in ll. 5�. of Listing 5.19 are protected, only accessible and manipu-
latable through the in Listings 5.20 and 5.21 described get and set functions. There exists
only the empty constructor (ll. 13�.), but any object of that class should be de�ned by
using the generated builders (see Section 5.9).

For each directly or indirectly included grammar the node also provides an appropriate
accept method (ll. 16�.), which allows the object to participate in the visitor pattern (see
Chapter 8) and also to reuse visitors of the imported languages within the new composed
language. Here, the Automata grammar relies on MCBasics and MCCommonLiterals.

87

5. Abstract Syntax Tree

When a nonterminal is marked as interface or abstract, then the resulting class is
also an interface or abstract. In case of an interface, only the signature of methods is
provided and the attributes are deferred to the implementing classes. In Listing 5.20 the
second part of class ASTState is shown.

Java �gen� ASTState1

2 // Treatment of children and semantically relevant terminals:
3 String getName();
4 void setName(String name);
5

6 // Optional attributes have four methods:
7 boolean isPresentPrio();
8 ASTNatLiteral getPrio();
9 void setPrio(ASTNatLiteral prio);
10 void setPrioAbsent();
11

12 boolean isInitial();
13 void setInitial(boolean initial);
14

15 boolean isFinal();
16 void setFinal(boolean r__final);
17 }

Listing 5.20: Attribute management signature of a generated AST class: part 2

For each nonterminal with a mandatory occurrence one get and one set method is generated
to allow access to the attribute. Lines 3�. show this for nonterminal Name. The set function
is based on the general principle, that null is never used as a value.

For all nonterminals that may occur in cardinality di�erent from 1, a number of additional
methods is generated that directly re�ect the functionality of the implementation. That
means all functions for Lists and Optionals are directly available within the ASTNode
preventing that direct access would be necessary. Optional attributes have four methods
and List attributes more than 30 methods in total (see Java's List methods).

If the attribute is optional, like prio (marked with a "?"), then a method allows us to
question the presence (l. 7 in Listing 5.20) and another method allows us to set the value
to absent (l. 10). Please also note that there is one get method for an optional attribute:
getPrio which issues an error message and raises an exception, if the value is absent.
getPrio thus must be guarded by isPresentPrio.

Line 12 shows, how optional, but semantically relevant terminals are managed. And line 15
demonstrates how MontiCore wraps a Java keyword that coincidentally also occurred in
the grammar as keyword: it maps "final" to "r__final".

For a nonterminal with cardinality greater than one, MontiCore uses a List for imple-
mentation and provides the full List signature consisting of about 30 methods to access
and manipulate the list, without having developers to explicitly handle the list. For each
attribute a full set of List methods is generated. To distinguish the methods they are
attached with the nonterminal name and if several objects are involved also with an ad-
ditional "s". The advantages of these methods are that, on the one hand, writing code

88

5.8. Generated ASTNode Subclasses

against the AST is more e�cient and on the other hand, each of these methods can easily
be adapted with handwritten code, e.g. disallowing certain manipulations or enforcing
consistency vs. additional objects or back-links that create redundancy. The signature for
the Transition* attributes is depicted in Listing 5.21.

Java �gen� ASTState1 void clearTransitions();
2 boolean addTransition(ASTTransition element);
3 boolean addAllTransitions
4 (Collection<? extends ASTTransition> collection);
5 boolean removeTransition(Object element);
6 boolean removeAllTransitions(Collection<?> collection);
7 boolean retainAllTransitions(Collection<?> collection);
8

9 boolean containsTransition(Object element);
10 boolean containsAllTransitions(Collection<?> collection);
11 boolean isEmptyTransitions();
12 int sizeTransitions();
13

14 void addTransition(int index, ASTTransition element);
15 boolean addAllTransitions(int index,
16 Collection<? extends ASTTransition> collection);
17 ASTTransition setTransition(int index, ASTTransition element)
18 ASTTransition getTransition(int index);
19 int indexOfTransition(Object element);
20 int lastIndexOfTransition(Object element);
21 ASTTransition removeTransition(int index);
22 List<ASTTransition> subListTransitions(int start, int end);
23

24 Iterator<ASTTransition> iteratorTransitions();
25 ListIterator<ASTTransition> listIteratorTransitions();
26 ListIterator<ASTTransition> listIteratorTransitions(int index);
27 void forEachTransitions(Consumer<? super ASTTransition> action);
28 Spliterator<ASTTransition> spliteratorTransitions();
29 boolean removeIfTransition
30 (Predicate<? super ASTTransition> filter);
31 void replaceAllTransitions(UnaryOperator<ASTTransition> operator);
32 void sortTransitions
33 (Comparator<? super ASTTransition> comparator);
34

35 ASTTransition[] toArrayTransitions(ASTTransition[] array);
36 Object[] toArrayTransitions();
37 Stream<ASTTransition> streamTransitions();
38 Stream<ASTTransition> parallelStreamTransitions();
39

40 boolean equalsTransitions(Object o);
41 int hashCodeTransitions();
42

43 List<ASTTransition> getTransitionList();
44 void setTransitionList(List<ASTTransition> transitions);

Listing 5.21: Signature for a List attribute in a generated AST class: part 3

89

5. Abstract Syntax Tree

Almost all methods are direct delegators to the internally used List. Only the last two
(l. 43�. in Listing 5.21) allow to retrieve the complete list or set a new list. We include
the last two methods, because we generally assume that users are experienced, but would
suggest to use the �rst 29 methods only and refer to Java's List implementation to
understand their e�ect. Finally, each AST object implements the mechanisms to compare
and clone it (cf. Listing 5.22).

Java �gen� ASTState1

2 boolean deepEquals(Object o);
3 boolean deepEquals(Object o, boolean forceSameOrder);
4 boolean deepEqualsWithComments(Object o);
5 boolean deepEqualsWithComments(Object o, boolean forceSameOrder);
6

7 boolean equalAttributes(Object o);
8 boolean equalsWithComments(Object o);
9

10 ASTState deepClone();
11 ASTState deepClone(ASTState result);
12 }

Listing 5.22: Comparison and cloning in a generated AST class: part 4

The set of deepEquals in ll. 2f of Listing 5.22 allows to compare entire AST trees
including all sub-objects. Its variants allow to control, whether orders in list are relevant,
which is the default in deepEquals(o). Variant deepEqualsWithComments also
checks comments, but none of the variant checks source code positions.

The deepClone function in l. 10 of Listing 5.22 produces a copy of the com-
plete AST structure including copies of all sub-objects within the AST. The method
equalAttributes only checks the attributes with cardinality one, enumerations and
simple types, but omits comparison of nonterminal types, Lists and Optionals.

Tip 5.23: EMF (Eclipse Modeling Framework) Integration is Available

MontiCore is a standalone tool infrastructure.
But if desired, the MontiCore generator can generate signatures for the AST node

classes in such a form that they conveniently integrate into the Eclipse Modeling
Framework (EMF) [SBPM08] infrastructure.

Among others, this changes the storage of object lists to use
EObjectContainmentEList, de�nes functions such as eGet, eSet, eUnset,
eIsSet, eBaseStructuralFeatureID, eDerivedStructuralFeatureID
and adds noti�cations using eNotify when something changes in the AST e.g.
through a setter method.

The following example in Listing 5.24 shows the methods and their signature provided in
addition to the extended generation of AST classes, generated to be EMF compatible:

90

5.9. Node Construction Using the Node Builder Mill

Java �gen� ASTState (EMF-Version)1 package automata3._ast;
2

3 public class ASTState extends de.monticore.emf._ast.ASTECNode
4 implements ASTAutomata3Node
5 {
6 // Storing the parsing result:
7 protected String name;
8 protected Optional<ASTNatLiteral> prio = Optional.empty();
9 protected List<ASTState> states =
10 new EObjectContainmentEList<ASTState>(
11 ASTState.class, this,
12 Automata3Package.ASTState_States);
13 protected List<ASTTransition> transitions =
14 new EObjectContainmentEList<ASTTransition>(
15 ASTTransition.class, this,
16 Automata3Package.ASTState_Transitions);
17 protected boolean initial;
18 protected boolean r__final;
19

20 // other methods omitted, because they are not changed
21

22 // EMF ;
23 Object eGet(int featureID, boolean resolve, boolean coreType);
24 void eSet(int featureID, Object newValue);
25 void eUnset(int featureID);
26 boolean eIsSet(int featureID);
27 int eBaseStructuralFeatureID(int featureID, Class<?> baseClass);
28 int eDerivedStructuralFeatureID(int featureID, Class<?> baseClass

);
29 }

Listing 5.24: EMF version of the ASTState class signature

5.9 Node Construction Using the Node Builder Mill

New AST nodes are constructed using builders that are available through a static delegator
pattern (cf. Section 11.1). A node builder mill provides builders for each nonterminal that
is de�ned in the grammar of a language. Therefore, the concrete signature varies depending
on the nonterminals of a language and their structure.

The following Listing 5.25 shows the signature of the AutomataMill created for the
example language for �nite automata (cf. Section 21.1). A node builder mill provides a set
of static create methods that delegate to internal builder create methods. The two staged
builder process is necessary to allow builders to be adaptable in a language composition.
That means methods relying on the builder mill of a sublanguage can be applied in a
composed language without modi�cation.

91

5. Abstract Syntax Tree

Java �gen� AutomataMill1 package automata;
2

3 public class AutomataMill {
4

5 static ASTAutomatonBuilder automatonBuilder();
6

7 static ASTStateBuilder stateBuilder();
8

9 static ASTTransitionBuilder transitionBuilder();
10 }

Listing 5.25: Signature of the builder mill for all Automaton AST classes

A method, like stateBuilder, creates a builder object that is responsible to create a
state object, i.e., from class ASTState or a subclass thereof.

As usual, the builder class itself provides methods to set the attributes individually before
the object is created. Please note that an AST node always has attributes for comments,
source position, and potential links to a scope and a symbol that the AST node de�nes.
Therefore, an AST node builder provides methods to manage these as well. Listing 5.26
demonstrates this on a builder for the nonterminal State.

In general, these methods do not di�er from the methods generated for the class ASTState,
but have one important di�erence: Where the method in the class ASTState has the
return type void or is the boolean result of an add operation, the corresponding builder
method returns the builder itself. This is helpful for a chaining of calls for a builder b,
such as b.setName("Ping").setInitial(true).addTransitions(x)1.

A comparison of the ASTStateBuilder in Listing 5.26 and the node ASTState in
Figures 5.20 and 5.21 shows the large overlap of these signatures. Therefore, only the most
important methods are repeated in Listing 5.26.

Java �gen� ASTStateBuilder1 package automata3._ast;
2

3 public class ASTStateBuilder extends
4 ASTNodeBuilder<ASTStateBuilder> {
5 // Setting an attribute
6 ASTStateBuilder setName(String name);
7

8 // Setting a boolean attribute
9 ASTStateBuilder setInitial(boolean initial);
10 ASTStateBuilder setFinal(boolean r__final);
11

12 // Setting an Optional attribute
13 ASTStateBuilder setPrio(ASTNatLiteral prio);
14 ASTStateBuilder setPrioAbsent();
15

1To enable this chaining, we also had to use a generic superclass ASTNodeBuilder, which embodies
the return type of each setter as realBuilder object with the correct type.

92

5.9. Node Construction Using the Node Builder Mill

16 // Setting a List valued attribute
17 ASTStateBuilder setTransitionsList(
18 List<ASTTransition> transitions);
19 ASTStateBuilder clearTransitions();
20 ASTStateBuilder addTransition(ASTTransition element);
21 ASTStateBuilder addAllTransitions(
22 Collection<? extends ASTTransition> collection);
23 ASTStateBuilder removeTransition(Object element);
24 ASTStateBuilder addTransition(int index,ASTTransition element);
25 // ... in total ~30 methods to handle the transition list
26

27 ASTStateBuilder setStatesList(List<ASTState> states);
28 ASTStateBuilder addState(ASTState element);
29 // ... in total ~30 methods to handle the state list
30

31 // Inherited methods for attributes from ASTNodeBuilder
32 // (first for the Optionals)
33 ASTStateBuilder set_SourcePositionStart(SourcePosition start);
34 ASTStateBuilder set_SourcePositionStartAbsent();
35

36 ASTStateBuilder set_SourcePositionEnd(SourcePosition end);
37 ASTStateBuilder set_SourcePositionEndAbsent();
38

39 // Inherited methods for attributes from ASTNodeBuilder
40 // (the Lists of Comments)
41 ASTStateBuilder add_PreComment(Comment element);
42 ASTStateBuilder set_PreCommentList(List<Comment> comments);
43 // ... in total ~30 methods to handle the pre comments
44

45 ASTStateBuilder add_PostComment(Comment element);
46 ASTStateBuilder set_PostCommentList(List<Comment> comments);
47 // ... in total ~30 methods to handle the post comments
48

49 // Is the object contents valid?
50 boolean isValid();
51

52 // Finally constructing the object
53 ASTState build();
54 }

Listing 5.26: Signature of the Builder for State objects: part 1

Line 6 of Listing 5.26 shows how a normal attribute de�ned by the production is treated.
Boolean attributes are handled in a similar way (ll. 9f). For optional attributes, such as
prio, several methods exist (ll. 13f).

List valued attributes, derived from nonterminals with multiplicity higher than 1, can be
set as list, but also through the about 30 methods allowing to manipulate the list, e.g. by
adding individual new elements. Beginning with l. 17 Listing 5.26 shows an excerpt of the
more than 30 methods per list. In the ASTStateBuilder case, each attribute State*
and Transition* have their own 30 methods.

93

5. Abstract Syntax Tree

Starting in l. 33 the signature for setting and manipulating the inherited attributes is
shown. To avoid name clashes, some of the inherited methods have an underscore in their
names.

At the end of each building activity the AST object is created using the build() method.
Please note, that it is possible to use this method several times. Each time a new object
is created, but (if not changed) all objects are containing the same attribute values. In
particular, the children of such objects are shared. When you want to get a complete copy,
please use the deepClone method.

Please also note, that the builder may fail with an exception if not all mandatory attributes
are provided. This can be checked ahead using the isValid method. Internally the build
methods uses this method as well before constructing an ASTs. In case the method returns
false the builder would fail with an error message.

For all optional and list attributes and especially those inherited from ASTCNode, the AST
builder sets defaults. An Optional value is by default absent, a List is empty and a
boolean is false.

While the set and add methods are the most important, it is also possible to retrieve data
stored in the builder. Listing 5.27 shows a small excerpt of the builder for ASTState with
some get methods.

Java �gen� ASTStateBuilder1

2 // Retrieving attribute values
3 String getName();
4 boolean isInitial();
5 boolean isFinal();
6

7 // Retrieving an Optional value
8 ASTNatLiteral getPrio(); // partial
9 boolean isPresentPrio();
10

11 // Some inherited retrieval methods for
12 // attributes from ASTNodeBuilder
13 SourcePosition get_SourcePositionStart();
14 boolean isPresent_SourcePositionStart();
15 SourcePosition get_SourcePositionEnd();
16 boolean isPresent_SourcePositionEnd();
17

18 // Some retrievers for the Transition* attribute
19 boolean containsTransition(Object element);
20 boolean isEmptyTransitions();
21 int sizeTransitions();
22 ASTTransition getTransition(int index);
23 int indexOfTransition(Object element);
24 List<ASTTransition> subListTransitions(int start, int end);
25

26 Iterator<ASTTransition> iteratorTransitions();
27 ListIterator<ASTTransition> listIteratorTransitions();
28

94

5.9. Node Construction Using the Node Builder Mill

29 // get for the full Transition* list
30 List<ASTTransition> getTransitionList();

Listing 5.27: Retrieving methods for a Builder class: part 2

Builder functions for deconstructing an un�nished AST object will rarely be used, but
retrieving already added elements or checking whether an element is already in a list is
sometimes helpful.

In general, tool developers are responsible to ensure that the attributes of the created nodes
will always have correct values. Many MontiCore functions rely on a syntactically correct
AST. In particular, MontiCore functions very rarely deal with null values, because they
assume that absent values are explicitly de�ned as Optionals.

The validity of the AST node can be pre-checked by the above mentioned isValidmethod
and generally corresponds to the de�nition of the production. However, there are con�gu-
rations de�nable by productions that are not checked. For example in alternatives (e.g., A
and B in N = A | B;) it is not checked that exactly one alternative exists, but both are
optional. Furthermore, minimal and maximal values for lists of attributes (e.g., astrule
N = A min = 3 max = 5;) are not checked by the builder and only considered during
parsing. The builder can be manually adapted using the TOP-mechanism to add this
functionality if desired.

Tool developers are strongly encouraged to use builders to create new AST objects to
ensure that the creation process can be replaced, e.g., to use custom node classes. No
initialization is needed for a builder mill; a direct call is possible and encouraged.

However, if a completely new AST is to be built from scratch, then it is sometimes more
e�cient to de�ne a string that contains the concrete model and use a parser to parse the
string for building the AST.

Tip 5.28: Use Node Builders to Enable Reuse

When you manipulate the AST and create new nodes, then you are strongly
advised to use the provided node builders.

This greatly helps to keep the actual implementation of the nodes hidden from
the usage. This is a prerequisite for reusing handwritten code and for a language
component to be embedded in the composite language.

Furthermore, when you want to provide your own handwritten extension and
do not want to use the mechanism described in Section 5.10, then you can adapt
the node builder mill for producing your own version of nodes and others can use
your extra functionality without having to notice. New functions could also take
advantage of the extra functionality.

95

5. Abstract Syntax Tree

5.10 Handwritten Extension of AST Classes and Node
Builders

If the generated AST node classes and builders do not completely ful�ll the needs and,
therefore, often should be extended or overridden with a handwritten implementation. The
following approach (similar but not exactly equal to the approach described in Chapter 14)
is the best.

5.10.1 Handwritten Extension of AST Classes: TOP-Mechanism

To extend e.g. a class ASTState (that would be generated):

1. Create (empty) class ASTState in an arbitrary directory dir (but not in a directory
where generated classes are).

2. Add dir to handcodedPath (of the MontiCore generator).

3. Run the MontiCore generator (again).

4. Let your own class ASTState extend the now existing and newly generated
ASTStateTOP.

5. Adapt ASTState at will.

� Don't forget to initialize additional attributes and to adapt cloning and com-
parison methods.

6. If necessary, also adapt the classes that rely on the changed signature such as builders
or mills, e.g., by using the same TOP mechanism. This usually is necessary, when
attributes have been added.

MontiCore uses a trick here: During generation, it checks in the handcodedPath, whether
the class ASTState that should be generated, has been de�ned by a developer by hand
and therefore already exists. If so, MontiCore does not produce the class ASTState,
but an abstract superclass called ASTStateTOP (cf. Figure 5.29). Figure 5.29 shows an
example of a handwritten AST class State with manually added attribute _reachable
and a method isReachable.

Tip 5.30: Handcoded Extension is easy using the TOP Mechanism

All generated classes Cls, including AST classes, node builder mills, etc., can
be easily extended with handwritten code using the TOP mechanism. When a class
shall be handcoded, then we add it in the handCoded path to tell MontiCore to
include it and also to generate an abstract superclass of the handcoded class instead.

The handcoded class Cls replaces the generated class Cls, which now becomes
generated as ClsTOP. Cls (normally) must inherit from ClsTOP.

There is nothing more to do. See Section 14.3 for details.

This approach brings numerous advantages:

96

5.10. Handwritten Extension of AST Classes and Node Builders
Prof. Dr. B. Rumpe

Lehrstuhl für

Software Engineering

RWTH Aachen

Page 20

Example: Handwritten AST Class State

«gen»

«hc»

ASTStateTOP

boolean initial

boolean final

String name

ASTState

boolean _reachable

public boolean isReachable(State s)

ASTState.StateBuilder

ASTState build()

StateBuilder initial(boolean initial)

StateBuilder r__final(boolean r__final)

StateBuilder name(String name)

creates

«gen»

creates AST objects,
instantiates handwritten classes if present

default implementation

handwritten extension
of default implementation

Tool-CD

AutomataMill

AutomatonBuilder automatonBuilder()

StateBuilder stateBuilder()

TransitionBuilder transitionBuilder()

«gen»

creates (and others…)

Provides Builders

Figure 5.29: Example: Handwritten AST class ASTState injected into the parsing process

� The generated code is still available and can be used.

� The handwritten code is directly integrated into the generated parts, because for
example the node builder mill was not changed and still creates ASTState objects.

� The handwritten code can inject both, new attributes and method implementations,
but also extend the signature of that class making additional functionality externally
usable.

� The AST classes that use ASTState also do not need to be changed, but interact
with the handwritten class.

� The parser directly uses the handwritten class to construct the AST when parsing.

There is a limitation of this approach: After a new handwritten class has been added to the
project, a re-generation is necessary. Incremental approaches do not easily detect that, but
MontiCore keeps track of the classes it has been looking up when generating. If necessary,
cleaning up all generated code before re-generating is radical, but robust.

Please note that we strictly separate generated and handwritten classes in di�erent direc-
tory substructures. This also holds when they belong to the same package. This gives us
the serious advantage of being able to clean up generated code, or re-generate as often as
desired. See also our considerations about agile methodology in Section 1.4.

5.10.2 Handwritten Extension of AST Builders and Mills

For adjusting the AST classes created, it is possible to create a subclass of a node builder
mill and override the instance methods to register di�erent (handcoded) mills for speci�c
kinds of nonterminals. This enables using adaptive mills for the creation of AST objects.
The builder mills use the static delegator pattern (Section 11.1). That means it has a pro-
tected static variable containing an instance of itself to realize the delegation. There is one
builder mill attribute for each nonterminal de�ned in the grammar and one general builder
mill attribute that is used for all missing specialized mills. Therefore, a coarse-grained and

97

5. Abstract Syntax Tree

also a �ne-grained overriding for each type of node is possible. During standard initializa-
tion of a node builder mill all these attributes are initialized with the same instance, but
a replacement by a custom version is possible. For completeness, we include the protected
elements a builder mill provides and that can be used for overriding:

Java �gen� AutomataMill1 package automata;
2

3 public class AutomataMill {
4 // ... only the protected elements
5

6 // attributes store individual builder mills for each node
7 // (but all may be the same instance)
8 protected static AutomataMill mill;
9 protected static AutomataMill millASTAutomatonBuilder;
10 protected static AutomataMill millASTStateBuilder;
11 protected static AutomataMill millASTTransitionBuilder;
12 protected AutomataMill();
13

14 protected ASTAutomatonBuilder _automatonBuilder();
15

16 protected ASTStateBuilder _stateBuilder();
17

18 protected ASTTransitionBuilder _transitionBuilder();
19

20 }

Listing 5.31: Internal structure of the AutomataMill

The same approach can also be applied in combination with the TOP generation mech-
anism, i.e., the developer provides a handwritten class AutomataMill inheriting from
the then generated AutomataMillTOP (cf. Listing 5.31 and 5.32). In such a handcoded
AutomataMill class, only the creator methods need to be overriden. In Listing 5.32, we
assume that MyTransitionBuilder has been implemented accordingly.

Java �hw� AutomataMill1 package automata;
2

3 public class AutomataMill extends AutomataMillTOP {
4

5 @Override
6 protected ASTTransitionBuilder _transitionBuilder() {
7 return new MyTransitionBuilder();
8 }
9

10 }

Listing 5.32: Handcoded extension of the AutomataMill

Please note, that a manually created static AST mill can still be used by developers, when
the language it has been written for is embedded in another language. In a language
composition, the concrete mill is internally used and adapted in such a way, that it creates

98

5.10. Handwritten Extension of AST Classes and Node Builders

objects of appropriate subclasses from the composed language. Hence, the user of an
AST from a sublanguage is not a�ected. This is a core technique to enable reuse of
functionality of sublanguages on composed languages, because the reused algorithm itself
needs no adaptation, not even when creating objects.

99

Chapter 6

Parser Generation and Use

co-authored by Marita Breuer

This chapter explains how to derive a parser from a given grammar and how to integrate
the resulting parser into a DSL tool to read in models. This is mainly done by

1. de�ning a MontiCore grammar as described in Chapter 4,

2. running the MontiCore generator to generate the parser for the language (cf. Sec-
tion 6.1) and

3. using the resulting code, which includes the generated parser, AST, builders, visitors
etc. and the MontiCore runtime in your DSL tool (cf. Section 6.3).

The parser generated for a language contains a general method for parsing models of the
language, i.e., starting with the dedicated start nonterminal (cf. Section 6.3). Furthermore,
it also provides speci�c methods to parse each of the sublanguages de�ned by the other
nonterminals. If not explicitly stated otherwise, the �rst nonterminal de�ned in a grammar
is the start nonterminal.

Sections 6.2 and 6.3 are mainly dedicated to tool developers to get some overview on
how to embed a generated parser in your own tool. In contrast, Section 6.1 is mainly for
someone who wants to use the generator API directly. This is actually on a meta-meta
level (i.e. the level, where the meta-tool resp. the language workbench itself is adapted).
Normally it should be su�cient to call the MontiCore language workbench as a closed tool,
for example using the command line interface (CLI) or the Gradle integration, which are
both explained in Chapter 16.

6.1 Generating a Parser and a Lexer, as done in MontiCore

This section explains the usage of the generator API to generate a parser (i.e. meta-meta
level). Thus, this section explains how the language workbench itself can be adapted.

As said, usually it should be su�cient to call the MontiCore language workbench as a
closed tool, for example using the command line interface (CLI) or the Gradle integration,

6. Parser Generation and Use

which are both explained in Chapter 16. Both provide the same functionality, wrapped
into the externally usable MontiCore tool.

The MontiCore parser generator (see Listing 6.1) is used to generate a parser for a given
language. It can be used as a black box tool as described in Chapter 2. However, the
generation can also be tailored to individual needs. The rest of this section addresses
experienced developers interested in understanding or even adapting the MontiCore meta-
meta-tool itself.

For generating a complete parser for a given grammar, that is already available as an
internal AST, the class ParserGenerator is used (see Listing 6.1).

Files1 Repository: MontiCore/monticore github
2 Directory: monticore-generator/src/main/java/
3 File: de.monticore.codegen.parser.ParserGenerator.java

Listing 6.1: Location of the MontiCore parser generator

Java �MontiCore� ParserGenerator1 public static void generateParser(
2 GlobalExtensionManagement glex,
3 ASTMCGrammar astGrammar,
4 IGrammar_WithConceptsGlobalScope symbolTable,
5 IterablePath handcodedPath,
6 IterablePath templatePath,
7 File targetDir)

Listing 6.2: Method signature used to generate a parser

If the parser generator is used within Java, the method generateParser of the class
ParserGenerator is applicable. It generates a complete parser for the de�ned lan-
guage. The method signature is depicted in Listing 6.2. The method accepts the following
parameters:

1. the infrastructure for generating �les (see Section 13),

2. the AST representation of the grammar that describes a modeling language whose
models should be parsed (see Tip 6.7),

3. the symboltable (see Section 9),

4. a list of paths where handwritten �les are located, e.g., handwritten AST and other
classes (see Section 5.10) meant to be integrated into the generated code,

5. a list of paths for additional FreeMarker templates (see Section 12.1) to customize
the generation process, and

6. the directory in which the generated parser will be created, which is freely selectable.
For instance, it can be "gen/" or "target/".

The parser generator is an important part of the MontiCore language workbench. List-
ing 6.3 demonstrates how the parser generator can be executed.

102

6.1. Generating a Parser and a Lexer, as done in MontiCore

Java �hw� GenerateAutomataParser1

2 // String args[0] contains the name of the input grammar
3 // String args[1] the path for the output directory
4 // Create the AST
5 String filename = args[0];
6 ASTMCGrammar ast = Grammar_WithConceptsMill.parser()
7 .parse(filename).get();
8

9 // Initialize symbol table
10 // (using imported grammars from the model path)
11 ModelPath modelPath = new ModelPath(Paths.get(
12 "target/monticore-grammar-grammars.jar"));
13 IGrammar_WithConceptsGlobalScope gs = Grammar_WithConceptsMill
14 .globalScope();
15 gs.setModelPath(modelPath);
16

17 Grammar_WithConceptsMill.scopesGenitorDelegator()
18 .createFromAST(ast);
19

20 // Hand coded path
21 IterablePath handcodedPath = IterablePath.empty();
22

23 // Template path
24 IterablePath templatePath = IterablePath.empty();
25

26 // Target directory
27 File outputDir = new File(args[1]);
28

29 // Generate the parser
30 GlobalExtensionManagement glex = new GlobalExtensionManagement();
31 ParserGenerator.generateParser(
32 glex, ast, gs, handcodedPath, templatePath, outputDir);

Listing 6.3: Java code creates a parser for automata (using its grammar)

The code block in line 5�. loads the grammar that describes the language. When the AST
is built, it represents only the currently processed grammar without grammars it extends.
Information of these grammars is added in subsequent steps.

The statements in line 12 de�nes where additional grammars are located. In this example
only the MontiCore jar is used and thus only the standard grammars provided by Monti-
Core are available. As a next step, the symbol table is built in line 17�. While constructing
the symbol table, all grammars are loaded and included that our grammar depends on by
the global scope gs.

The statement in line 32 produces the classes for the desired parser in a subdirectory of
the outputDir path. The execution of this block includes the generation of a grammar
in ANTLR [Par13] format (i.e., a .g4-�le) and triggering the parser generator ANTLR
to create a parser for it. But only the created parse algorithm of ANTLR is used. The
generated parser constructs an AST by instantiating AST classes generated by MontiCore.

103

6. Parser Generation and Use

This is achieved by injecting corresponding Java code into the generated parser. This Java
code is complete; the created parser classes just need to be compiled. The .g4-grammar
and a .tokens-�le1 are produced as input for ANTLR. They are just a byproduct of the
generation process and only serve as potential documentation.

The Parser and Lexer Generation Process

Generating a parser internally consists of three consecutive steps producing the �les listed
in Listing 6.4. The output directory, gen in this example, is passed as a parameter while
the package (in this example: a.b.XY) is derived from the grammars package with the
grammars name appended.

Files1 Input parameters:
2 grammar file -- e.g. "a/b/XY.mc4"
3 handcoded path -- list of directories
4 output directory -- e.g. "gen"
5 Inputfile:
6 a/b/XY.mc4 -- a grammar for language XY
7 Output (excerpt):
8 gen/a/b/xy/_parser/
9 XYParser.java -- generated parser
10 XYAntlr.g4 -- intermediate file for ANTLR 4
11 XYAntlrParser.java -- internal parts of parser and lexer
12 XYAntlrLexer.java

Listing 6.4: List of �les produced during the generation of a parser

The following three steps produce the parser:

Step one: In the �rst step an ANTLR �le is created that is used in the following steps as
an input for the ANTLR tool to create a parser and a lexer.

Step two: In the second step the ANTLR tool is executed, which produces a parser and
a lexer consisting of two classes for parsing and lexical analysis. The parser uses the
lexer to tokenize the input (cf. Chapter 4).

Step three: The third step is the generation of a class that provides parser methods for
each nonterminal of the grammar. This class encapsulates the functionality of the
parser generated by ANTLR and should be used for parsing and constructing the
AST objects. It provides methods for the full language as well as for each sublanguage
de�ned by a nonterminal (cf. Section 6.3).

6.2 Interface of the Generated Parser Classes

When the grammar has been processed (either directly calling the API, or the MontiCore
CLI or the Gradle plugin, see 16), then a number of classes provide the interfaces described
below.

1This �le is not detailed here, please refer to [Par13] for further information

104

6.2. Interface of the Generated Parser Classes

First, there is the already known XYMill that allows to retrieve the parser using the
parse() method. The generated parser class XYParser is instantiated as usual through
the XYMill and contains three main methods (cf. lines 2� in Listing 6.5). Those three
methods are used for parsing a complete model. In addition three parsing methods are
created for each nonterminal (cf. lines 7� in Listing 6.5). The methods for nonterminals
are recognizable by their su�x which corresponds to the nonterminal. The methods for
the start nonterminal are equivalent to the ones for the complete model (e.g., called Ax).

Java �gen� XYParser1 // Parsers for the language:
2 Optional<ASTAx> parse(Reader reader);
3 Optional<ASTAx> parse(String filename);
4 Optional<ASTAx> parse_String(String text);
5

6 // and for each nonterminal NT furthermore:
7 Optional<ASTNT> parseNT(Reader reader);
8 Optional<ASTNT> parseNT(String filename);
9 Optional<ASTNT> parse_StringNT(String text);

Listing 6.5: Methods that can be used for parsing

The three types of parsing methods do the following:

1. Method parse(Reader reader) expects the input to be in form of a Reader
(e.g., StringReader). The method processes the reader content.

2. Method parse(String filename) expects an existing �le given as the parameter
�lename of type String. The �le contains the model to be parsed.

3. Method parse_String(String text) parses the content of the given String
directly interpreting the string as a model.

Each of the methods returns an Optional AST representation. In case of parsing errors,
parsing either completely terminates or the method returns an empty Optional (see
Section 15.3 for error management).

As described above, the mill of a language provides a dedicated static method called
parser() to retrieve the parser for the language. Section 11.5 describes the Mill Pattern
that was also already used in Chapter 5 for AST node instantiation. We highly recommend
to use this method whenever a parser for a language is needed such that a mill recon�gura-
tion in extended and composed languages can provide instances of subclasses of the parser
without that the instantiating functionality (for the old, embedded language) notices this.
This is highly relevant, when the languages are composed as explained in Chapter 7.

The parse methods are called as normal methods. Internally, a parser also uses the mill
and builders to create the AST objects. Thus, when composing languages in a conservative
way, i.e., extending the language such that all models of the old language are models of
the new language, the old parser can still be used, to parse the old models, but internally
the AST of the new, extended language is created. That means, in case the language XY
is extended, handwritten code that uses the XYParser for parsing will still be functional
for the old XY models. It thus allows us to process the old models with the old parser and
delivers the new AST through the old XYParser methods.

105

6. Parser Generation and Use

6.3 Executing a Generated Parser

Executing a generated parser usually happens on the meta-level, i.e., within the tool that
helps to create the product. The MontiCore parser generator is not needed for this purpose,
because the MontiCore parser is used at the meta-meta-level. However, the MontiCore
runtime environment (RTE, marked as �RTE�) is needed at the meta-level. The MontiCore
runtime environment is, therefore, packaged in the provided MontiCore jar as well.

Following the previous sections, we now use the generated parser for the language
Automata language (cf. Chapter 4).

As a �rst example, the Automata parser is applied to an input �le in line 5. The parser
returns an Optional value holding the resulting AST if the model is parsed successfully,
or otherwise an absent optional. In line 11, the parser is used to parse another automaton
provided as a StringReader. Line 14 demonstrates how the parser can be used to parse
the content of a String. Finally, line 17 demonstrates how to parse a model part, e.g., a
State, only.

Java �hw� AutomataParseDemo1 String filename = "example/PingPong.aut";
2 AutomataParser p = new AutomataParser();
3

4 // parse from a file
5 Optional<ASTAutomaton> at = p.parse(filename);
6

7 // parse from a Reader object
8 String aut = "automaton PingPong {"
9 + "state Ping;"
10 + "}";
11 at = p.parse(new StringReader(aut));
12

13 // another parse from a String
14 at = p.parse_String(aut);
15

16 // parse for a sublanguage, here: a State
17 Optional<ASTState> s = p.parse_StringState("state Ping;");

Listing 6.6: Various forms of parsing

The Automata parser reads a �le (or string) and constructs the AST corresponding to
the model of the Automata language. As described before, if the input model was not
syntactically well-formed, the result is absent and at least one error message is issued
through the standard error message channel. See Section 15.3 for a detailed description
and an explanation on how to con�gure the error handler. In case of unexpected, internal
errors, an exception is thrown in addition to a message to the error handler and immediate,
erroneous exit of the tooling is triggered. Please note that the Automata parser neither
checks context conditions nor resolves references to other models (see Chapter 9 and 10).

106

6.3. Executing a Generated Parser

Tip 6.7: MontiCore Grammar Parsing

Caution: Here we are entering circular meta-meta levels.
The MontiCore tool parses grammars. All grammars belong to the Grammar

language, which itself is de�ned as grammar. The MontiCore parser, therefore, is
itself a parser generated by MontiCore, using the grammar de�ned in

Files1 Repository: MontiCore/monticore github
2 Directory: monticore-grammar/src/main/grammars/
3 File: -- grammar describing how MontiCore grammars look like
4 de.monticore.grammar.Grammar_WithConcepts.mc4
5 Directory: monticore-grammar/target/generated-sources
6 /monticore/sourcecode
7 File: -- MontiCore uses this Parser
8 de.monticore.grammar.grammar_withconcepts._parser.
9 Grammar_WithConceptsParser.java

Listing 6.8: Where to �nd the MontiCore grammar grammar

One meta-level down: If needed, a grammar can be parsed as shown in the listing
below. We use the Automaton grammar as example (cf. Chapter 7).

Java �hw� GrammarParseDemo1 String model = "Automaton.mc4";
2 Grammar_WithConceptsParser parser =
3 Grammar_WithConceptsMill.parser();
4 Optional<ASTMCGrammar> result = parser.parse(model);
5 ASTMCGrammar grammar = result.get();

The grammar parser reads the �le (or String) and constructs the grammar AST
that contains all essential information present in the source. If the grammar was
not syntactically well-formed, the result is absent and at least one error message has
been issued through the standard error message channel.

107

Chapter 7

Language Composition

Language composition is one of MontiCore's key concepts. In this chapter we �rst discuss
the motivation for language composition and give a high-level overview of how MontiCore
achieves this. Then we discuss in detail how MontiCore composes grammars and which
e�ects this has on the concrete and the abstract syntax that the grammars de�ne.

Further techniques for composition can be found in the respective chapters, namely visitors
(Chapter 8), symbol management infrastructure (Chapter 9), context conditions (Chap-
ter 10), and a generator backend (Chapter 13).

7.1 Introduction to Language Composition

From best practices in Software Engineering, we know that the monolithic de�nition of
large artifacts leads to many problems in maintaining, evolving, and reusing assets that
have been developed. Programming became more productive when the languages started
to support encapsulated implementations and to provide these to other developers through
explicitly speci�ed interfaces. Modularity is a key technique for reuse. In modern object-
oriented programming, it is a key technique to encapsulate a piece of data structure together
with the functions operating on it within classes. This considerably enhances black-box
reuse as well as evolution of programs where changes can be better localized within a
smaller part of the program.

It is generally predicted that a wider spread of software languages will occur for many
di�erent areas far beyond software development. Domain speci�c languages (DSLs), e.g.,
are used to model brains [PBI+16] as well as many other simulations of complex domains
with a multitude of di�erent aspects being described in di�erent languages. DSLs are used
to specify products, production work�ows, scienti�c artifacts, economically usable data
sets, and much more.

To be able to e�ectively engineer an appropriate software language, reuse on the language
level is very important [CFJ+16, CBCR15]. Therefore, MontiCore o�ers an extensive set
of mechanisms to de�ne modular artifacts and reuse these either as black-box or in an
enhanced and re�ned form within larger languages.

Language components are made for language composition. A language component is a
reusable encapsulation of a, possibly incomplete, language [CBCR15]. A language com-
ponent usually includes a grammar to de�ne the language. The (normal) nonterminals

7. Language Composition

provided in this grammar and the additional infrastructure for symbol management and
code generation act as "provided language interfaces", and the external nonterminals act
as "required language interfaces". Interface nonterminals, interestingly, can be used as
provided language interfaces, but also may be acting as extension points and therefore as
required languages interfaces.

The MontiCore language workbench supports four language composition mechanisms �
details follow after this overview in the rest of the chapter:

Language aggregation means that several artifacts of di�erent languages are used to-
gether to describe aspects of the target domain. While the processed artifacts remain
separated and can thus individually be edited, compiled etc., they describe a com-
mon target and thus need to be consistent and sometimes also need to be mapped
to integrated simulation or code artifacts. This imposes restrictions on the artifacts,
which can only be understood if the tooling allows an integrated understanding on
the abstract syntax, context conditions, symbols, etc. (Example: class diagrams and
Java).

Language embedding combines the languages into integrated model artifacts in the fron-
tend, but is otherwise on the backend very similar to language aggregation. That
means one single model, which is stored in one artifact, may consist of several sublan-
guages, which have been developed independently, but now de�ne the overall model
together (Example: Expressions in automata). Language embedding composes the
languages even more tightly because it also composes the concrete syntax, which
enforces a tighter composition of the tooling, including the editors.

Language inheritance is a technique to reuse a language while allowing to modify some
language elements. The amount of modi�cations within the reused language a�ects
reusability of the original models, etc. The new language is de�ned while reusing
knowledge and implementation of the old language.

Language extension is a conservative form of language inheritance, which leads to a higher
degree of black-box reuse. Basically, it abstains from dangerous forms of overriding of
existing nonterminals. Therefore, it is discussed in the forthcoming chapters together
with language inheritance (Example: Java code also compiles with new versions of
the compilers.)

In a language aggregate and a language embedding, we also speak of sublanguages instead
of only language components that are embedded or participate in an aggregation.

It is important to notice that the key focus is to reuse languages and the functionalities
operating on these languages that have been developed and even compiled independently.
The reused languages are now embedded as components or aggregated with a minimal set
of external adaptations while no changes of the reused language components themselves
are necessary.

The focus on reusability is not only on the generated parts, but also on handcoded ex-
tensions of the generated language infrastructure and in particular on algorithms coded
against that language infrastructure. Algorithms transforming and extending the AST of

110

7.1. Introduction to Language Composition

Tip 7.1: Wording for Language Composition

MontiCore's language composition techniques are strongly inspired by object ori-
entation. However, due to the composition on two levels, namely grammars and
nonterminals, the terms and wording used for extended and extending languages
needs clari�cation. The four grammars A, B, C, D below with the nonterminals N,
M, O, P serve as an example.

� A and C are atomic grammars resp. describe basic languages.

� B and D are composed grammars resp. describe composed languages.

� B is then also a part language of D

� A composed grammar, like D, is composed of one or multiple subgrammars.

� Composed languages have one or multiple sublanguages. A is also a sublan-
guage of D, because it is transitively included.

� A nonterminals de�ned in a sublanguage is inherited by the composed lan-
guage.

MCG A1 grammar A { N = "n"; }

MCG B1 grammar B extends A { M = "m"; }

MCG C1 grammar C { O = "o"; }

MCG D1 grammar D extends B, C { P = "p"; }

To avoid confusion with object orientation the terms "super grammar" or "super
language" are not used.

a language component can be fully reused on language aggregates, extensions, and embed-
dings because they still operate on the AST they know of, the builders are still operable,
and so on.

MontiCore achieves a most crucial aspect in language composition: the actual language
composition is deferred to a late binding point. This is very similar to object-oriented
programming techniques, where the composition of classes is intellectually (semantically)
understood at development time, but the compiler compiles independent artifacts and only
the compiled result needs to be shipped. This enables (1) incremental compilation and thus
more e�ciency and (2) a "market" of black-box reusable language components, similar to
the frameworks in today's programming languages.

Hence, each language component can be mapped to code and compiled independently of
all other components. Neither a re-generation of the component is necessary, when the
component is embedded, nor need the sources of the component to be shipped together
with the language component implementation. Only the grammars need to be shipped

111

7. Language Composition

together with the class �les of the generated implementation. This is a crucial prerequisite
for truly modular language composition and for building libraries of languages or even
families of language variants.

Tip 7.2: Composing Languages

We took much e�ort in the MontiCore language workbench to understand how
to de�ne languages from modular components:

� Component grammars can be de�ned explicitly.

� Import of grammars allows us to reuse languages as components.

� Language inheritance is achieved by import plus overriding of nonterminals.

� Language extension is a conservative form of language inheritance.

� Language embedding is a form of reuse of at least one language as a sublanguage
of a new one. The models of the new language comprise sub-models of the
embedded language.

� Language aggregation allows us to compose multiple languages into a new
language, without embedding them into the same models.

These techniques for composition of languages in the large and a controlled modi-
�cation of the reused languages are possible because MontiCore's grammar language
provides interface nonterminals, abstract nonterminals and external nonterminals.

The composition of languages does not only a�ect concrete syntax, but also ab-
stract syntax, builders, visitors, context conditions, and symbol management infras-
tructure can be composed.

Most important: The actual language composition is deferred to a late binding
point. That means each language component can be generated and compiled in-
dependently. Neither is a re-generation necessary, when a language component is
embedded, nor need the sources of a component to be shipped together with the
language component implementation. This is a crucial achievement for language
composition and for building libraries of languages.

The smart combination of these mechanisms allows us to address various forms of lan-
guage composition and modi�cation of existing components. Some of the composition
forms are conservative (also called safe), while in general manipulations do allow to freely
modify nonterminals deeply integrated in the language. This corresponds to the situation
in object-oriented programming where inheritance provides some assistance for conserva-
tive modi�cations, but in general developers that modify inherited classes can do harmful
things. On the other hand a controlled, methodically careful form of inheritance is a key
power of modern object-oriented languages. In this spirit, the MontiCore language work-
bench o�ers powerful, to some extent conservative, but partially also dangerous techniques

112

7.2. Language Composition at a Glance

transferring some of the burden to the developers.1

The four techniques for language composition mentioned above of course a�ect the concrete
syntax of the languages we de�ne. However, language composition a�ects many aspects
that we need to take into consideration:

� concrete syntax,

� abstract syntax (AST),

� AST creation (e.g. through builders and their mills),

� navigation infrastructure (e.g. through visitors),

� symbol management infrastructure,

� context conditions,

� handcoded extensions of all these generated parts, and

� analytical or generative backend, implemented against all these generated parts.

This results into a two-dimensional list of issues to discuss, because many of the language
aspects need to be discussed together with most of the composition techniques. We do this
in the following chapters and sections, where each of these includes reuse of the generated
parts as well as handcoded extensions:

Basics Inheritance Embedding Aggregation

Concrete Syntax 4 7.4 7.5 7.3-7.5
AST 5 7.4 7.5 7.3-7.5
Builder 5.9 7.6 7.6 7.6
Visitors 8 8.2.1 8.2.3 8.2
Symbol Management 9 9.10.1 9.10 9.10.2
Context Conditions 10 - - -
Backend (Generator) (13) - - -

More details can be found in the respective research results, such as [MSN17, Rot17, Wei12,
Sch12, Völ11, Kra10, HMSNRW16, MSNRR16, HLMSN+15b, RRRW15, HMSNR15].

7.2 Language Composition at a Glance

While the concepts, techniques and methods to deal with language composition are spread
over several chapters, we give an overview of the core mechanism in this section. Conse-
quently, the following is a high-level overview:

Concrete syntax: In language aggregation, concrete syntax is not a�ected at all. For
language embedding, e.g. Java expressions in automata, we de�ne a new grammar that

1How much power vs. restrictive guidance for a development tool is needed strongly depends on the
skills of the educated developer and can only be understood when using such a tool. This is ongoing
research.

113

7. Language Composition

simply imports all nonterminals from the embedded grammars. Then there are three
possibilities: (1) Use of the nonterminals allows us to directly reuse the sublanguages that
are available; (2) it is also possible to extend nonterminals of the original grammars; and
(3) to override productions that have been de�ned for the original nonterminals.

Extension (2) allows language developers to add additional alternatives, for example new
operators for expressions. Abstract nonterminals, interface nonterminals and external non-
terminals have especially been designed in the MontiCore grammar infrastructure to fa-
cilitate these forms of extensions. Depending on the choice of the new language starting
nonterminal, the original language may be extended (e.g. SQL statements in Java) or the
original language is embedded (e.g. Java expressions in automata).

Overriding (3) allows to freely modify the original language. It is very powerful, but also
dangerous and may reduce reusability of already existing software components operating
on a language.

The composition of the concrete syntax through grammars is also used for the development
of the new parser for the composed language. In an earlier version of MontiCore [Kra10],
we even developed compositional parsers, but in practice it turned out that it is su�cient
and e�cient enough to generate a complete new parser. As a drawback, however, it is
necessary to ship the grammar of the language component together with the language
component implementation. The grammar is composed on the source level (actually their
AST within MontiCore) and the parser is generated completely afresh from the composed
grammar, but all other language component constituents remain untouched.

Parser: The parser itself is generated completely from scratch. That means there is no
reuse of the parsers of the sublanguages. However, the parser facade of each sublanguage
can still be used because a static delegator is silently redirecting to the parser of the
composed language. This leads to a parsing into the composed AST, but since both are
implemented using subtypes, all code written against the sublanguage parser is still usable.

Abstract syntax: From Chapter 5 we know that the de�nition of a grammar not only
describes the concrete syntax, but is also a blueprint for the abstract syntax. To be able
to use algorithms that have been de�ned on the abstract syntax classes, such as context
conditions, symbol infrastructure, and any form of constructive or analytical handwritten
code, it is important that the AST classes of the originally used grammars are directly
reusable and not generated anew.

This leads directly to a new composed AST that integrates all AST classes from the original
grammars. However, if the production for a nonterminal is modi�ed, a new AST class is
generated that inherits from the original. Both classes then have the same name, as they
are derived from the same nonterminal, but reside in di�erent packages.

Builder for the abstract syntax: The infrastructure to create new AST objects is
adapted accordingly, such that the builder mill (see Section 5.9) is also composed. From
a developers point of view, who only knows the new language there is one composed
builder mill creating objects for all AST nodes. However, for a reused functionality it is
still possible to rely on the old builder mill of the embedded language, which has now
internally been modi�ed in such a way that it produces AST objects of the extended
language. This is done transparently, such that algorithms on the original embedded

114

7.2. Language Composition at a Glance

language including functionality that creates new objects are completely reusable. For
that purpose, we invented the static delegator pattern (see Section 11.1) and designed it
in such a way that it can be adapted through subclassing.

Navigation infrastructure through visitors: Visitors are a core element to navigate
through an AST once it has been created through the parser. Because the AST classes
are completely reused and potentially only modi�ed through subclassing, visitors on sub-
languages may also be reused. Therefore, it is possible to reuse a visitor of a sublanguage
out of the box as well as to modify the behavior of the visitor by building a handwritten
subclass and overriding certain visit methods.

However, when composing several languages, technically such a visitor can only be applied
to the elements of one sublanguage and runs into a type-induced matching problem, when
a node from a foreign language component appears in the AST. For that purpose, we
have created the Traverser (see Chapter 8), which is available for each language and
allows to compose visitors that have been individually developed for sublanguages. The
Traverser manages full traversal over the newly de�ned language nodes and delegates
only to appropriate sub-visitors, which it is composed of.

Symbols and Scopes: Symbols and their visibility within artifacts, but especially be-
tween artifacts that import each other, are the core binding mechanism to integrate sets of
artifacts into a consistent description. Therefore, it is inevitable to provide a compositional
infrastructure for symbol management.

Language aggregation, therefore, needs e�cient mechanisms to de�ne externally visible
symbols from one artifact and allow to use these symbols within another artifact. In
language embedding, symbols de�ned in one part of the artifact should be used in another
part of the artifact, even if de�ned in another sublanguage. So even within the same
artifact, symbols cross the borders of languages. The symbol management infrastructure
therefore provides a uni�ed mechanism that allows to cross borders of languages as well as
of artifacts.

As a speciality in a heterogeneous modeling world, it is necessary to understand how
symbols are represented in di�erent languages. This, for example, applies to the Uni�ed
Modeling Language (UML), where over 13 languages have been aggregated and are used
to describe products together. For example, a method in a class can become a message in a
Statechart, or a state in the Statechart may be represented as enumeration value (standard
approach) or as subclass (state design pattern, [GHJV94]). Neither is the mapping always
the same, as the mappings of states show, nor is the mapping always simple because the
symbol may have restrictions or gets additional information along the mapping, e.g. Java
methods need a certain signature to be usable as messages in Statecharts.

To manage this heterogeneous set of symbols, the symbol management infrastructure on
the one side provides concepts for visibility, import, and export. On the other side, it also
provides infrastructure for heterogeneous mappings between di�erent kinds of symbols,
which becomes relevant when a composition of the symbol management infrastructure
together with their languages is necessary.

Context conditions are highly diverse. Therefore, a concrete context condition usually
only applies for an individual language. However, a context condition depends only on a

115

7. Language Composition

small part of the language respectively certain forms of symbols and if that part of the
language has not been modi�ed during composition, the context condition conceptually still
applies. From a technical point of view, context conditions are usually de�ned using visitors
and as discussed above, visitors can directly be reused and composed in various forms. So
context conditions naturally compose. If the language is extended in a conservative way,
they can be reused easily.

It remains an open question, what happens with context conditions that are de�ned over a
composed language. However, we think that many of these conditions can be reformulated
in a decomposed form and then be implemented on the sublanguages. As a main technique
for this decomposition, we have developed our symbol management infrastructure in such a
way that it allows to map symbols de�ned in one sublanguage into the symbols of another
sublanguage [MSN17, MSNRR16, HMSNR15, MSNRR15, Völ11], which naturally applies,
when aggregating or embedding languages.

The backend: The backend of a tool consists of a generator, an interpreter, or analytical
algorithms that retrieve interesting information of a larger and very detailed set of models
or associated data. These techniques are usually highly speci�c to the domain and the
intended use of the tools. We, therefore, do not believe that their composition is an easy
task. At the moment we do not even really know how to compose generators that target
the same platform. We have ideas, but this remains future research.

7.3 Grammar Constructs for Language Composition

Chapter 4 has introduced all grammar constructs that deal with monolithic de�nitions
of a grammar in a single artifact. Chapter 5 furthermore discusses the derivation of the
abstract syntax from a monolithic grammar. In this section, we discuss the following
additional grammar constructs and mechanisms that allow language developers to build
language components that import each other:

component is a keyword that allows to mark a grammar as incomplete, which means
that no parser, but everything else, such as AST classes, visitors, or builder mills are
created.

external is a keyword that, attached to a nonterminal, marks that nonterminal as not
de�ned here, but as an extension point. This nonterminal needs to be bound, when
the grammar is used. Thus, external nonterminals are only allowed in component
grammars. An external nonterminal is therefore a mandatory extension point of a
grammar.

import allows to refer to other grammars and especially component grammars that are
imported and can be extended. Like in Java import may refer to all grammars of
a package using the * extension.

interface nonterminals (and to some extent abstract nonterminals) enable to struc-
ture monolithic grammars, but can also be used to mark extension points of a gram-
mar component. When importing a grammar component, additional alternatives

116

7.3. Grammar Constructs for Language Composition

can be added to imported interfaces. Interfaces can have prede�ned bodies that are
meant for AST-conservative extension (see Section 7.9.2).

overriding of nonterminals is a technique to rede�ne a nonterminal that can also be ap-
plied to imported nonterminals and thus modify imported languages. It is possible
to override nonterminals of all forms, including tokens and fragment tokens. Fur-
thermore, it is possible to override a nonterminal and keep the nonterminals body
but add a new interface that is implemented.

extending nonterminals is technically an overriding of nonterminals, but when applied
carefully and conservatively, the nonterminals are just extended. Depending on the
form of overriding, the extension may a�ect only the concrete syntax or concrete and
abstract syntax.

7.3.1 Component Grammar

To assist component-based reusability of grammars, we can de�ne grammar components
by using the keyword component as shown in Listing 7.3. A grammar component de�nes
a sublanguage, i.e., a yet incomplete language that is meant to be extended to form a
complete language. For a grammar component, MontiCore produces AST classes, node
builder mills, context condition infrastructure, and visitors, but does not produce the
parser for models of the de�ned language. Therefore, a grammar component is allowed to
use interface nonterminals, abstract nonterminals as well as external nonterminals without
any production body.

MCG InvAutomata1 component grammar InvAutomata
2 extends de.monticore.MCBasics {
3 external Invariant;
4

5 State = "state" Name
6 Invariant
7 ("<<" ["initial"] ">>" | "<<" ["final"] ">>")* ";" ;
8 }

Listing 7.3: Example of a grammar component with an external nonterminal

A grammar component either is a collection of basic nonterminals that are meant for reuse,
quite like a library, or it is an extensible � and therefore incomplete � language with ex-
plicitly marked extension points, namely external nonterminals, like a framework. The
concept of grammar components re�ects the concepts that object-oriented programming
languages provide to extend classes.

7.3.2 External Nonterminals

An external nonterminal is introduced by the keyword external. It has a name but
no production body that de�nes its structure (cf. Listing 7.3). An external nonterminal
de�nes an extension point in the grammar, i.e., it can be used like all other nonterminals

117

7. Language Composition

in the body of a production, but its syntax is de�ned in another grammar. In fact, ex-
ternal nonterminals need to be bound when de�ning a complete grammar. In Listing 7.3,
Invariant is an external nonterminal and is used in the body of production for the
nonterminal State. It essentially only introduces the nonterminal Invariant and ex-
plicitly de�nes an extension point in the grammar. This extension point has to be �lled to
complete the language.

For the external nonterminal called Invariant, MontiCore creates an AST representation
as an (empty) interface that needs to be implemented when the language is completed:

Java �gen� ASTInvariantExt1 package invautomata._ast;
2

3 public interface ASTInvariantExt
4 extends ASTNode, ASTInvAutomataNode {
5

6 // ... only clone, equals and scope signatures are given
7 }

Listing 7.4: External nontermials are mapped to interfaces in the AST

Please note that for external nonterminals, we translate the nonterminal name into a
class by also attaching an "Ext" su�x. Therefore, Listing 7.3 leads to the Java interface
ASTInvariantExt shown in Listing 7.4.

External nonterminals can only be de�ned in component grammars, as explained in Sec-
tion 7.3.1. They cannot be combined with abstract or interface keywords, and
cannot have a right-hand side, but it is possible to bind them to any form of nonterminals
in a composition. It is also possible to declare an external nonterminal as scope.

If an extension point shall be bound, language embedding is used.

MCG Automata21 grammar Automata2 extends InvAutomata {
2

3 start Automaton;
4

5 // use this production as Invariant in Automata
6 Invariant = LogicExpr | ["-"] ;
7

8 interface LogicExpr;
9 Truth implements LogicExpr = tt:["true"] | ff:["false"] ;
10 And implements LogicExpr = LogicExpr "&&" LogicExpr ;
11 Not implements LogicExpr = "!" LogicExpr ;
12 Var implements LogicExpr = Name ;
13 }

Listing 7.5: Language embedding with binding the external nonterminal

In line 6, the grammar combines the newly de�ned nonterminal LogicExpr with the
imported, but not yet bound nonterminal Invariant. The new grammar is complete

118

7.3. Grammar Constructs for Language Composition

and a parser is generated. Furthermore, new AST classes are generated and Invariant
leads to an implementation as a class in Listing 7.6.

Java �gen� ASTInvariant1 package automata2._ast;
2

3 public class ASTInvariant extends ASTCNode
4 implements ASTInvariantExt, ASTAutomata2Node {
5

6 protected Optional<ASTLogicExpr>
7 logicExpr = Optional.empty();
8 protected boolean mINUS;
9 }

Listing 7.6: Implementation of the Invariant nonterminal

The nonterminal Invariant is now mapped to a normal AST class with the specialty
that it also has to implement the interface ASTInvariantExt which allows all of its
objects to be included in the AST from the original grammar and thus integrates ASTs on
the object level.

Tip 7.7: External Nonterminal or Interface as Explicit Grammar Extension Hook
Point

There are two main forms of hook points for explicit grammar extension:

� using an external nonterminal NT1, and

� de�ning a reusable interface nonterminal NT2 in a commonly available, sepa-
rate grammar G2.

When composing grammars an external nonterminal NT1 needs to be explicitly
�lled as shown in line 6 in Listing 7.5. This approach leads to an extra AST class
EXTNT1 with additionally instantiated objects implementing the delegated pattern.

The second approach needs to de�ne the generally available and commonly known
extra grammar G2 with a reusable nonterminal NT2, which is usually an interface
nonterminal. All potential extensions can then be implemented in new additional
grammars and upon composing these grammars, the interface automatically gets its
alternatives composed. The second approach simpli�es composition, but leads to a
tighter coupling because grammar G2 is commonly shared.

7.3.3 Importing and Extending Grammars

A modular de�nition of grammars is based on references between grammars. This can be
achieved either by explicit import statements and then using the unquali�ed grammar name
or by a fully quali�ed grammar name in the extends clause. This was, e.g., used for basic
grammar components that MontiCore provides, such as de.monticore.MCBasics.

119

7. Language Composition

When using the MontiCore command line interface, the source path of grammars are
speci�ed using the the "-mp" options.

Technical Info 7.8: How Grammars are Imported, Extended and Composed

When a grammar shall be extended, the compiler searches the grammar path
(speci�ed with the "-mp" options). The provided path list needs to contain all
imported (extended) grammars. No other �les of the imported grammars need to
exist at the time MontiCore is executed.

The result is that all newly de�ned nonterminals are mapped to code accordingly
and a full parser is generated.

However, the imported grammars are not(!) mapped to code because MontiCore
assumes that a generator management system, such as Gradle or make will organize
redundancy free, incremental generation more e�ciently.

As a consequence, the order of processing grammars is not relevant, but each
grammar needs to be processed by MontiCore individually.

7.4 Language Inheritance

Language inheritance is a rather powerful feature of MontiCore grammars. Language in-
heritance allows to extend already existing languages by new nonterminals as well as to
rede�ne existing nonterminals. This way it allows a modular de�nition of languages by
reusing language components. To extend a grammar, a new grammar is created that uses
the keyword extends after the name of the grammar followed by the name of the original
grammar (cf. Listing 7.9). In this example, the language HierarchicalAutomata ex-
tends the language Automata1. This way, the new grammar HierarchicalAutomata
inherits all productions de�ned in the original grammar Automata1. All nonterminals of
the original grammar can be used the same way as nonterminals de�ned directly in the
new grammar. Furthermore, inherited nonterminals can be rede�ned.

MCG HierarchicalAutomata1 grammar HierarchicalAutomata extends Automata1 {
2

3 // keep the old start
4 start Automaton;
5

6 // redefine a nonterminal
7 @Override
8 State = "state" Name
9 ("<<" ["initial"] ">>" | "<<" ["final"] ">>")*
10 (";" | "{" (State | Transition)* "}");
11 }

Listing 7.9: Language inheritance: One grammar extending another and rede�ning an in-
herited nonterminal

120

7.4. Language Inheritance

By default, the new parser uses the �rst nonterminal that is de�ned in the grammar as
start and assumes that this is the starting point for describing the overall language. If we
want to preserve the original language, but modify it in some of its concepts, we have to
explicitly de�ne the start by using the start statement as shown above.

7.4.1 Rede�ning / Overriding Productions of Grammars

A production for nonterminal NT is rede�ned by (a) either de�ning a new production for the
same nonterminal NT, thus overriding the nonterminal (cf. Listing 7.9) or (b) by extending
the nonterminal NT in a production for a new nonterminal NT2. In the �rst case the new
production for NT in the new grammar overrides and thus shadows the original production
for NT. The original is completely replaced. This is the case for the nonterminal State
as the grammar Automata1 already de�ned the nonterminal State, but the grammar
HierarchicalAutomata has a production rede�ning this nonterminal.

For the abstract syntax, there will be a new ASTState class that realizes the new pro-
duction body. To be a useful replacement, the new class is a subclass of the old one. Both
classes have the same name, but are located in di�erent packages (see Listing 7.10).

Java �gen� ASTState1

2 package hierarchicalautomata._ast;
3

4 public class ASTState extends automata1._ast.ASTState
5 implements ASTHierarchicalAutomataNode {
6

7 protected String name;
8 protected java.util.List<ASTState> states;
9 protected java.util.List<ASTTransition> transitions;
10 protected boolean initial;
11 protected boolean r__final;
12 }

Listing 7.10: The new ASTState class extends the old ASTState class and serves as a
substitute

Through the extension mechanism in the AST classes, it is ensured that the new ASTState
nodes can be used in all places, where the old ones are expected. This, however, also
imposes that the functionality of the new class subsumes the functionality of the old one.
This in particular means that the body of the production may be extended, but not
completely changed. We may introduce new language entities, but are not allowed to
remove nonterminals on the right-hand side nor change their cardinality. As a remark: it
is possible, but not recommended, to omit nonterminals or adapt their cardinalities. See
Section 7.9 for the discussion about conservative extension.

However, the abstract syntax is not a�ected by introducing additional terminals, rear-
ranging the order in the production and similar modi�cations. This of course a�ects the
concrete syntax and that leads to the situation that models of the original language are
not models of the adapted language.

121

7. Language Composition

We therefore distinguish these forms of rede�nition of a nonterminal:

Free modi�cation of the production with the risk that some of the functionality of the
original language does not work anymore.

Conservative extension of the AST preserves all nonterminals in their cardinalities as
well as semantically relevant terminals. It, however, is allowed to extend the AST
by additional semantically relevant entities.

The goal that is achieved by AST-conservation is that all functionalities for the old
AST still can be used on the new AST.

Conservative extension of the concrete syntax preserves and only extends the concrete
syntax. This means that basically the production needs to be preserved as is and
can only be extended by optional entities (A?) or lists (A*).

Goal of CS-conservation is that the old models are also models of the new language
and all models can be reused.

Concrete and abstract syntax compliance. It may be that both, concrete and abstract
syntax are preserved, but the AST representation of the same model di�ers in the
original and the extended languages. One minimal example would be a produc-
tion A = n:Name t:Name that is overridden by A = t:Name n:Name. CS-AST-
compliance enforces that the same model results in the same tree structure.

For the process of overriding productions a couple of context conditions apply (cf. Sec-
tion 4.4). For example, a nonterminal can only be overridden by a production of the same
kind (except external nonterminals). Thus, productions of abstract nonterminals can only
be overridden by productions of abstract nonterminals.

Prof. Dr. B. Rumpe

Lehrstuhl für

Software Engineering

RWTH Aachen

Page 3

Language Inheritance

MGgrammar HierarchicalAutomaton extends Automaton {

@Override

State = "state" Name

("<<" ["initial"] ">>" | "<<" ["final"] ">>")*

("; " | "{" State* "}") ;

}

redefining nonterminal
State to allow substates

State

boolean initial

boolean final

String name

HierarchicalAutomaton

String name

Transition

String from

String input

String to

* *

AST-CD

*

«gen»

Figure 7.11: Language inheritance

As a �nal remark, it should be noted that it is formally impossible to completely remove
a nonterminal, but overriding the nonterminal by a secret production has the same e�ect
because when the user does not know this secret production, no instance of the respective
nonterminal is parsed anymore. For example:

122

7.4. Language Inheritance

MCG fragment1 Transition = "THIS-IS-A-SECRET-77616E636B";

would forbid transitions. However, this can only be applied to a nonterminal that occurs
only in lists, alternatives, or optional clauses because if it would be mandatory, no valid
model would exist anymore. For example, certain nonterminals implementing an interface
such as Expression can be ruled out this way. While in principle this e�ect could also
be achieved by using the formally cleaner form of context conditions, the latter does not
work, when at the same time a new and similar alternative should be added because that
could lead to parsing problems.

7.4.2 Extending the Implementation Structure of a Nonterminal

If the body of an imported nonterminal NT1 is already de�ned in perfect shape, but the
nonterminal should implement a given interface NT2 then it is possible to simply declare
this additional interface implementation in form of a production without a right hand side,
i.e., NT1 implements NT2 does not change the body of NT1, which leaves the concrete
syntax una�ected, but adds the desired implements relation on the AST.

In the Automata4 grammar shown in Listing 7.12 the production for the nonter-
minal State that is originally de�ned in Automata1 is overridden by the produc-
tion in Automata4. The new production now implements the interface nonterminal
AutElement, which expresses that the State nonterminal should additionally implement
the speci�ed interface nonterminal. As shown there is no right hand side of the produc-
tion, thus no body is de�ned for the state production. The omitted body indicates that
the original body should continue to be used. As a result, the concrete syntax of the state
production is not changed. For the abstract syntax a subclass of the original ASTState is
generated which is also called ASTState but located in the package automata4._ast
and additionally implements the interface generated for AutElement. Thus, this exten-
sion is conservative in both aspects concrete and abstract syntax as models of Automata1
are valid models of Automata4 and also the infrastructure for Automata1 can still be
used for models of Automata4.

MCG Automata41 grammar Automata4 extends Automata1 {
2 interface AutElement;
3

4 //Override and add interface but keep original body
5 @Override
6 State implements AutElement;
7 }

Listing 7.12: Language inheritance: One grammar extending another and rede�ning an
inherited nonterminals inheritance structure without modifying the body

In case the body of the nonterminal should be altered, this is possible as well. To elim-
inate the body an empty body can be de�ned as shown in Listing 7.13. In contrast to
the grammar Automata4 shown in Listing 7.12 the grammar Automata5 in Listing 7.13

123

7. Language Composition

overrides a nonterminal and does eliminate its body. As shown the two cases di�er such
that Automata5 explicitly de�nes an empty body =; for the overridden Automaton non-
terminal while Automata4 only rede�ned the State productions head by implementing
the interface AutElement and no body is de�ned, i.e. no equals sign is used. Overrid-
ing the nonterminal State with an empty body however would lead to an error as the
Automaton production uses the state nonterminal with a *-cardinality. In this case a
parser generation is not possible. Eliminating the body is in general a non-conservative
extension except for the case the original production de�ned a body without concrete or
abstract syntax as well.

MCG Automata51 grammar Automata5 extends Automata1 {
2 //Override and eliminate the body
3 @Override
4 Automaton = ;
5 }

Listing 7.13: Language inheritance: One grammar extending another and rede�ning an
inherited nonterminals by eliminating the body

Of course both options, i.e. overwriting a nonterminal to change the body and adding
an interface can also be used in combination. Listing 7.14 demonstrates this case. Here
the State production is supplemented by an interface and a new body is de�ned. The
adaptation shown here is not conservative with respect to the concrete syntax, because the
markers for �nal and initial states were moved to the front, while the abstract syntax is
conservatively extended.

MCG Automata61 grammar Automata6 extends Automata1 {
2 interface AutElement;
3

4 //Override and define a new body
5 @Override
6 State implements AutElement =
7 (["initial"] | ["final"])* "state" Name;
8 }

Listing 7.14: Language inheritance: One grammar extending another and rede�ning an
inherited nonterminals inheritance structure as well as the body

7.4.3 Extending Multiple Inherited Grammars

It is possible to extend multiple grammars, which strongly corresponds to multiple inher-
itance in OOP. This is done by de�ning a comma separated list of grammars after the
extends keyword (cf. Listing 7.15). Here, the grammar Automata3 extends the gram-
mars InvAutomata and Expression. Unlike the example in Listing 7.5, this time we
reuse an existing language for invariants.

124

7.5. Language Embedding

MCG Automaton31 grammar Automata3 extends InvAutomata, Expression {
2

3 // LogicExpr is defined in grammar Expression and now
4 // bound to the external NT
5 @Override
6 Invariant = LogicExpr;
7

8 }

Listing 7.15: Language embedding: Filling extension points

As before, all productions of the original grammars are inherited. If two nonterminals
have the same name in the original grammars the order in which the original grammars
are listed after the extends keyword is relevant. The de�nition of the �rst (leftmost)
grammar de�ning the nonterminal is taken as the valid de�nition, while all following ones
are ignored. In our example, if both grammars InvAutomata and Expression de�ne
the same nonterminal, the de�nition in grammar InvAutomata would be taken.

If a grammar extends several other grammars, those grammars may share common sub-
grammars. Thus, diamond extension works. A nonterminal imported through two di�erent
extension paths is imported only once. If a nonterminal is imported through di�erent paths,
having di�erent de�nitions, then the �rst imported de�nition takes precedence. This even
plays a role, when the body of the de�ning production is the same in both imported gram-
mars because the objects that are instantiated belong to the package of the �rst grammar.

7.5 Language Embedding

With the presented mechanisms of language extension and overriding of nonterminals, we
can achieve speci�c e�ects, such as embedding one language into another. This is especially
interesting when both languages have been independently developed and there was no joint
de�nition of the abstract syntax, the context conditions, or any other elements of these
languages before.

We can assume that this is the case for the languages Expression and InvAutomata
already used and composed in Section 7.4. The nonterminals of both languages now co-
exist. Through the selection of the new starting nonterminal (using the start statement)
the master language can be de�ned. For a combination of the languages it would then be
necessary to either �ll external nonterminals or override already implemented nonterminals
in such a way that nonterminals of both languages refer to each other.

Because language InvAutomata (Listing 7.3) has an extension point Invariant, we
can embed the expression language for those invariants by mapping the extension point
to the existing nonterminal. In line 6 of Listing 7.15, the extension point Invariant of
the imported grammar InvAutomata is bound by the nonterminal LogicExpr of the
imported grammar Expression.

The above example has shown that it is possible to embed one language into another. It is
of course also possible to de�ne a completely new start and reuse nonterminals from both

125

7. Language Composition

sublanguages in its production body. Or we can also embed given languages in our newly
de�ned ones, what we regularly do, when importing MCBasics, etc.

There are, however, limitations that a developer should consider:

1. A keyword de�ned as token in one language remains a keyword in all parts of the
composed language, even if the other languages regarded that as a normal name.

2. Whitespaces and forms of comments must be identical in all sublanguages, because
they are processed by the composed lexer in a uniform way.

3. Token de�nitions should also be shared, for instance, if two languages de�ne the
same integers using di�erent token nonterminal names then the parser generator has
to announce an ambiguity because tokens are parsed free of the context of their use.

4. Grammars yield a �at namespace for nonterminals, which means that all nontermi-
nals of an imported grammar are merged into the new version. As already mentioned,
when a nonterminal is de�ned in two grammars, then the �rst one takes precedence.
This may lead to unintended changes of the languages because this unintended form
of overriding could a�ect the second language that normally also uses that nonter-
minal.

7.6 Composing the Builder Infrastructure

A builder for any AST object belonging to a grammar G1 is created using the language mill,
called G1Mill, as discussed in Section 5.9. The language mill uses the static delegator
pattern (see Section 11.1) to map the static call to retrieve a builder to an internal mill
object. This enables MontiCore to also compose the language mills in all forms of language
composition, aggregation, and inheritance.

Consequently, for a developer knowing the composed grammar G2, for which we assume it
extends G1, builders for all nonterminals can be retrieved from G2Mill. However, for old
functionality, which was developed only for grammar G1, all G1Mill builders still work
and thus functionality can be reused without changes.

Tip 7.16: Builder in Composed Languages provide Excellent Reusability

One of the big advantages of the MontiCore language composition technique is
the possibility to reuse functionality that has been developed on sublanguages.

This is assisted by the code generator using various techniques, including reusabil-
ity of the builders. I.e. functionality that creates new objects through the provided
builder mills can normally be reused in black-box form, without any need of source
code adaptation, even though it will then operate on the extended and composed
languages and even create AST nodes of the composed language.

Furthermore, this functionality can be extended when relying on the visitor com-
position techniques as described in Chapter 8.

126

7.7. Composing Parsers

In case a nonterminal S of G1 has been rede�ned or extended, then G1Mill now produces
new g2._ast.ASTS objects instead of old g1._ast.ASTS objects. As g2._ast.ASTS
is a subclass of g1._ast.ASTS, the old functionality does not recognize anything.

To ensure this, the language mill G1Mill has to be initialized accordingly. For this
purpose, each language mill is equipped with a static initialization method init that
initializes the mill (here G2) and all mills of the languages it depends on (here: G1) to
deliver objects of that language. So an G2Mill.init() statement ensures that all calls
of the form G1Builder.sBuilder() deliver g2._ast.ASTSBuilder objects. The
mill pattern is further explained in Section 11.5.

Please note that a mill initialization can be overridden by initializing another mill that
depends on the mill. So only one language mill should be initialized at the program start.

If the extension of nonterminal S is AST-conservative (see Section 7.9), then the new
builder completes the build process with exactly the same attributes being set as by the
old builder. This works because in an AST-conservative extension all new attributes are
optional or lists.

If the extension is not AST-conservative, then either (1) the G1Mill methods may not be
used anymore or (2) the builder needs to prede�ne values for the new, hidden attributes.
In the latter case, handwritten extensions of the G1Mill class of the builders, e.g., using
the TOP mechanism are recommended.

To complete the picture, it is worth mentioning that overriding of nonterminals,
e.g., S, not only leads to a subclassing relationship between g2._ast.ASTS and
g1._ast.ASTS, but also the builder g2._ast.ASTSBuilder becomes a subclass of
g1._ast.ASTSBuilder. This is helpful and necessary, to inject the subclass builders
into the functionality knowing the superclass only.

7.7 Composing Parsers

The language mill o�ers a method called parser to get the parser of a language. Each
sublanguage G1 has its own parser in class G1Parser. If G2 extends G1, then a class
G2Parser exists that provides the parsing methods for the nonterminals of G2.

When languages are composed or extended, MontiCore actually does not compose the
parsers, but creates a new complete parser for each composition of languages. G2Parser
is independent of G1Parser's functionality. This is why language composition needs the
subgrammars as sources (i.e., the .mc4-�les). However, this is hidden for developers.

For language composition, in addition to the complete G2Parser a subclass of the
G1Parser called G2ForG1Parser is generated. This subclass overrides the parsing
methods of G1Parser that are impacted by G2. The mill pattern ensures that when ini-
tializing the mill of G2 a subclass G2ForG1Mill of the G1Mill is injected in the G1Mill
that overrides the internal _parser() method of G1Mill. The new implementation of
_parser() returns an instance of the G2ForG1Parser. So if the G1Mill is used to get
a parser, the instance of a subclass of the parser is provided, which delegates to the parser

127

7. Language Composition

of the composed language for nonterminals which have been changed in the composed lan-
guage. Thus the functionality for G1 can be reused and parses nonterminals changed by
the composition with the parser of the composed language.

Consequently, for a nonterminal NT from a sublanguage G1 of a composed language G2,
the method G1Parser.parseNT has the same e�ect as using G2Parser.parseNT.
Furthermore, when restricting to standard use of visitors etc., functions developed against
the sublanguage G1 will never experience di�erences in the AST even though the resulting
AST may contain additional AST objects belonging to G2 only. This also holds if NT itself
is conservatively rede�ned. Hence, composition remains fully transparent and parsers,
builders, and the later discussed visitors of a sublanguage need not to be aware of their
embeddings in a composition. They can be fully reused and do not even need to be
recompiled.

There is, however, some caution necessary: The parsing only works well, if the concrete
syntax is conservatively extended (see Section 7.4.1). Section 7.4.1 also discusses some
precaution necessary to ensure that type incompatibilities do not prevent compilation of
the composed AST classes.

Prof. Dr. B. Rumpe

Lehrstuhl für

Software Engineering

RWTH Aachen

Page 11

Language Composition and Late Binding

G1

language

G2

grammar

extends

G1

G1

G2

G2

AST $

parser

AST $

G2Parser

G2ForG1$

G1

AST, builder, mill,

visitor, etc.

G1

parser

G2

AST, builder, mill,

visitor, etc.

G2

G2Parser

G2ForG1Parser

G1

grammar

language

G1+2

generate package

compile

Figure 7.17: Composition of a language is executed as late as possible: late binding

Figure 7.17 shows that both, the generation and the compile processes of sublanguages are
decoupled and, thus, it is possible to ship language components as pre-compiled libraries.
In MontiCore 3 even the parsers were compositional and decoupled. However that did not
work too well because the scanners had limited capabilities for composition. We therefore
decided to early compose grammars and create monolithic parsers. This is acceptable for
several reasons (1) MontiCore leaves parser frontends intact, while allowing to use the
composed parser, (2) the parser does have a very limited signature (namely the parsing
methods) and a well encapsulated functionality, and (3) the parser is not supposed to be
manually adapted e.g. through subclassing.

7.8 Composition of Visitors and Context Conditions

When composing a language, it is relevant that every element of the language can be
composed. This does not only include concrete and abstract subjects, but especially also

128

7.9. Conservative Extension

technical infrastructure that allows to de�ne functionality on the language models.

A good composition means that the original functionality can be reused without having
to touch the source code, even though it may be useful and necessary to extend the func-
tionality.

This is why we have realized our visitor infrastructure in a compositional form. It is
described in the following Chapter 8. That means the visitor even for a speci�c sublanguage
can easily be extended with additional functionality on the new nonterminals, without
adapting the source code or even recompiling the sources.

Many context conditions built on visitors and are therefore easily reusable and composed
languages as well.

7.9 Conservative Extension

It is worth examining the conservative extension properties de�ned in Section 7.4.1 for
ASTs as well as concrete syntax in greater detail. Conservative extension is generally
interesting when a nonterminal already has a de�nition that shall be extended, but its
properties shall be conserved. This, therefore, does not apply to an external nonterminal,
which can be implemented freely, but to normal and abstract nonterminals.

Let us for the following discussion assume that we have a number of languages LG* ex-
tending language LG1 (where "*" stands for any number). For a better understanding, we
attach a su�x to each nonterminal, to describe where it comes from. Please be aware that
this su�x is not present in the grammar themselves.

MCG fragments1 grammar LG1 {
2 MLG1 = Decimal;
3 NLG1 = "one" MLG1;
4 PLG1 = "some" MLG1*;
5 QLG1 = "optional" MLG1?;
6 }
7 grammar LG* extends LG1 {
8 MLG∗ = ...
9 }

7.9.1 Conservative Extension of the Concrete Syntax

Conservative extension of the CS is a property of the set of models parsed by a grammar.
It means2: Sem(LG1)⊆Sem(LG2). Such a property on grammars is generally undecidable
[HMU06]. However, a set of su�cient criteria can be de�ned that ensures this property.
To assist the developer, we thus describe these criteria in the following.

2Let us denote the language, i.e. the set of words, of a grammar L by Sem(L)

129

7. Language Composition

MCG fragments1 grammar LG* extends LG1 {
2 // we describe a bunch of grammars LG* here,
3 // each grammar has one nonterminal M
4 MLG02 = Decimal; // CS-conservative
5 MLG03 = Decimal P?; // CS-conservative
6 MLG04 = "-"? Decimal; // CS-conservative
7 MLG05 = P* Decimal P?; // CS-conservative
8 MLG06 = Name; // not cons.
9 MLG07 = Decimal*; // CS-conservative
10 MLG08 = Decimal?; // CS-conservative
11 MLG09 = Decimal | Name; // CS-conservative
12 MLG10 = Decimal d:Decimal?; // CS-conservative
13 MLG11 = d:Decimal; // CS-conservative
14 }

The above examples of rede�ning nonterminal M demonstrate what is allowed. The
Decimal nonterminal needs to be retained, although it might be given another name
(LG11), which a�ects only the AST.

If Decimal changes its cardinality, the cardinality may only be widened. That means
from mandatory (N) to optional (N?) or nonempty list (N+), and from all three to list
(N*). Separators may be added, like in (N || ",")*. Alternatives like in LG09 count
as a switch to optional.

Before, between, and after the existing terminals and nonterminals it is allowed to add
optional and list nonterminals because their omission is generally allowed (LG03-LG05).

It is, however, not allowed to omit nonterminals (LG06) or rearrange their order (LG21).
But, it is allowed to add more optional variants of an already existing nonterminal (LG22,
LG23).

MCG fragments1 grammar LG* extends LG1 {
2 NLG20 = "one" M?; // CS-conservative
3 NLG21 = M "one"; // not cons.
4 NLG22 = M? "one" M; // CS-conservative
5 NLG23 = x:M? "one" M; // CS-conservative
6 }

Many of those conservative extensions on the CS are, however, no conservative extensions
on the AST.

Please note that obviously a conservative extension also needs to keep the original starting
nonterminal. By default, MontiCore takes the �rst explicitly de�ned nonterminal as start.
Thus, a start statement is usually needed to set the starting nonterminal correctly and
retain conservative extensions of the CS.

130

7.9. Conservative Extension

7.9.2 Access-Conservative Extension of the Abstract Syntax

Conservative extension of the AST is a property of the data structures and it comes in two
important variants:

� The AST data structures that a programmer expects under LG1 are still valid under
LG2. That means when navigating an AST, e.g. with a visitor and accessing children,
no surprises occur. We call that AST-access-conservation.

� All operations on an AST that a programmer might use to manipulate an LG1 AST
are having the same e�ect under LG2. We call that AST-modi�cation-conservation.

Fortunately, some conservation properties are already ensured by the extensible OO type
system. Unfortunately, the Java type system is not powerful enough to fully support all
potentially interesting forms of language extension, such that the AST is conserved. We
discuss the problems and some workarounds with a few examples in Section 7.9.4.

AST-access-conservation basically means that given an AST object with a certain type
information, the object may be from a subtype, but behaves like the known type. That
means all getters and value retrievers work as from then known type, navigation to chil-
dren works as normal and applying a visitor works. This is generally the case, when the
cardinality of a nonterminal stays untouched. For the examples from above, this is as
follows:

MCG fragments1 grammar LG* extends LG1 {
2 MLG02 = Decimal; // AST-conservative
3 MLG03 = Decimal P?; // AST-conservative
4 MLG04 = "-"? Decimal; // AST-conservative
5 MLG05 = P* Decimal P?; // AST-conservative
6 MLG06 = Name; // not cons.
7 MLG07 = Decimal*; // not cons.
8 MLG08 = Decimal?; // not cons.
9 MLG09 = Decimal | Name; // not cons.
10 MLG10 = Decimal d:Decimal?; // AST-conservative
11 MLG11 = d:Decimal; // not cons.
12

13 NLG20 = "one" M?; // not cons.
14 NLG21 = M "one"; // AST-conservative
15 NLG22 = M? "one" M; // not cons.
16 NLG23 = x:M? "one" M; // AST-conservative
17 }

The modi�cations of the languages LG02 to LG05 are AST-access-conservative because
they basically leave the inherited nonterminal(s) unchanged. Any changes of the cardinality
of the nonterminal, such as in LG07 to LG09, LG20, LG22, omitting the nonterminal
(LG08), or renaming the nonterminal (LG11) is not AST-access-conservative.

LG22 ist not access-conservative because it extends the cardinality of M to M* (even though
it is restricted to 1-2). In contrast, LG23 is access-conservative, because the new instance
of M has a di�erent name x.

131

7. Language Composition

Relaxing the cardinality is generally not access-conservative because the accessor could
rely on an assumption that there is exactly one, at most one, or potentially a nonempty
list. This also holds, but will in practice not necessarily be a problem, if the cardinality is
only relaxed through a di�erent min and max de�nition (see Section 4.2.9).

On the other hand, strengthening the cardinality would in principle be access-conservative.
It works, when using the min/max de�nitions or restricting from M* to M+, but does not
generally work, when adapting the cardinality from M* to M? or M and also not when
restricting M? to M because the access signature changes. See Section 7.9.4, how that can
be handled.

Changing the order of the nonterminals, like in LG21, also is generally access-conservative
because the AST does not remember the order of the nonterminals.

Tip 7.18: Common Access Functions, but Di�erent Concrete Syntax

It may happen that two variants A and B of a language construct exist that share
the same abstract syntax, but di�er in the concrete syntax. E.g. an association
has a left and a right end with identical content. To allow common access (and
modi�cation) functions, but ensure AST-conservative realizations, it is possible to
use a common interface C, e.g. as in:

MCG1

2 interface C = x:Number y:String ; // order irrelevant
3 A implements C = x:Number "," y:String ;
4 B implements C = y:String ":" x:Number ;

7.9.3 Modi�cation-Conservative Extension of the Abstract Syntax

Preserving all abilities of modi�cation for an AST includes that it is allowed to freely
manipulate the AST nodes. This includes setting new children for single, mandatory
nonterminals (N) as well as full list and optional manipulation (for N* and N?). It, however,
also includes to create new AST nodes through the LG1 mill and builder interfaces.

Then functionality implemented against a language component LG1 can be reused as a
precompiled, black-box functionality for any language LG* that is based on LG1.

AST-modi�cation-conservation is almost equivalent to AST-access-conservation, because
the appropriate sets of methods are generated and thus work closely together. However,
there are two important di�erences: Builders and cardinalities of nonterminals.

Enums cannot be overridden or extended. Thus, non-conservative extension of enums is
also not possible.

The builder for an overwritten nonterminal MLG02 is a subclass of the builder for the original
MLG01 and thus inherits all methods. Because optional nonterminals and list nonterminals
do have the defaults absent and empty list, if only nonterminals with these cardinalities are

132

7.9. Conservative Extension

added in a rede�ned production, then the builder of MLG02 behaves like the one of MLG01

and delivers the appropriate AST object. It delivers always an instance of class MLG02, but
through the mill of LG1 it looks like a superclass object of type MLG01.

As a consequence: it is inevitable that all functionality uses builders for the AST instead
of the direct constructor.

If the language extension is not conservative, the builder needs to be adapted accordingly
by a handcoded version (e.g. using the TOP mechanism) to be reusable within functionality
of a sublanguage.

The second di�erence regards cardinalities: While access allows strengthening, manipu-
lation generally allows relaxation of cardinalities in subclasses to remain substitutabil-
ity. Together that means that a fully AST-conservative language extension may neither
strengthen nor relax cardinalities and thus not adapt the cardinalities at all. Otherwise,
some functions can not be used anymore, or special measurements need to be taken to
handle that.

7.9.4 AST Signatures Causing Java Type Errors

The considerations in Sections 7.9.1 and 7.9.2 do hold irrespectively, whether the nonter-
minal under consideration (e.g. M and N) itself is adapted. However, in some cases even
though the modi�cation would be AST-access-conservative, the Java type system produces
a compilation error. These are in particular the following cases:

MCG fragments1 grammar LG2 extends LG1 {
2 MLG2 = Decimal;
3 NLG2 = "one" MLG2; // ok
4 PLG2 = "some" MLG2*; // does not compile
5 QLG2 = "optional" MLG2?; // does not compile
6 }

The problem is that when nonterminal M is modi�ed, we actually get a second AST class
called lg2._ast.ASTM. This is a subclass of lg1._ast.ASTM that is fully behavioral
conform. The rede�nition of N is �ne because it uses only a single, mandatory M.

But the adaptation of P does not compile because some of the generated methods in
lg2._ast.ASTP return List<lg2._ast.ASTM>, but the inherited signature forces
them to return List<lg1._ast.ASTM> objects. Java does not accept these types as
compatible. While Java is correct in general, we have ensured through a consequent use
of builders and the con�gurable static delegator pattern that actually no object of class
lg1._ast.ASTM is instantiated in the tool. All objects are of subclass lg2._ast.ASTM
and thus all list manipulations would be safe, even though the type system does not accept
that.

There are two circumventions to the problem: (1) If it is possible prevent rede�nitions of
both nonterminals, M and N, in parallel, if M occurs in N's body with a cardinality other
than one. This can, e.g., be achieved by adapting the base language LG1:

133

7. Language Composition

MCG fragments1 grammar LG1 {
2 M = Decimal;
3 N = "one" M;
4 P = "some" MStar;
5 MStar = M*;
6 Q = "optional" MOpt;
7 MOpt = M?;
8 }

As an alternative (2), which is especially suited, if the base language cannot be adapted,
we might give the nonterminal M a di�erent name:

MCG fragments1 grammar LG2 extends LG1 {
2 M = Decimal;
3 P = "some" m2:M*;
4 Q = "optional" m2:M?;
5 }

Then everything compiles and is CS-conservative, but not AST-conservative because the
methods to handle attribute m inherited from PLG1 (and also QLG1) are still there, but
do not provide a useful implementation because the attribute m is not set anymore when
parsing. A handcoded adaptation might just delegate the methods for m to the methods
for attribute m2 (while adapting the types using casts).

Using handcoded adapters to integrate the ASTs generated from a base language LG1
and an extended language LG2 also can be applied if the inheritance for some reason
shall not be AST-conservative. This includes, e.g., omitting a nonterminal in LG2, which
leaves the inherited functions useless. One might still allow those in the AST, therefore
blending the AST of LG2 with LG1, which might be a helpful intermediate structure when
transforming from LG2 to LG1. There is much potential in this blending of AST structures,
when transforming between languages.

Blending also can be applied when the cardinality of a nonterminal has changed. Due
to the almost disjointness of the method sets generated for N, N? and N* these methods
can live together in an AST class. For access functions, narrowing of the cardinality is
feasible, e.g. a stored single object can be regarded a one element list. For manipulation
functions relaxing the cardinality is allowed, e.g., setting an optional to absent can lead
to an empty stored list. However, in both directions the opposite does not work and the
developer of the handwritten code can implement appropriate exceptions or handlers for
all the problems that arise if the language extension is not conservative.

In summary, a conservative extension that means an extension that preserves concrete syn-
tax and abstract syntax is relatively restricted in the adaptation of inherited productions,
but allows developers to rely on a certain robustness that eases development.

134

Chapter 8

Visitors for AST Traversal

co-authored with Robert Heim, Nico Jansen

Processing a model requires to implement operations on the AST of the model and often
also its symbol table (cf. Chapter 9). Since many operations share the same traversal
algorithm it is favorable to separate the traversal algorithm and the actual operations on
individual nodes. Thus, the traversal algorithm becomes reusable.

The visitor pattern [GHJV94] separates operations on complex data structures from the
structure itself. It provides visit methods that act as hook points during a prede�ned
traversal of the data structure. Thereby, it is easy to add new operations without touching
the implementation of the data structure itself or its traversal algorithm.

Tip 8.1: Modularity and Reuse of Visitors

The visitor infrastructure enables modularity and reuse along several criteria:

1. Visitors can be de�ned for individual grammars and reused in composed lan-
guages.

2. Navigation and visiting functions are decoupled.

3. Larger parts of the infrastructure, e.g. the navigation, is generated with de-
faults.

4. Handwritten code on a sublanguage can be directly reused without changes in
extended languages.

The original visitor pattern [GHJV94] describes the traversal algorithm as part of the data
structure. For AST or symbol table processing this prohibits adjusting the traversal in
speci�c visitor realizations as they all share a common (generated) implementation. Hence,
MontiCore provides a combination of classical internal visitors that de�ne traversal within
the data structure and external visitors that de�ne it in the visitors [Oli07]. Furthermore,
the original visitor pattern is imperative since it stores the result of a visitor run as state
in the visitor. This approach is distinguished from functional visitors [Oli07]. The latter

8. Visitors for AST Traversal

approach utilizes return values of methods to prevent stateful calculations. MontiCore's
visitor infrastructure is external and allows imperative and functional use.

The following sections describe MontiCore's visitor infrastructure and how it enables agile
development of concrete visitors to process ASTs. The same visitor infrastructure also
allows to access the symbol table as extension to an AST, which together with the symbol
table is explained in Section 9.9.

8.1 Visitor Infrastructure for a Language

Given a grammar, MontiCore generates the AST classes (cf. Chapter 5) and a parser
to translate a textual model into its AST representation (cf. Chapter 6). Additionally,
MontiCore generates a visitor infrastructure that consists of a default traversal algorithm
for the AST and the symbol table (explained in Section 9.9) as well as visit methods
serving as hook points for the processing of speci�c AST nodes.

Generally, the visitor infrastructure of a language L supports a depth �rst traversal algo-
rithm on the AST of language L providing the following four methods for each nonterminal
C, which results in an AST class ASTC of L:

� handle(ASTC node) de�nes the iteration algorithm of ASTC (default: depth
�rst). By default handle calls visit, traverse (the children), and endVisit
on node.

� traverse(ASTC node) de�nes a climbdown strategy (i.e., along the children; no
order is guaranteed by the default implementation).

� visit(ASTC node) is called when entering node.

� endVisit(ASTC node) is called when leaving node.

In the following, we explain MontiCore's realization of the visitor pattern, which further
extends the basic concept to support seamless traversal of all nodes for composed languages.
For each language L, the generator produces the interfaces LTraverser, LVisitor2, and
LHandler as well as the class LTraverserImplementation.

8.1.1 Traverser Interface and Implementing Class

Java �gen� LTraverser1 package l._visitor;
2

3 public interface LTraverser {
4 // ... simplified list of methods
5

6 // Hooks, to be adapted for concrete functionality:
7 default public void visit (ASTC node)
8 default public void endVisit(ASTC node)
9

136

8.1. Visitor Infrastructure for a Language

10 // provides default implementation to handle a node
11 default public void handle (ASTC node)
12

13 // provides default implementation to
14 // manage traversal though all sub-nodes
15 default public void traverse(ASTC node)
16

17 // Same for each other type of nodes (here D):
18 default public void visit (ASTD node)
19 default public void endVisit(ASTD node)
20 default public void handle (ASTD node)
21 default public void traverse(ASTD node)
22 }

Listing 8.2: Signature of a Traverser for language L

The traverser is the conceptual entry point for every action within the visitor infrastructure.
It comes with the default strategy for handling and traversing the AST, thus implement-
ing the respective methods for all types of nodes. Furthermore, the traverser manages
visitors for the di�erent sublanguages, which contain the implementations for the visit
and endVisit methods. The traverser itself contains default implementations for these
methods as well, delegating this call to all visitor implementations that have been added.
If a special traversal is required that di�ers from the default, it is possible to add han-
dlers to the traverser that realize the alternative behavior. Listing 8.2 shows an excerpt
of the generated traverser interface for language L with nonterminals C and D, providing
the corresponding visitor-related methods. While visit and endVisit calls are always
delegated to the corresponding LVisitor implementations, handle and traverse can
be managed directly and are only redirected if an LHandler is added.

Tip 8.3: Standard Traversal of Language L

For a given language L, it is common to use the LTraverser to process the
AST.

It comes with a default traversal algorithm following a depth-�rst strategy on the
AST. It is rarely required to adjust the default depth-�rst traversal. Usually, it is
su�cient to provide the visitmethods by implementing the LVisitor2 interface.

Attaching an LHandler is only recommended when explicitly customizing the
handling or the traversal of nodes.

Conceptually, the LTraverser implements the visit, endVisit, handle, and
traverse methods for each AST node of a language, including all sublanguages. The
LTraverserImplementation manages attributes of visitors and handlers, which can
be attached for delegating the corresponding method calls. A language developer always
implements against the API of the traverser interface, when instantiating it using the
language-speci�c mill (cf. Section 11.5). As the implementing class only manages the
attributes, it must not be adapted, as all changes will not be transferred to inheriting
languages. Figure 8.6 shows the generated infrastructure for a language L. The class

137

8. Visitors for AST Traversal

Tip 8.4: Visitor Infrastructure Generated for each Language L

MontiCore generates three interfaces and two classes for the visitor infrastructure
of each language L. They are explained in the following and are generated to these
locations:

Files1 Directory: target/.../sourcecode/
2 Files: l._visitor.LTraverser.java
3 l._visitor.LTraverserImplementation.java
4 l._visitor.LVisitor2.java
5 l._visitor.LHandler.java
6 l._visitor.LInheritanceHandler.java

LVisitor2 and LHandler are meant for extension by subclassing. They are
realized as interfaces, providing default implementations for their methods. The
LInheritanceHandler is a speci�c realization of an LHandler provided by
MontiCore covering a particular traversal strategy that also calls all visit and
endVisit methods of super types of a handled node (cf. Section 8.1.4).

Prof. Dr. B. Rumpe

Lehrstuhl für

Software Engineering

RWTH Aachen

Seite 8

VisitorInfrastructure

«interface»

LTraverser
CD

LTraverserImplementation

«gen»

language L

«interface»

LHandler

«interface»

LVisitor2

0..1

*

LInheritanceHandler

Figure 8.6: Generated visitor infrastructure for a language L

LTraverserImplementation implements its corresponding interface and contains a
list of LVisitor2s and a at most one LHandler. While it only makes sense to adapt the
default traversal once for each traverser, we can realize multiple visitors for visiting a node.
This mechanism can be used to parallelize multiple visitors that share the same traversal
algorithm, resulting in more e�cient computations, while retaining the modularity of the
visitor implementations. Furthermore, MontiCore generates the LInheritanceHandler
as a prede�ned, yet customized handler with a traversal strategy covering all super types
of a handled node (cf. Section 8.1.4).

Figure 8.7 shows an example of the traverser for the Questionnaire language de-
scribed in Section 21.7. A concrete class (cf. QuestionnaireTool at the bottom
of Figure 8.7) encapsulates the traverser and hooks in a corresponding visitor instance
(cf. QuestionnairePrettyPrinter). The traverser provides the default methods, in-
cluding the traversal algorithms. Thus, during runtime, the traverser checks for handle
and traverse methods if a customized handler is provided. In this case, it dele-
gates the call. Otherwise, it follows the default depth-�rst traversal strategy. Similarly,

138

8.1. Visitor Infrastructure for a Language

Technical Info 8.5: Mechanisms used by the Visitor Pattern

The static type of a variable or parameter is the type information known at
compile time (i.e., the type written within the source code). The dynamic type is
the actual type of the stored object. For example, a variable could be typed by an
interface type, but its value might be of a class type that implements the interface.

Calling a method implementation based on the dynamic type of an argument is
called dynamic dispatching. Java is a single dispatch language since it only pro-
vides dynamic dispatching on the this-reference. This enables overriding methods
since the more speci�c overridden version is executed during runtime. However, the
method selection does not take into account the dynamic type of the other argu-
ments. This is also di�erent from method overloading, which is based on the static
type information of arguments.

To realize an extensible and �exible visitor pattern, double dispatching is needed
to call the correct, dynamically selected method.

This is realized by adding accept(LTraverser) methods within each AST
node of a language L. Instead of directly calling the handle method of a node's
child, the child's accept method is called with the traverser instance as argu-
ment (cf. Figure 8.7). The accept method then simply calls back the appropriate
handle method by using the child's speci�c type. Through these two calls the
double dispatch is realized in a typesafe, e�cient way and the correct visit method
is called.

This pattern is extended to also assist language composition where children might
be extended, but the original visitor interface does not statically provide handle
methods for the new child-types during (its former) compile time. This problem
is known as the expression problem and, therefore, MontiCore provides extended
infrastructure. More details can be found e.g. in [HMSNRW16].

Prof. Dr. B. Rumpe

Lehrstuhl für

Software Engineering

RWTH Aachen

Seite 5

QuestionnaireTraverser Interface

«interface»

QuestionnaireTraverser

handle(ASTItem node)

visit(ASTItem node)

traverse(ASTItem node)

endVisit(ASTItem node)

handle(ASTScaleType node)

visit(ASTScaleType node)

endVisit(ASTScaleType node)

no traversal
for interfaces

'

analogous for other node types

connects traversal
with visiting

hooks for operations

controls traversal

default public void handle(ASTItem node) {

if (getQuestionnaireHandler().isPresent()) {

getQuestionnaireHandler().get().handle(node);

} else {

visit(node);

traverse(node);

endVisit(node);

}

}

default public void traverse(ASTItem node) {

if (getQuestionnaireHandler().isPresent()) {

getQuestionnaireHandler().get().traverse(node);

} else {

if (node.isPresentScaleType()) {

node.getScaleType().accept(this);

}

}

}

CD

QuestionnaireTool
'

concrete
visitor

@Override

public void visit(ASTItem node) {

print ("item " + node.getName() + "...“);

}

default interface
methods of Java 8

Questionnaire language

visitors hook into traversal by
overriding default (end)visit methods

QuestionnairePrettyPrinter

visit(ASTItem node)

endVisit(ASTItem node)

'

«interface»

QuestionnaireVisitor2

'

encapsulates
traverser

Questionnaire

TraverserImplementation

'

«gen»

«hc»

Figure 8.7: Traverser for the Questionnaire language and an handcoded usage

the traverser delegates visiting the speci�c AST nodes to the hooked visitors (in this
case, the QuestionnairePrettyPrinter). The visitors must implement the interface

139

8. Visitors for AST Traversal

QuestionnaireVisitor2 where the functionality for visiting nodes must be imple-
mented by overriding the methods visit and endVisit. Executing the traversal and
the corresponding concrete visitors is as simple as calling the traverser's handle method
for a given AST node. The default implementation of the traversal is based on simu-
lated double dispatching for determining the dynamic runtime types of a node's children
(cf. Technical Info 8.5).

Prof. Dr. B. Rumpe

Lehrstuhl für

Software Engineering

RWTH Aachen

Seite 6

QuestionnaireTraverserSD

tool:QuestionnaireTool
pp:Questionnaire

PrettyPrinter

t:Questionnaire

Traverser
ast:ASTItem

SD

accept(t)
handle(ast) visit(ast)

print(name)

traverse(ast)

endVisit(ast)
print("\n")

Figure 8.8: Control �ow of a traverser with an attached visitor implementation

The control �ow of the pretty printing example for the Questionnaire language is shown in
Figure 8.8. The pretty printer pp carries the executed visit and endVisit operations.
With respects to the interaction the interesting aspect is the handle, visit, traverse,
endVisit call sequence.

In the traverse method, the traversing of sub-nodes results in a double dispatching
call that consecutively calls accept(t) on all sub-nodes, which in turn again trigger the
handle method of the traverser. This behavior is omitted in the diagram, as it is only a
repetition of the already represented traversal pattern.

The provided visitor infrastructure is a powerful mechanism to traverse the whole AST
and perform distinct actions on the di�erent nodes, while also retaining all advantages of
available type information.

8.1.2 Visitor2 Interface

The visitor interface provides visit and endVisit methods for each AST node of a
language L. When traversing the AST, these methods are called per delegation using a
traverser with corresponding hooked in visitors. Thus, following a separation of concerns
approach, the visitor interface itself does only contains methods for visiting an AST node.
Listing 8.9 shows an example of the LVisitor2 interface providing corresponding methods
for the AST nodes C and D. By default, the visit method is called directly when reaching
the respective node during traversal (i.e., at the beginning of the handle method of the
delegating traverser). Analogously, the endVisit method is called when leaving the
corresponding node, i.e., after handling all sub-nodes in the given AST. Both methods

140

8.1. Visitor Infrastructure for a Language

Java �gen� LVisitor21 public interface LVisitor2 {
2 // for each kind of nodes:
3 default public void visit(ASTC node) { }
4 default public void endVisit(ASTC node) { }
5 default public void visit(ASTD node) { }
6 default public void endVisit(ASTD node) { }
7 }

Listing 8.9: Simpli�ed presentation of visit and endVisit operations in the visitor
interface of language L

provide an empty default implementation, enabling adding operations by overriding only
the required methods.

For adding visitor implementations, the traverser o�ers the method add4L(LVisitor2),
providing a hook point for multiple instances. The visitor interfaces are language-speci�c,
providing only visit and endVisit methods for AST nodes directly de�ned within the
corresponding grammar. For composed languages, the traverser supports adding partial
visitors for each sublanguage X by o�ering the same add4X methods (cf. Section 8.2). This
fosters reusability across language boundaries.

To enable simultaneous traversing for independent visitor operations, MontiCore allows
adding multiple visitors to a traverser, which are then processed consecutively at each
node. Managing lists for each type of visitor interface allows encapsulating side-e�ect-free
visitors together within a single traverser. However, when using the mechanism, a language
developer must ensure that the e�ects of the hooked instances are not con�icting.

8.1.3 Handler Interface

As the traverser comes with a default strategy for traversing and handling the AST nodes
of a language, it generally su�ces to only use a traverser in combination with several
added visitors. However, in some cases, it is necessary to adapt the default depth-�rst
strategy towards a more sophisticated or purpose-oriented approach. Therefore, MontiCore
introduces for each language L the LHandler interface that can be set in a traverser for
providing customized handle or traverse methods.

Listing 8.10 shows an example of these methods with default implementations. These are
generated for all AST nodes of a language L and provide the same standard behavior as
the traverser. This enables overriding speci�c methods only while obtaining the default
behavior for the others. As the traverser is the conceptual entry point that actually operates
on the AST, every interaction must be delegated back towards the traverser. Thus, the
handle method uses the getTraverser method to perform the consecutive visit,
traverse, and endVisit operations. This approach is a variation of the realThis
pattern described in Section 11.2. The main di�erence is that traverser and handler do not
have any inheritance relationship to each other. This has the e�ect that entities, such as
the AST nodes, only need to be linked to traversers and not to handlers. Further, avoiding
complex inheritance relationships retains an e�cient compile time.

141

8. Visitors for AST Traversal

Java �gen� LHandler1 public interface LHandler {
2 // for each kind of nodes:
3 default public void handle(ASTC node) {
4 getTraverser().visit(node);
5 getTraverser().traverse(node);
6 getTraverser().endVisit(node);
7 }
8 default public void traverse(ASTC node) {
9 // here: empty method body, as ASTC has no sub-nodes
10 }
11 }

Listing 8.10: Simpli�ed presentation of handle and traverse operations in the handler
interface of language L

To add a handler, a language developer can use the corresponding setter of the traverser.
As it is only useful to override the traversal once, it is possible to add a handler using the
method setLHandler, which is provided for each sublanguage L. This mechanism not
only adds the handler to the traverser but also vice versa. As described, the handler needs
to delegate interacting calls with the AST back to the traverser. Thus, the setLHandler
method also automatically adds the traverser to the implementation of the handler. This
requires implementing the getTraverser and setTraverser methods. The signatures
of these methods are also prescribed by the interface.

Tip 8.11: Con�guring a Traverser

To con�gure a traverser for language L, perform the following steps:

1. Create a class that implements the language-speci�c LVisitor2 interface
overriding the required visit and endVisit methods.

2. If customized handling or traversal of nodes is needed, also create a class that
implements LHandler.

3. Instantiate the (prede�ned) traverser using the language-speci�c mill. The
traverser is not overwritten, but con�gured.

4. Instantiate all visitor and handler realizations and add them to the traverser
as con�guration.

8.1.4 Inheritance Handler for Explicit Visit of Supertypes

The default traversal strategy visits nodes only in their most speci�c type. In case a
language de�nition includes productions that extend or implement others (especially when
interface or abstract productions occur) a more sophisticated traversal is required to enable
hooking into the intermediate node types. This, for example, enables implementing a

142

8.1. Visitor Infrastructure for a Language

common operation for similar speci�c node types that share a super type (e.g., an interface)
by overriding the visit hook of the shared super type. This of course is only possible if
the super type provides all relevant information for the operation. A simple example use
case is counting the occurrences of AST nodes of the super type.

Tip 8.12: Inheritance Handlers should be Preferred

It is common that a concrete handler implements the LInheritanceHandler
since a language L often includes interfaces or abstract productions or at least some
productions that extend others. Even if those do not exist, the inheritance handler
is generated and we recommend to use it, because as the language evolves, newly
introduced nodes that extend existing ones (or those that implement an interface)
can then automatically adopt the behavior of its supertypes.

The generated mill also provides a precon�gured traverser (i.e., the
inheritanceTraverser) that always uses the inheritance handlers for the nodes
of each sublanguage. This allows inheriting visitor behavior across language bound-
aries without any con�guration in the composing language.

To this e�ect, MontiCore generates the InheritanceHandler as a prede�ned handler
implementation that does not only visit nodes in their most speci�c type, but also calls
the visit methods of all their super types. An example is the provided class ASTRange
depicted in Listing 8.13, where the handle method for ASTRange also visits the node
with its super type ASTScaleType and the other supertypes as de�ned by the derived
AST data structure of the language.

Java �gen� QuestionnaireInheritanceHandler1

2 public class QuestionnaireInheritanceHandler {
3 // handle for ASTRange calls four visit methods because
4 // ASTRange extends|implements
5 // ASTScaleType, ASTQuestionnaireNode, ASTNode:
6 public void handle(ASTRange node) {
7 getTraverser().visit((ASTNode) node);
8 getTraverser().visit((ASTQuestionnaireNode) node);
9 getTraverser().visit((ASTScaleType) node);
10 getTraverser().visit(node);
11 getTraverser().traverse(node);
12 getTraverser().endVisit(node);
13 getTraverser().endVisit((ASTScaleType) node);
14 getTraverser().endVisit((ASTQuestionnaireNode) node);
15 getTraverser().endVisit((ASTNode) node);
16 }
17 }

Listing 8.13: Implementation of an inheritance handler's handle method

143

8. Visitors for AST Traversal

8.2 Visitors for Composed Languages

Chapter 7 has described the various forms of language composition and how they a�ect
the concrete and the abstract syntax. The following sections explain how the visitor
infrastructure supports composition.

For language aggregation the visitors of the involved languages remain separated since the
models remain separated as well. Therefore, in case of language aggregation nothing needs
to be done. This is di�erent from language embedding and inheritance where the language
elements of the embedded/inherited language become part of the host language. Therefore,
these cases are discussed below based on examples.

Prof. Dr. B. Rumpe

Lehrstuhl für

Software Engineering

RWTH Aachen

Seite 13

TraverserViaMill

:L1Traverser

Implementation
L1Mill

L1MillForL2

L2Mill

«L1»

«L2»

protected L1Traverser _traverser() {

return new L1TraverserImplementation();

}

protected L1Traverser _traverser() {

return new L2TraverserImplementation();

}

protected L2Traverser _traverser() {

return new L2TraverserImplementation();

}

:L2Traverser

Implementation

:L2Traverser

Implementation

L1Mill.traverser();

L1Mill.traverser();

L2Mill.traverser();

initializes

L1Mill with

L1MillForL2

Figure 8.14: The traverser instantiation via mill always guarantees the most speci�c tra-
verser type in composed languages

In general, the proposed infrastructure is speci�cally designed to support reusability of
visitors in composed languages. A traverser always provides visit, endVisit, handle,
and traverse methods for all AST node types of the included sublanguages. These
methods delegate to the added, language-speci�c visitor and handler implementations.
Thus, a traverser is aware of all traversable nodes of all sublanguages (in contrast to a visitor
or a handler that only knows the nodes speci�c to the respective language). The traverser
can always handle the incoming AST by delegating the method calls to the corresponding
visitors or handlers. Therefore, it is essential to use the most speci�c traverser.

Because it cannot be known, in general, how a language is composed with other languages
in the future, the developer of a visitor has to program exactly against the current language.
To be able to reuse such code in compositions, MontiCore uses a mill (cf. Section 11.5),
which transparently provides the required traverser type of the composed language. Fig-
ure 8.14 gives a brief overview for two languages L1 and L2, where the latter extends the
�rst. Implementing a reusable traverser from L1 is as easy as calling the static method
L1Mill.traverser(). As a mill in a composed language is initialized with the most
speci�c instance, it can always provide the correct traverser. Thus, in the context of L1,
the mill provides an L1Traverser (respectively its implementing class), while in the con-
text of L2, the mill is exchanged with an L1MillForL2 instance, resulting in a dynamic

144

8.2. Visitors for Composed Languages

provision of an L2Traverser. Thus, the reusability of traversers from sublanguages is
guaranteed, as long as the mill is used for the instantiation of traversers.

8.2.1 Visitor Infrastructure for Language Inheritance and Extension

If a language LG2 is an AST-conservative extension of LG1, then a visitor V1 of the original
language LG1 can be reused directly in the context of the language LG2 by attaching it to
a corresponding traverser for the language LG2. The implementations of the AST classes
remain the same and thus the visitor V1 supports these classes.

There are two challenges to be discussed: First, the extension LG2 of the language LG1
might not be AST-conservative. That means that the production of at least one non-
terminal N overrides the original production in such a manner that some elements of the
original body are omitted or their cardinality changed. Hence, some of the assumptions
of the original visitor of the original language may be violated. This needs to be carefully
clari�ed by examining the manually implemented behavior of V1.

Second, a visitor V1 for the language LG1 usually can only be applied to the new language
LG2 with reservation because new nonterminals occur that the old visitor V1 is not aware
of. While traversing the new nodes is covered by the traverser, V1 has no speci�c visit
methods for those new nonterminals, resulting in handling these without any speci�ed
behavior. Therefore, either visitor V1 needs to be subclassed by the new visitor V2, or
the language developer needs to add a second visitor V2 to the traverser. Adding visitors
to the traverser is more general because it allows composing several base language visitors
instead of only extending a single one [HMSNRW16] and further follows the separation of
concerns principle for the dedicated sublanguages.

We demonstrate visitor extension in this subsection on the following example for automata
and give a variant in the following subsection. In Listing 8.16, l. 1 and 2 the Automata6
language conservatively extends Automata5 from Listing 8.15. Listing 8.16 then intro-
duces a new form of transition that has an additional output (l. 4). The new transition
implements the interface production AutElement, enabling to use complex transitions
whenever an instance of AutElement is required.

The resulting AST data structure is illustrated in Figure 8.17. The AST node
ASTAutElement is implemented by the new ASTTransitionWithOutput node type
of Automata6. MontiCore also produces the interface Automata6Visitor for the new
language. Here, the hand-coded visitor implementations extend their respective generated
language-speci�c visitor interfaces. Automata5PrettyPrinter provides the visiting
behavior for the basic automaton elements, while Automata6PrettyPrinter adds de-
fault implementations for the new node type ASTTransitionWithOutput. Using both
functionalities, a language developer must add the implementations to the traverser, using
the add4Automata5 and add4Automata6 methods. This way, all implementations of
the original language's visitor (and its interface) are reused. Hence, when implementing a
visitor for the new language, the aggregated default implementations are available. Con-
sequently, a complete pretty printer for the new language can be implemented by reusing
the Automata5PrettyPrinter class of the original language without modi�cation and

145

8. Visitors for AST Traversal

MCG Automata51 grammar Automata5 extends de.monticore.MCBasics {
2

3 Automaton = "automaton" Name "{" AutElement* "}";
4

5 // The interface allows extension
6 interface AutElement;
7

8 State implements AutElement = "state" Name ";";
9

10 Transition implements AutElement =
11 from:Name "-" input:Name ">" to:Name ";";
12 }

Listing 8.15: Automaton language with interface nonterminal AutElement used for ex-
tension

MCG Automata61 grammar Automata6 extends Automata5 {
2 start Automaton;
3

4 TransitionWithOutput implements AutElement =
5 from:Name "-" input:Name "/" output:Name ">" to:Name ";";
6 }

Listing 8.16: Adding transitions with output to the Automata5 language of Listing 8.15

creating a new class Automata6PrettyPrinter (cf. Listing 8.18). Instances of the two
classes must be added to an Automata6Traverser instance. The traverser reuses the
handcoded pretty printing for all nodes of the original language and also adds a pretty
printing method for transitions with output.

Prof. Dr. B. Rumpe

Lehrstuhl für

Software Engineering

RWTH Aachen

Seite 2

«interface»

ASTAutElement

Automata5

ASTTransitionWithOutput

Automata6

ASTAutomaton *

Automata5Traverser

Implementation

«interface»

Automata6Visitor

ASTTransition

Automata5PrettyPrinter

visit(ASTTransitionWithOutput)

endVisit(ASTTransitionWithOutput)

Automata6PrettyPrinter

Language Inheritance and Visitors

«gen»

«hc»

«interface»

Automata5Visitor

Automata6Traverser

Implementation

*

*

*

Figure 8.17: Overview of visitor classes for Automata6

Visitors of the original language are unaware of new AST node classes introduced in inher-
iting languages and neither need to be changed nor recompiled. For example, the pretty

146

8.2. Visitors for Composed Languages

Java �hw� Automata6PrettyPrinter1 public class Automata6PrettyPrinter
2 implements Automata6Visitor2 {
3 @Override
4 public void visit(ASTTransitionWithOutput node) {
5 print(node.getFrom());
6 print(" - " + node.getInput() +" / " + node.getOutput() +" > ");
7 print(node.getTo());
8 println(";");
9 }
10 }

Listing 8.18: A visitor implementation for the new language Automata6

printer of the Automata5 language is able to visit ASTTransition nodes but does not
know about the class ASTTransitionWithOutput.

As MontiCore demands retrieving a concrete traverser from the mill, a valid traversal is
always ensured. Thus, when reusing the Automata5PrettyPrinter without adding
any Automata6Visitor2 implementation, the AST can still be traversed and each node
originating from Automata5 is visited. Nodes of the type ASTTransitionWithOutput
would be handled but without visiting the nodes explicitly, as by default, there is no visitor
attached that deals with Automata6 nodes. Furthermore, as the traverser knows how to
handle these nodes, all children will be traversed as well, always resulting in a complete
traversal of the entire AST. This means that a concrete visitor implementation can easily
be reused in an inheriting language by adding it to a traverser. Considering that the mill
dynamically sets a traverser to its most speci�c type at runtime, even a precon�gured
traverser from a base language can be reused in an inherited one with no additional e�ort.

Please note that de�ning visitors for language inheritance should not be confused with the
inheritance visitor. These mechanisms are orthogonal.

8.2.2 Visitor for Language Inheritance with Overriding Nonterminal

It is worth to note that visitors can also be reused when some of the nonterminals of the
original language are overridden. As already said, this should be done in a conservative way,
such that the body of the nonterminal does not provide surprises (e.g., unsets attributes
or semantically relevant terminals) for visitors of the original language.

The following example (cf. Listing 8.19) is very similar to the previous one. Automata15
accepts the same models as Automata5, but because Automata15 has not been pre-
pared for explicitly providing an interface for extension, we rede�ne the Transition
nonterminal, such that transitions with output become possible (cf. Listing 8.20). The
new production body conservatively extends the old one, as it still allows to parse all old
transitions, but it also has an extension in the form of an optional output.

The resulting AST is di�erent from the previous example Automata6. In particular, two
versions of ASTTransition classes exist:

147

8. Visitors for AST Traversal

MCG Automata151 grammar Automata15 extends de.monticore.MCBasics {
2

3 Automaton = "automaton" Name "{" (State|Transition)* "}";
4

5 State = "state" Name ";";
6

7 Transition =
8 from:Name "-" input:Name ">" to:Name ";";
9 }

Listing 8.19: Automaton language without explicit extension point

MCG Automata161 grammar Automata16 extends Automata15 {
2

3 start Automaton;
4

5 @Override
6 Transition =
7 from:Name "-" input:Name ("/" output:Name)? ">" to:Name ";";
8

9 }

Listing 8.20: Conservative extension of transitions from Automata15 of Listing 8.19

Files1 Directory: out/target/.../sourcecode/
2 Generated Files: automata15/_ast/ASTTransition.java
3 automata16/_ast/ASTTransition.java

The version '16 of ASTTransition (cf. Listing 8.20) is furthermore a subclass of version
'15. Thus, the pretty printer for Automata16 is again implemented as a visitor, which
can be hooked in a traverser together with version '15 of the pretty printer.

Java �hw� Automata16PrettyPrinter1 public class Automata16PrettyPrinter
2 implements Automata16Visitor2 {
3 @Override
4 public void visit(automata16._ast.ASTTransition node) {
5 print(node.getFrom() +" - " + node.getInput());
6 if(node.isPresentOutput()) {
7 print(" / " + node.getOutput());
8 }
9 print(" > " + node.getTo());
10 println(";");
11 }
12 }

Listing 8.21: A visitor of the new language for an overriden nonterminal

148

8.2. Visitors for Composed Languages

The main di�erence can be seen in line 6 of Listing 8.21, which accounts for the additional
optional attribute output. Line 4 of Listing 8.21 shows an important detail; namely, it is
a visit method for the new version of the ASTTransition class. To avoid ambiguities
the fully quali�ed class name is used.

Which form of extension the user actually wants to use is potentially a matter of taste
but often depends on the choice of the designer of the original language, who may have
explicitly included extensibility by providing interfaces.

8.2.3 Visitors for Compositional Language Embedding

Language embedding, especially when multiple languages are involved, enforces composi-
tion of existing and reusable visitors. Compositional visitors are often used when composing
context conditions that have been de�ned for individual sublanguages.

By construction, MontiCore supports visitor composition by combining visitors and han-
dlers of di�erent sublanguages into a single traverser that delegates the distinctive method
calls. As said earlier, the generated infrastructure uses a variation of the realThis object
composition pattern described in Section 11.2. This leads to a powerful but also relatively
complex object structure. It is described in the following based on the pretty printing of
a composed language Automata3, which is already de�ned in Listing 7.15 on page 125.

We assume that two pretty printers are given in the classes ExpressionSublangPP and
InvAutomataSublangPP. Both implement the usual visitor interface. However, as the
printer for the expressions comes with a customized handle method, it also implements the
corresponding handler interface. These are intentionally prepared for composition. That
means the handlers must delegate each operation with the AST back to the traverser,
as only traverser instances navigate through the AST. Therefore, they implement the
corresponding getTraverser and setTraverser methods (see Listing 8.22):

Java �hw� ExpressionSublangPP1

2 public class ExpressionSublangPP
3 implements ExpressionVisitor2, ExpressionHandler {
4

5 protected ExpressionTraverser traverser;
6

7 @Override
8 public void setTraverser(ExpressionTraverser traverser) {
9 this.traverser = traverser;
10 }
11

12 @Override
13 public ExpressionTraverser getTraverser() {
14 return traverser;
15 }
16 // ... more methods
17 }

Listing 8.22: Prepare a handler implementation for compositional use

149

8. Visitors for AST Traversal

Furthermore, to become compositional, all methods of a handler are implemented
in such a way that they do not use this (neither explicitly or implicitly),
but use getTraverser instead. For example, if attributes need to be shared,
getTraverser().getAttribute() is used. Thus, implementing these methods is
mandatory for handlers (and thus, also enforced by the generated infrastructure) and op-
tional for visitors. By default visit and endVisit methods only operate on the given
AST node. However, if they require shared state information, they can also interact via the
traverser using the same pattern. As an alternative, one can externalize all states of the
visitors into a separate shared object. In the example, the object is an IndentPrinter
instance, which does the printing and manages indentation. The class IndentPrinter is
independent of any AST and can thus be reused in all pretty printers. It is noteworthy that
all generated handler classes and interfaces implement the signatures of getTraverser
and setTraverser by default.

The example of language embedding for visitors in Figure 8.23 is based on the exam-
ple in Listing 7.15. The ASTInvariant of the Automata3 language implements the
ASTInvariantExt interface of the InvAutomata language and stores an object of class
ASTLogicExpr. The traverser class of the new language knows both original language
visitor and handler interfaces for integration (here, only the handler for Expression is
shown, as the others are not used in this example).

Prof. Dr. B. Rumpe

Lehrstuhl für

Software Engineering

RWTH Aachen

Seite 3

Language Embedding and Visitors

«interface»

ASTInvariantExt

InvAutomaton

ASTInvariant

Automaton3

«interface»

InvAutomatonVisitor2
«interface»

Automaton3Visitor2

InvAutomaton

SublangPP

«gen»

«hc»
Automaton3

SubLangPP

«interface»

ExpressionVisitor2

Expression

Expression

SublangPP

ASTLogicExpr

Automaton3

PrettyPrinter

Newly added Pre-existing and unchanged

«interface»

ExpressionHandler
Automaton3Traverser

Implementation

Figure 8.23: Overview of visitor infrastructure for Automata3

Figure 8.23 also shows that neither the original languages nor their handwritten pretty
printers have to be adapted. The composition of two languages in a third grammar
Automata3, however, leads to the de�nition of four classes:

� Two original pretty printers are reused directly.

� A rather small pretty printer for the new nonterminals of grammar Automata3 is
manually de�ned in Automata3SublangPP.

� The composition is manually carried out in Automata3PrettyPrinter that in-
stantiates the Automata3TraverserImplementation, whose only purpose is to

150

8.2. Visitors for Composed Languages

delegate to the correct pretty printer while traversing the AST.

This complexity is necessary because Java does not allow multi-inheritance of classes.
Hence, it is not possible to extend both languages' pretty printers. Instead, MontiCore
uses delegation.

Tip 8.24: How to Compose Visitors according to their Languages

Composition is technically challenging but does not enforce much encoding. For
a new visitor the following needs to be done:

1. If using custom handlers, implement their get-/setTraverser methods to
enable composition

2. Don't care about handle or traversal at language borders. The composite
will do.

3. If visitors have a local state that should be shared, use an external object and
share its reference in all visitors.

4. Build a method (potentially in another class) encapsulating the instantiation
and connection of the generated traverser of the composed language and the
needed visitors of the sublanguages.

This composition mechanism does not rely on re�ection and is type preserving.

The class Automata3TraverserImplementation provides setters for visitors and han-
dlers of all (potentially transitively inherited) original languages. MontiCore uses knowl-
edge of the AST model by generating this traverser in such a way that it delegates all
handle and traverse calls to the original concrete handler as well as all visit and
endVisit calls to all attached original visitors of the language that the current node
belongs to. So the traverser makes heavy reuse of all these methods. On the other hand,
it is important that handlers delegate back to the composite.

In the example, the Automata3SublangPP visitor in Listing 8.25 visits ASTInvariant
nodes (lines 5 and 10) to print additional comments:

Java �hw� Automata3SublangPP1

2 public class Automata3SublangPP implements Automata3Visitor2 {
3

4 @Override
5 public void visit(ASTInvariant node) {
6 out.print("/*[*/ ");
7 }
8

9 @Override
10 public void endVisit(ASTInvariant node) {
11 out.print("/*]*/ ");
12 }

151

8. Visitors for AST Traversal

13

14 // ... more methods
15 }

Listing 8.25: The implementation of the pretty printer for the Automata3 sublanguage
(with only one nonterminal)

Please note that the traverser only delegates the visit and endVisit methods with the
ASTInvariant signature to this visitor. The same is true for other visitors: Only the
nonterminals that are explicitly de�ned in that language are delegated to the respective
visitor or handler).

Next, all visitors and handlers are composed using the traverser like in Listing 8.26.

Java �hw� Automata3PrettyPrinter1 protected IndentPrinter out;
2 protected Automata3Traverser traverser;
3

4 public Automata3PrettyPrinter(IndentPrinter o) {
5 out = o;
6 traverser = Automata3Mill.traverser();
7

8 // ... configured with three sublanguage visitors
9 traverser.add4InvAutomata(new InvAutomataSublangPP(o));
10 ExpressionSublangPP espp = new ExpressionSublangPP(o);
11 traverser.add4Expression(espp);
12 traverser.add4Automata3(new Automata3SublangPP(o));
13

14 // add expression sublanguage visitor also as handler
15 // as it provides a custom handle strategy
16 traverser.setExpressionHandler(espp);
17 }

Listing 8.26: Composing the three visitors through delegation and giving them the same
shared state

The statements from lines 9-12 instantiate the sublanguage visitors and directly add them
to the composite. The object o is handed over to all sub-visitors to share the same state.
Furthermore, as the expression's pretty printer also implements the corresponding handler
interface, it is also added as such in line 16.

The composition always needs to compose visitors of all participating sublanguages. If
we omitted a statement, then all nodes of that sublanguage are not visited anymore and
therefore just ignored in a composition. For example, omitting the statement in line 11
would lead to a disappearance of the expression part. Omitting the statement in line 9
would omit everything related to printing the automata as most of the contents are provided
by InvAutomata and thus would be ignored.

Finally, Listing 8.27 demonstrates how to use the composed visitor.

152

8.2. Visitors for Composed Languages

Java �hw� Automata3Tool1 // Common storage for all pretty printers
2 IndentPrinter ppi = new IndentPrinter();
3

4 // The composite visitor
5 Automata3PrettyPrinter acpp = new Automata3PrettyPrinter(ppi);
6

7 // run the visitor
8 acpp.print(ast);
9 Log.println(ppi.getContent());

Listing 8.27: The composed visitors can be used as if it is only one monolithic component

In line 2, the shared state is instantiated. Line 5 creates the composite. In l. 8, the traverser
is applied to the model by internally calling ast.accept(traverser); and in l. 9 the
result is retrieved from the object containing the shared state.

As mentioned, this mechanism acts as a blueprint for composition and can be reused in
many forms. If no shared state is necessary, the ppi object can, of course, be omitted.
The shared state could also be inside the traverser, when each visitor refers to the traverser
for the state as well.

The blueprint shows that, in generally, for n languages that are composed by another
language, n+1 visitor objects for sublanguages are composed by a traverser for the overall
language. Including the traverser this sums up to n+2 objects in total if all kinds of nodes
need to be addressed. In practice, n of these visitors can usually be reused and only one
new visitor needs to be newly de�ned.

The con�guration of a traverser from a sublanguage can be reused by simply reusing the
corresponding traverser from the composing language. Retrieving traverser instances via
a mill automatically ensures that instances of the traverser of the most speci�c composing
language are used.

Note that it is not forbidden to write a single visitor class for several sublanguages, which
means that it only has to be instantiated once and can be added several times. On the
other hand, we also allow lists of visitors to be handed to a traverser to parallelize calls
during traversal.

The realizations discussed in this chapter provide a lot of �exibility in various forms of
compositions. However, when restructuring an extended subgrammar, for example, by
letting it extend a new grammar, then, unfortunately, the visitor con�gurations also have
to be adapted. Therefore, we recommend stabilizing the extended grammars �rst.

153

Chapter 9

Symbol Management Infrastructure

co-authored with Arvid Butting and Pedram Mir Seyed Nazari

This chapter gives an introduction to the management of symbols within models, respec-
tively the generated infrastructure for symbol management. Further, it explains the process
of resolving symbols.

Symbol tables are tightly integrated with the AST, but because parsing is based on a
context-free grammar, the symbol table is constructed in an extra pass after parsing.
However, the symbol table should be regarded as part of the AST, even if we will see, it
extends the AST to a graph with an embedded spanning tree.

The symbol management infrastructure (SMI) is based on [MSN17] and [Völ11].

The SMI, as described in the following, is inspired by the general-purpose programming
language Java. Java has a typical complex type system including extensibility through
inheritance, private, protected, and public visibility, and generics. The SMI is designed to
handle all these concepts and especially applicable to modeling languages. But the SMI is
also de�ned in such a way that it assumes reasonable defaults for common cases and the
SMI is, therefore, also usable in simple cases. The TOP mechanism also allows to adapt
the SMI with handwritten code (cf. Chapter 14).

Overview: De�ning Symbols directly in the Grammar

MontiCore generates default symbol handling. This covers a larger set of cases, but not
everything. If someone is happy with the standard cases, this section will help, because it
gives an overview. For a deeper understanding of how the mechanism works and how it
can be adapted, the rest of the chapter is helpful.

There are three main concepts available in the grammar language itself:

� The keyword symbol attached to a nonterminal K de�nes that the Name occurring
on the right side introduces a new symbol, i.e. is symbol de�ning. The symbol is of
kind K and MontiCore generates infrastructure to manage symbols of this kind in
the class KSymbol.

9. Symbol Management Infrastructure

Tip 9.1: How to read this chapter

This chapter addresses all aspects of the SMI:

� Foundational topics are discussed in Sections 9.1 (introduction, containing
especially de�nitions for the terms used in this chapter), 9.4 (collaboration
between AST, symbol, and scope),

� Tool designers interested in using symbols read Sections 9.5 (using symbols),
9.6 (instantiating symbol tables), 9.8 (resolving symbols), and 9.9 (the visitor
design pattern for symbol tables).

� Language designers should read in addition Sections 9.2 and 9.3 (de�ning
symbols and scopes).

� For language aggregation with existing SMIs in the sublanguages read Sec-
tions 9.7 (loading and storing symbols) and 9.10 (symbol tables and composed
languages).

� When a name is using a symbol, this is modelled by Name@K, which tells Monti-
Core that here an existing symbol name of kind K is used. MontiCore generates
infrastructure to e�ciently connect symbol uses with their de�nitions.

� The keyword scope attached to a nonterminal tells MontiCore that the nonterminal
opens a new scope and all symbols de�ned within the scope are managed there.

Scopes are con�gurable among others with: whether they shadow external symbols,
and whether they encapsulate their symbols or allow external and quali�ed access.

Figure 9.2 shows how the grammar constructs to de�ne symbol table infrastructure may
be used.

MCG1 // define a new form of symbols
2 symbol K = "..." Name "..."
3

4 // usage of a symbol
5 NT = "..." Name@K "..."
6

7 // a nonterminal defines a scope with local symbols
8 scope M = "..." "{" Body "}"

Listing 9.2: Example use of symbol de�ning grammar constructs

MontiCore uses the information given in Figure 9.2 to generate a bunch of additional
classes and methods:

� Symbol classes, here KSymbol to carry symbol information.

� Scope managing classes for the language managing symbols de�ned in models.

156

9.1. Introduction to Symbol Table Concepts

� Loading and storage functionality for scopes and symbols.

� The AST for nonterminal K is extended to link to the symbol de�ned in K.

� The AST for NT is extended to allow e�cient navigation to the symbol de�nition
(and lookup).

� The AST for M is extended to link with the scope.

� All AST nodes know their enclosing scope, which allows to resolve for any kind of
symbol within each part of a model.

� Methods are generated that build the scope and symbol structure after the AST
structure has been created.

And all of the above mentioned classes can be adapted e.g. through the TOP mechanism,
which is in many cases relatively straightforward because appropriate hook points exist.

9.1 Introduction to Symbol Table Concepts

Every textual software language has names to (1) identify and reference entities de�ned in
the language and (2) use entities via these names. In most cases, names serve as identi�ers
consisting of a character sequence complying with some speci�c rules. Typical examples
are names for Java classes or methods that may only contain letters, numbers, dollar signs
and underscores. Furthermore, they may not begin with a number.

9.1.1 Symbols

Names occur in two forms: name de�nition and name usage. In some cases a new name is
de�ned and used at the same time, e.g., attributes in Java are declared and initialized in
a single statement. As a variant, entities may be introduced and thus (implicitly) de�ned
with its �rst use � untyped languages often allow to introduce variables that way.

A name de�nition introduces a new name for a (new) model entity. In other words, a
name de�nition de�nes a new model entity having some speci�c kind, such as state, class,
or method. Kinds can enforce additional information, e.g., (method) signature or visibility.

A name usage refers to an entity de�ned elsewhere, either in the same or a di�erent model.
Depending on where in the source code the same name is used, it can refer to di�erent
entities, because of their restricted visibilities.

Rarely, it may happen that a symbol is de�ned along with its �rst use. These symbols
typically do not have an additional body or carry extra information, but are only needed
to connect structures. E.g., states in simple, �at automata or features in feature diagrams
could be handled this way.

A symbol is an abstraction of the model entity. It contains the name that is de�ned and
relevant information about the model entity that is needed to use it. For example, a method

157

9. Symbol Management Infrastructure

de�nition in the model introduces the method name and leads to the introduction of the
method symbol, which contains the method signature, but not the method body.

In order to easily and e�ciently retrieve the relevant information that a name usage refers
to, so-called symbol tables are employed. By de�nition, a symbol table is a data structure
that maps a name to the corresponding symbol. It allows to e�ectively �nd declarations,
types, signatures, implementation details etc. for a name. Due to restricted visibilities,
scopes divide the mapping into smaller, typically hierarchically composed structures.

The visibility of a symbol is the region in a model where the symbol is accessible by its name.
A symbol can be shadowed by another symbol. In Java, e.g., an attribute can be shadowed
by a local variable within a method. In addition, an access modi�er directly attached to
the de�nition of the symbol controls visibility, e.g., public, private, and protected in Java.

Each symbol belongs to a speci�c kind depending on what kind of model element it denotes,
e.g., variable, method, state, action, port, label, class, etc. The symbol contains useful
information depending on the kind, e.g., for methods, the method name, the modi�ers, the
return type, and the parameter types.

Tip 9.3: What is a Symbol?

Symbols are introduced in the models by giving a certain model entity a name.
Every symbol has a name. A model entity that does not have a name cannot

de�ne a symbol.
Neither anonymous symbols, nor symbols with constructed complex names (that

nobody knows of) are helpful and thus do not exist.
Each symbol has a kind. Depending on the kind, the symbol carries di�erent

essential information. For example, a state can be initial or �nal (booleans). A
variable has a type. A class has a signature, consisting of attributes, methods,
superclasses, and interfaces. A signal in the Internet-of-things (IOT) domain usually
has a value range and a frequency.

A symbol is an abstraction of its de�ning model entity. It does not repeat the
whole information from the AST. Otherwise, the AST itself could be used.

When symbols are exchanged between models in heterogeneous language environments, the
symbols might occur with di�erent kinds, names or other adapted essential information
across a language respectively scope border. For example, a state Ping of an automaton
might become an enum value Ping or, alternatively, a boolean method isInPing() in
Java. An attribute age of a class diagram may be mapped to a private attribute age and
two methods getAge() and setAge(.) in an Automata expression sublanguage.

9.1.2 Scopes

A scope holds a collection of symbols and impacts their visibility.

A scope typically is de�ned by a nonterminal with a body, which is enclosed by some kind
of brackets and contains nonterminals that may introduce names. The brackets de�ne the

158

9.1. Introduction to Symbol Table Concepts

visible containment structure and the nonterminals in the body may introduce new names
that are then potentially restricted to be visible in their enclosing scope. Please note that
a nonterminal may introduce several scopes, but MontiCore only assists one scope per
nonterminal. If needed a simple refactoring of the grammar is possible.

Scopes are hierarchically nested, re�ecting the nested visibilities of the symbols they de�ne.

A shadowing scope allows its symbols to shadow other symbols that are already de�ned
outside (e.g., in enclosing scopes). A visibility scope does not allow shadowing. E.g. a Java
method spans a shadowing scope, while a statement block in Java only spans a visibility
scope.

A management infrastructure for symbols, where the SymbolTable is a vital part of,
serves three main purposes:

1. It allows a quick navigation from the usage of a symbol (via its name) to its de�nition.

2. It collects relevant information about a symbol, which may be spread among one
or several sources. For example, for a class, the infrastructure may collect the list
containing the attributes de�ned in the class and the attributes inherited by the
class.

3. It acts as a surrogate for the entity de�nition in other models that use the symbol
(via its name). Thus, it enables that only the symbol tables of other models can be
loaded instead of loading (parsing) the complete models.

The result of a name search is a symbol that represents essential information about a named
model entity. If the entity is de�ned in the loaded model, a link to the de�nition is also
provided. Di�erent symbols may have the same name, when de�ned in di�erent scopes or
if they are otherwise di�erentiable, e.g., like methods through argument types.

A symbol table consists of a scope tree (or scope graph, see Section 9.3) with associated
lists of symbols at each scope to manage the visibility respective accessibility of symbols.
Scopes contain symbol de�nitions, but also import and export symbols. Each symbol is
de�ned in exactly one scope.

Prof. Dr. B. Rumpe

Lehrstuhl für

Software Engineering

RWTH Aachen

Seite 2

enclosing0..1

enclosing-

Scope

subScopes

*

*

«interface»

ISymbol
defines«interface»

IScope

CD

«RTE»

�

Overview SMI

Figure 9.4: Overview of the main concepts of SMI

The SMI of MontiCore provides reasonable defaults to facilitate the development of
language-speci�c symbol tables. Figure 9.4 gives an overview of the two main elements of
the SMI, which are extended by generated, language-speci�c classes. Both are introduced
in the remainder of this chapter. This chapter uses the Automata language (introduced

159

9. Symbol Management Infrastructure
Prof. Dr. B. Rumpe

Lehrstuhl für

Software Engineering

RWTH Aachen

Seite 3

method1:

MethodScope

Visualization for Symbol Tables

OD
«tool»

global:

JavaGlobalScope

C1:Class

Symbol

d:

AttributeSymbol

while:

BlockScope

artifact1:

JavaArtifactScope

foo:

MethodSymbol

D1:Class

Symbol

class2:

ClassScope

artifact2:

JavaArtifactScope

class1:

ClassScope

scope classLegend:

symbol class

Source
models:

Figure 9.5: An example structure of a hierarchy of scopes

in Section 21.1) as well as concepts of the Java programming language for the illustrations
of the generated parts.

Figure 9.5 shows an example scope structure for Java. In the object diagram, the global
scope manages two artifact scopes, which internally de�ne the class symbols C1 and D1.
Each class has also a body and therefore a scope. The scope of C1 is furthermore containing
two symbols d and foo. Java distinguishes the class scope from the artifact scope because
in the same Java �le (i.e. artifact) additional classes may be de�ned.

The various tool classes, such as AttributeSymbol, MethodSymbol, ClassSymbol,
BlockScope, MethodScope, ClassScope, JavaArtifactScope, and
JavaGlobalScope are generated by MontiCore for the speci�c language and their
purposes and mechanisms are explained in the rest of the chapter.

It is noteworthy that the method foo has a body, in which local variables and other
symbols can be de�ned, but the method symbol foo itself is de�ned outside and belongs
to the enclosing class scope. The same holds for the class symbol C1.

The �gure also shows that we represent symbols and scopes in a slightly modi�ed form
compared to ordinary objects and classes for better readability.

9.2 De�ning Symbols

The keyword symbol was already mentioned in Chapter 4. It can be attached to nonter-
minals that are de�ned in the grammar. The keyword symbol indicates that a nonter-
minal's body de�nes a new symbol. We demonstrate the e�ect on an essential part of an
Automata grammar, shown in Listing 9.6 that also contains a reduced form of expressions
and statements.

160

9.2. De�ning Symbols

MCG Automata1 grammar Automata
2 extends de.monticore.literals.MCCommonLiterals {
3

4 symbol scope Automaton =
5 "automaton" Name "{" (State | Transition)* "}" ;
6

7 symbol scope State =
8 "state" Name
9 (("<<" ["initial"] ">>") | ("<<" ["final"] ">>"))*
10 (("{" (State | Transition | Counter)* "}") | ";") ;
11

12 Transition =
13 source:Name@State "-" input:Name ("|" Statement)? ">"
14 target:Name@State ";" ;
15

16 symbol Counter = "counter" Name "=" NatLiteral ";" ;
17

18 interface Statement ;
19 Print implements Statement = "!" Name ;
20 Increment implements Statement = "++" Name ;
21 }

Listing 9.6: Automata with counters and transition statements

The grammar in Listing 9.6 de�nes three kinds of symbols along with the three nontermi-
nals State (l. 7), Counter (l. 16), and Automaton (l. 4). The grammar introduces a
symbol kind for each nonterminal tagged with the keyword symbol, which leads to a num-
ber of additionally generated classes as described below in Section 9.2.2. For example, the
nonterminal State introduces a symbol of the kind StateSymbol (and thus also a Java
class of this name) and in automata models, each state actually introduces a corresponding
symbol instance.

The keyword symbol can be attached to nonterminals that introduce a Name on the
right-hand side.

If the Name is mandatory, exactly one symbol is created. If Name? is optional, a symbol
is only created, if the modeler has actually given the model entity a name.

The symbol keyword cannot be added to a production of the form A=Name*, with a
cardinality larger than 1. If this is desired, a restructuring of the grammar can help, e.g.
by using A=B*; symbol B = Name instead.

If the symbol keyword is added to a nonterminal that does not have a name on the right-
hand side or a named Name nonterminal (e.g., b:Name), MontiCore produces an abstract
symbol class. The abstract class contains an abstract method getName() that language
engineers have to extend by applying the TOP mechanism.

The keyword symbol can also be assigned to interface nonterminals by adding it before
the interface keyword. The e�ect of this is that all nonterminals that implement the
interface de�ne a symbol, even if these are not explicitly marked with the symbol keyword.

161

9. Symbol Management Infrastructure

The keyword symbol is inherited both, from interface nonterminals to their implementing
nonterminals, but also from a nonterminal A to its extending nonterminal B. The keyword
symbol may only be "inherited" once ("single inheritance").

If the keyword symbol is inherited to B, then B nonterminals de�ne symbols of the "in-
herited" kind ASymbol as well. This changes if the nonterminal B also explicitly has the
symbol keyword attached because then it de�nes symbols of its own kind BSymbol, which
is then a subclass of ASymbol.

9.2.1 Runtime (RTE) Classes For Symbols

Figure 9.7 (top part) depicts two interfaces that are provided by the SMI runtime environ-
ment (RTE).

Prof. Dr. B. Rumpe

Lehrstuhl für

Software Engineering

RWTH Aachen

Seite 6

Symbol Classes realized in MontiCore

1*

«interface»

ISymbol

String getName()

String getFullName()

String getPackageName()

«interface»

AccessModifier
-

supertype of
all symbols

CD

«RTE»

Automata
language
example

«gen»

ICommonAutomataSymbol

StateSymbol specific functionality
for symbols of kind State

common functionality
for all symbols of
language Automata

Figure 9.7: Symbol interfaces provided by SMI RTE and a language speci�c class

The ISymbol interface is the supertype of all symbols and groups information that ev-
ery symbol has, such as the symbol's simple name (e.g., type name Integer, class
name Person or state name Ping) via getName, its package name (e.g., java.lang)
via getPackageName, and its fully quali�ed name (e.g., java.lang.Integer) via
getFullName. As introduced before, every symbol has a kind (e.g., kind method, state,
etc.), which is realized through the type of the symbol class (e.g., StateSymbol) that is
generated for each symbol kind. As depicted in Listing 9.8, the generated classes extend
the RTE classes accordingly.

Java �RTE� Symbol1 public interface ISymbol {
2 // the name:
3 String getName();
4 String getPackageName();
5 String getFullName();
6

7 // connection to the AST defining node:

162

9.2. De�ning Symbols

8 boolean isPresentAstNode();
9 ASTNode getAstNode();
10 SourcePosition getSourcePosition();
11

12 // a symbol knows the scope it is defined in:
13 IScope getEnclosingScope();
14

15 // connection to access modifier
16 AccessModifier getAccessModifier();
17 setAccessModifier(AccessModifier accessModifier);
18 }

Listing 9.8: Interface of all Symbol classes

Each symbol has a name. Additionally, it has an optional package name. If the AST node
de�ning the symbol is available, a navigation from symbol to the AST is possible through
the respective methods.

Furthermore, each symbol is de�ned within its enclosing scope (see discussion in Sec-
tion 9.3). The methods for obtaining the AST node and the enclosing scope de�ned in
ISymbol will be overwritten in the generated subclasses by methods with more speci�c
return types and additional methods for setting the AST node or the enclosing scope will
be provided.

Figure 9.7 illustrates how concrete, generated symbol classes inherit from ISymbol.
StateSymbol realizes the state symbol kind and will be explained in the following Sec-
tion 9.2.2.

Only some AST nodes de�ne a symbol. Thus, the ASTNode interface has no connection to
the ISymbol interface. If a concrete AST node de�nes a symbol, such as the ASTState,
then the AST class has generated methods for realizing the connection to the symbol.

Prof. Dr. B. Rumpe

Lehrstuhl für

Software Engineering

RWTH Aachen

Seite 7

Access Modifiers

CD

«RTE»

includes(AccessModifier)

«interface»

AccessModifier

«interface»

ISymbol
0..1

INSTANCE

«enumeration»

NoAccessModifier
access modifiers of
the Java language

PUBLIC

PROTECTED

PACKAGE_LOCAL

PRIVATE

«enumeration»

BasicAccessModifier

Used if no real access
Modifier exists

Figure 9.9: Symbols may carry access modi�ers de�ning their visibility

Because a substantial number of languages provide the possibility that symbols de�ne
their own visibility using access modi�ers, such as public, protected, or private,
MontiCore supports a possibility to attach accessibility information already with the RTE
class BasicAccessModifier as shown in Figure 9.9.

163

9. Symbol Management Infrastructure

9.2.2 Generated Classes For Symbols

For each grammar, the generator creates an additional subdirectory (package)
_symboltable with the following classes that allow to manage symbols and scopes. For
each kind of symbol that is introduced with a symbol keyword in a language's grammar,
the MontiCore generator produces four classes and an interface (here demonstrated by the
example of the nonterminal State):

StateSymbol.java is generated to contain all relevant information about state symbols.
The generator itself includes the name as well as links to the de�ning AST node and
the enclosing scope. In case that a symbol spans a scope, the class also contains a
link to the spanned scope.

If the default attributes are not enough, an extension of the symbol class with the
symbolrule keyword or the TOP mechanism is possible.

StateSymbolBuilder.java builds instances of the class StateSymbol. The instance of
the builder should be obtained through the language's Mill. It is mandatory to set
the name of each symbol in the symbol builder.

StateSymbolDeSer.java realizes the serialization and deserialization strategy of
StateSymbols for loading and storing symbol tables of the language. It is ex-
plained in more detail in Section 9.7.

IStateSymbolResolver.java realizes the resolution algorithm for adapted
StateSymbols. This algorithm is factored into a class on its own so that
language designers can provide their own algorithm, e.g. for adapting symbols of a
foreign kind to StateSymbols.

These classes are typically added to the global scope to integrate the resolving for
adapted symbols into the resolution process.

Symbol resolvers are explained in more detail in the context of resolving for adapted
symbols in Section 9.10.4.

StateSymbolSurrogate.java is a subclass of the class StateSymbol that realizes loading
on demand. This class must only be used by the symbol loader if additional sym-
bols are stored elsewhere and potentially do not need to be loaded. This prevents
transitive loading cascades and mainly applies for type / class symbols.

In addition, the following class is generated to aggregate language speci�c, but symbol
common functionality:

ICommonAutomataSymbol.java is in addition generated as a common super-interface of
all symbols that are speci�c in the language automata.

Its main purpose is to allow manual extension e.g. via the TOP mechanism if needed.

164

9.2. De�ning Symbols

Java �gen� StateSymbol1 package automata._symboltable;
2

3 public class StateSymbol implements ICommonAutomataSymbol {
4

5 // symbol name
6 public StateSymbol(String name);
7

8 // signatures of some important methods:
9 public String getName ();
10 public String getFullName ();
11 public String getPackageName ();
12

13 public IAutomataScope getEnclosingScope ();
14

15 public ASTState getAstNode ();
16 public boolean isPresentAstNode ();
17

18 public AccessModifier getAccessModifier ();
19

20 public void accept (AutomataVisitor visitor);
21

22 }

Listing 9.10: Excerpt of the generated implementation of class StateSymbol

An excerpt of the method signatures that a generated symbol class contains is de-
picted by the example of the class StateSymbol in Listing 9.10. Each generated
symbol class implements the language-speci�c symbol interface (here: the interface
ICommonAutomataSymbol depicted in l. 3).

Because symbols always have a name, the constructor of the symbol class (l. 6) requires
to set the symbol's name. The symbol class further contains methods for obtaining the
symbol's name (l. 9), enclosing scope (l. 13), AST node (l. 15), and access modi�er (l. 18).

The AST node is internally realized as an optional attribute because the AST node may
not be present if the symbol has been loaded from a stored symbol table (cf. 9.7).

The method getAstNode either directly returns the AST or throws an error, if the
AST is not present. The presence of the AST can be checked by calling the method
isPresentAstNode (l. 16).

Symbol classes are traversible with visitors. Thus, all symbol classes realize an accept
method (l. 20) for the language's visitor interface.

Extensions of these generated classes can again be achieved via the TOP mechanism de-
scribed in Section 14.3 or by building subclasses. In the example, the StateSymbol class
additionally should carry useful information, e.g., if the state is initial (isInitial) or
�nal (isFinal). We might also be interested to know, which input the state can react to.
In general, symbols should only carry the information that are relevant for correct usage
of the symbol. What we regard as relevant information, however, depends on the form of
use of the symbols.

165

9. Symbol Management Infrastructure

9.2.3 De�ning Additional Symbol Attributes via symbolrule

Symbol rules enable de�ning extra attributes and methods for symbol kinds, which results
in additional �elds and the methods of the respective symbol class. Examples symbol rules
are given in Listing 9.11.

Symbol rules begin with the keyword symbolrule, followed by the symbol-de�ning non-
terminal. They are realized similar to the astrule for AST classes. The body of a
symbolrule contains attribute and method de�nitions. Attributes can be marked op-
tional (’?’) or as iterations (’*’, etc.).

MCG1 symbolrule S1 = a:AType b:java.lang.String? ;
2

3 symbolrule S2 = c:int*
4

5 method public int sumCs() {
6 int result = 0;
7 for(int i = 0 ; i < c.size() ; i++) {
8 result += c.get(i);
9 }
10 return result;
11 }
12 ;

Listing 9.11: symbolrule that de�nes three symbol attributes and a symbol method

The symbol rule in l. 1 in Listing 9.11. de�nes two attributes for S1Symbol. The �rst
attribute has the name a and is of the type AType. The second attribute demonstrates that
quali�ed names may be used and that an attribute can be optional. From this, MontiCore
generates the additional attributes AType a and Optional<java.lang.String> b
into the Java class S1Symbol. The cardinality * shown in l. 3 leads to an attribute
of type List<Integer> plus all appropriate access and modi�cation methods as usual.
MontiCore handles boxing and unboxing properly.

The second symbol rule also de�nes the method sumCs() for the class S2Symbol. As
usual, a method de�nition in the body of a symbol rule begins with the keyword method.

Obviously, complex methods should better be integrated into symbol classes through the
TOP mechanism. However, for simple methods the symbol rule can be an alternative that
reduces the number of handwritten artifacts.

A bene�t of de�ning �elds via symbol rules is that MontiCore generates more than only
the �elds in the symbol class: Symbol attributes de�ned through symbol rules are included
in the generated load/storage mechanisms for the symbol as described in Section 9.7 and
Section 9.7.3 if the type of the attribute is a default Java type (int, String, etc.). When
adding an attribute through the TOP mechanism, its persistence must be added manually
as well.

166

9.3. De�ning Scopes

9.3 De�ning Scopes

As de�ned in Subsection 9.1.2 a scope holds a group of symbol de�nitions and limits
their visibility, but also manages import from other scopes and export to other scopes.
For example, local variables in a Java method are grouped together by the scope of that
method. Thus, local variable symbols are de�ned in a method scope.

Scopes de�ne the visibility of symbols. The exact visibility and accessibility of a symbol
outside its own scope highly depends on the language that should be realized. MontiCore
provides a general infrastructure for symbol management and o�er the option to adjust it
for language-speci�c mechanism if needed (1) by scope con�guration mechanisms and (2)
with handwritten code. This allows, e.g., realizing individual forms of symbol visibility
concepts in scopes.

The keyword scope attached to a nonterminal production introduces a scope instance
at each AST node of the nonterminal. We identify two scopes in the example grammar
in Listing 9.6 (p. 161), the scope for Automata (l. 4) and scopes for State (l. 7). The
keyword scope can be attached to any nonterminal, but it is mainly useful, if there
actually are symbols that can be enclosed in a subscope, i.e. there are nonterminals on the
right-hand side of the production that introduce symbols in their bodies.

Whether a nonterminal de�nes a scope is completely orthogonal to whether this nontermi-
nal also provides a symbol. However, a named scope, for example, allows quali�ed access
to internal names, while an anonymous scope (introduced via a nonterminal production
without symbol keyword) usually hides the names de�ned internally. Examples are Java
classes and methods versus statement blocks {...}.

9.3.1 Artifact Scope and Global Scope

Due to a modular structure of the many artifacts that are typically involved in a devel-
opment project, the symbol management infrastructure provides two standard scopes: the
artifact scope and the global scope.

The artifact scope represents the scope of the whole artifact and thus is the top scope of a
model. When storing and loading symbols, these symbols are aggregated in artifact scopes.

MontiCore generates a language-speci�c artifact scope class for every grammar. For ex-
ample, the class AutomataArtifactScope is generated for Automata language.

If no other local scopes are established, MontiCore adds all symbols de�ned in a model
to its artifact scope, thus exhibiting a �at visibility structure. If a language introduces
additional scopes, these scopes become subscopes of the artifact scope. The scopes within
a model are typically arranged as a tree, which is structurally homomorphic to the AST.
Each scope, thus, contains a potentially empty list of subscopes. This creates a tree of
scope instances for each model, where the root scope is always an artifact scope.

Many modeling languages can bene�t from a concept of structuring models into packages.
Artifact scopes, thus, have a built-in mechanism for realizing packages. An artifact scope

167

9. Symbol Management Infrastructure

holds an attribute capturing the package as String as well as a getter and a setter method.
The attribute can be used to qualify and unqualify symbol and scope names with the
package name.

Artifact scopes contain language-speci�c information for managing model artifacts and
realize parts of the language-speci�c inter-model symbol resolution algorithm (described
in Section 9.8).

The global scope of a language is the root of the scope graph of a language. Thus it is
the direct or indirect enclosing scope of all scopes of the language. Its direct subscopes
are usually artifact scopes since these are the top scopes of the models. That way, the
global scope �connects� models and enables inter-model symbol resolution. The global
scope usually also contains globally available information, such as global types like int
and boolean in Java. These types can be used in every model without explicitly being
imported. The global scope further is the basis for realizing language aggregation in
MontiCore (cf. Section 9.10).

MontiCore generates language-speci�c global scope classes for every grammar, such as
AutomataGlobalScope for the Automata grammar.

Because the global scope is responsible for loading stored symbols on demand from the
�le system, MontiCore uses the concept of model path. As the classpath in Java, the
model path contains a list of paths containing the �les to be loaded. To manage model path
entries, the global scope has an attribute typed with the MontiCore RTE class ModelPath.
Details are given in Section 9.7.

To be able to �nd symbol table �les that should be loaded, these have to be stored at a
location following the guidelines described in Section 9.7.5.

An instance of the global scope can be obtained via the mill by using the globalScope()
method. In this form, the global scope comes fully con�gured and ready to use. The model
path is by default empty. The default �le extension of stored symbol tables is sym. The
generated DeSers are used for serialization and deserialization and no resolvers for adapted
symbols are hooked in.

Listing 9.12 serves as a teaser for the various con�guration options of the global scope.
Line 2 shows how to set the model path, which is described in more detail in Section 9.7.4.
The �le extension for looking up symbol tables can be changed from the default su�x
"sym" using the setFileExtmethod as demonstrated in line 3 (cf. Section 9.3.2). Line 4
adds a StateResolver to resolve adapted symbols. This is detailed in Section 9.10.4.
Finally, line 6 shows how to add custom symbol DeSers for serialization and deserialization,
which is described in Section 9.7.

9.3.2 Runtime Environment Classes for Scopes

Since MontiCore 6, the symbol table infrastructure is strongly typed. Thus, the MontiCore
RTE only contains general scope interfaces and generated, language-speci�c scope inter-
faces add language-speci�c methods. Further, the MontiCore generator produces speci�c

168

9.3. De�ning Scopes

Java GlobalScopeTest1 IAutomataGlobalScope gs = AutomataMill.globalScope();
2 gs.setModelPath(new ModelPath(Paths.get("src/models")));
3 gs.setFileExt("autsym");
4 gs.addAdaptedStateSymbolResolver(new MyStateResolver());
5 gs.putSymbolDeSer("automata._symboltable.StateSymbol",
6 new MyStateDeSer());

Listing 9.12: Con�guring global scope attributes

symbol resolution algorithms for each symbol kind. Thus, the MontiCore RTE scope-
interfaces do not provide any common realization and are rather small.

Listing 9.13 shows the most important signatures that the RTE class IScope provides
and that are implemented by all generated scope classes.

Java �RTE� IScope1 public interface IScope {
2

3 boolean isShadowing();
4 void setShadowing(boolean b);
5

6 boolean isExportingSymbols();
7 void setExportingSymbols(boolean b);
8

9 boolean isOrdered();
10 void setOrdered(boolean b);
11

12 void setName(String name);
13 void setNameAbsent();
14 String getName();
15 boolean isPresentName();
16

17 IScope getEnclosingScope();
18

19 int getSymbolsSize();
20

21 void setAstNode(ASTNode node);
22 void setAstNodeAbsent();
23 boolean isPresentAstNode();
24 ASTNode getAstNode();
25

26 void setSpanningSymbol(IScopeSpanningSymbol symbol);
27 void setSpanningSymbolAbsent();
28 boolean isPresentSpanningSymbol();
29 IScopeSpanningSymbol getSpanningSymbol();
30 }

Listing 9.13: Signature of all scope classes that implement IScope

All scopes have the properties shadowing (l. 3), exportingSymbols (l. 6), and
ordered (l. 9) for which the interface provides getters and setters.

169

9. Symbol Management Infrastructure

Scopes can be con�gured with three Boolean switches, each leading to di�erent behaviors
regarding the visibilities of the symbols contained in the scopes.

isShadowingScope is true when it is a shadowing scope, where local names shadow
imported names. E.g. in Java the method body scope is shadowing, and therefore
local variables shadow attributes (but not other local variables in the same method).

isOrdered de�nes, whether symbols can be used within a scope before they are actually
de�ned. This is e.g. the case in Java classes, but not within method scopes.

isExportingSymbols indicates whether the scope exports symbols to the environment
or keeps the locally de�ned elements encapsulated.

By default, scopes do export symbols because, for example, a static �eld f de�ned in a
class (scope) C can be accessed through C.f. For that purpose, a scope has an optional
name in the form of a String de�ned already in the IScope interface. Navigating into
the scope can be achieved through the use of that String as quali�er part (e.g. C) of the
symbol name C.f.

Each scope except the global scope has an enclosing scope. The methods
getEnclosingScope and getSubScopes (see association in Figure 9.4) allow to ac-
cess the enclosing scope and the subscopes, respectively. The interface IScope de�nes
the signature for the method getEnclosingScope() (l. 17) with the return type
IScope. Language-speci�c scopes implement this method and concretize the return type
to language-speci�c scope types. IScope does not contain a method for setting the en-
closing scope, as concretization of the argument type for the scope would not be possible
in language-speci�c scopes. Due to similar reasons, the IScope interface does not de�ne
any method for handling subscopes. Such methods are generated in a language-speci�c
form instead.

For convenience, each scope implements the method getSymbolsSize() (l. 19) to obtain
the number of all symbols that are contained locally in this scope. Due to the hierarchical
structure of scopes, the real number of resolvable symbols usually is larger.

The interface further provides methods for the connection of a scope to an AST node (l. 21)
and the connection to a symbol that spans the scope (l. 26). The access and manipulation
methods handle both connections as optional because neither an AST node nor a spanning
symbol is always present. Unlike the connection from a scope to its enclosing scope, the
types for the connections to AST nodes and spanning symbols are not concretized in scope
implementations, as both can be of various types.

Java �RTE� IArtifactScope1 public interface IArtifactScope {
2

3 String getPackageName();
4 void setPackageName(String packageName);
5

6 String getFullName();
7 }

Listing 9.14: IArtifactScope dealing with scopes for full artifacts and thus manages
package information

170

9.3. De�ning Scopes

Listing 9.14 shows the MontiCore RTE interface IArtifactScope that is implemented
by all generated artifact scopes. It provides the method getPackageName that returns
the name of the package that the artifact described by the scope is located in. Further, it
contains the method getFullName for obtaining the full name of an artifact scope, which
is the name of the artifact scope preceded by a quali�er that indicates the package if it is
non-empty.

Java �RTE� IGlobalScope1 public interface IGlobalScope {
2

3 ModelPath getModelPath();
4 void setModelPath(ModelPath modelPath);
5

6 String getFileExt();
7 void setFileExt(String fileExt);
8

9 void addLoadedFile(String name);
10 void clearLoadedFiles();
11 boolean isFileLoaded(String name);
12

13 void init();
14 void clear();
15

16 Map<String, ISymbolDeSer> getSymbolDeSers();
17

18 void setSymbolDeSers(Map<String, ISymbolDeSer> symbolDeSers);
19 void putSymbolDeSer(String key, ISymbolDeSer value);
20

21 ISymbolDeSer getSymbolDeSer(String key);
22

23 IDeSer getDeSer();
24 void setDeSer(IDeSer deSer);
25 }

Listing 9.15: IGlobalScope describes the interface of the global scope

Listing 9.15 shows the MontiCore RTE interface IGlobalScope. It is also implemented
by generated, language-speci�c global scopes.

The interface for global scopes introduces the methods getModelPath and
setModelPath for obtaining and setting the model path, in which symbol tables are
looked for, if external symbols need to be loaded.

The global scope provides the methods init and clear (repeatedly usable) for its ini-
tialization and for clearing the global scope. The clear method (cf. Section 9.7) resets
the global scope and thus unloads all artifact scopes, empties the model path entries, and
sets all DeSers that have been recon�gured to the initial default con�guration.

Global scopes have the two methods getFileExt and setFileExt to access and modify
a regular expression for �le extension of symbol table �les that the global scope should
consider for loading symbol tables. This is explained in more detail in Section 9.7.

171

9. Symbol Management Infrastructure

Global scopes manage a list of names with candidates for symbol table �le names that have
been attempted to load during symbol resolution. This prevents loading the same artifact
scope more than once. Global scopes do not distinguish successful or failed attempts.
Whenever a �le is attempted to be loaded, the symbol resolution �rst checks whether a
�le with this name has been loaded before by calling the method name isFileLoaded.
If this is not the case, the �le name added to the list with the global scope method
addLoadedFile and the �le is attempted to be loaded. The list can be cleared with the
method clearLoadedFiles. All three methods for loaded �les are used internally by
the symbol resolution algorithm and are typically not called by handwritten code. This is
explained in more detail in Section 9.7.

Additional methods of the IGlobalScope interface deal with loading and storing symbols
and are therefore discussed in Section 9.8.

Generated, language-speci�c artifact and global scopes contain additional methods. These
are introduced in generated interfaces and classes described in Section 9.3.3.

9.3.3 Generated Classes For Scopes

The MontiCore RTE scopes described in Section 9.3.2 are the basis for generated, language-
speci�c scope interfaces and scope classes. These language-speci�c scopes enable realizing
type-safe handling of symbols within each scope as well as type-safe connections of a scope
to its environment, such as the AST node, enclosing scope, and subscopes.

MontiCore provides exactly one generated scope kind for a language, which is attached
to all nonterminals marked with the keyword scope. However, the scope kind can be
parametrized with di�erent properties (e.g., whether it is ordered or not) per scope instance
individually. MontiCore separates generated scope interfaces from generated scope classes
to accustom to the potential multiple inheritance between a language and the languages it
inherits from during language composition. This is explained in more detail in Section 9.10.

Prof. Dr. B. Rumpe

Lehrstuhl für

Software Engineering

RWTH Aachen

Seite 9

Scope Classes realized in MontiCore

CD

«RTE»

«gen»«interface»

IAutomataScope

AutomataScope

«interface»

IAutomataArtifactScope

AutomataArtifactScope

«interface»

IAutomataGlobalScope

AutomataGlobalScope

«interface»

IScope

«interface»

IArtifactScope

«interface»

IGlobalScope

Figure 9.16: Scope classes genererated for the Automata language

An overview of the scopes that MontiCore generates for each language is depicted by
example of the Automata language in Figure 9.16.

172

9.3. De�ning Scopes

IAutomataScope extends the class IScope of the MontiCore RTE and mainly intro-
duces the language-speci�c method signatures and default implementations for some
of these methods.

IAutomataArtifactScope extends both the language-speci�c scope and the Monti-
Core RTE IArtifactScope. Through inheriting from the language-speci�c scope
interface, the signatures and default implementations of the scope methods can be
reused. However, the language-speci�c artifact scope interface overrides some method
default implementations to add behavior speci�c to artifact scopes. This especially
includes handling of artifact names during symbol resolution.

IAutomataGlobalScope reuses some of the language-speci�c signatures and default
implementations from IAutomataScope. However, the language-speci�c global
scope interface also overrides some methods to add behavior speci�c to global scopes.
This includes inter-model symbol resolution as well as loading of stored symbol tables.

AutomataScope implements IAutomataScope and realizes all attributes and methods
for which no default implementation in the scope interface exists.

AutomataArtifactScope again provides the implementation for its interface.

AutomataGlobalScope again provides the implementation for its interface. The global
scope class reuses most �elds from the scope class but adds �elds and methods for
handling model path entries, resolvers, DeSers, and the �le extensions of symbol �les.
The model path and resolvers are required for realizing inter-model resolution (cf.
Section 9.8). DeSers and symbol �le extensions are required for realizing loading of
stored symbol tables (cf. Section 9.7).

As a general remark, the diamond inheritance structure of many of the implementation
classes is resolved through adding additional interfaces and providing default implementa-
tions in these interfaces. The default implementations are inherited across the inheritance
hierarchy. Some methods, however, cannot be provided as defaults and do have to be gen-
erated into the implementing classes. Thus, they are not be inherited across the interfaces.
This becomes relevant when looking at language composition in Section 9.10.

The scope methods that are generated for realizing the connection of a scope to its envi-
ronment are explained in more detail in Section 9.4 and the scope methods that realize
symbol resolution are explained in Section 9.8.

MontiCore generates scope classes and scope interface for all languages regardless whether
these de�ne symbols through the grammar or not. This is a deliberate decision that enables
language engineers to use the TOP mechanism, e.g., to add handwritten symbols or adapt
resolution processes, for any language. A further advantage of generating scopes for each
language is that inheritance relationships for languages can be applied to scopes coherently.
This is explained in more detail in Section 9.10. For similar reasons, MontiCore always
generates artifact scope and global scope classes and interfaces for all languages.

Symbol management in a scope is relatively simple: Figure 9.17 shows the two methods
add and remove for managing symbols. getLocalStateSymbols retrieves all local
symbols as a multimap that maps a symbol name to a list of all StateSymbols de�ned

173

9. Symbol Management Infrastructure

in the scope that have this name. Usually, an entry in the map contains only a single
symbol for a given name. In some cases, e.g., in Java method signatures, it is allowed that
multiple symbols with the same name co-exist and are thus stored in the same entry of the
multimap. These symbols must be distinguishable by other means. Java methods, e.g.,
are distinguishable by their parameters.

getStateSymbols returns a list of all StateSymbols de�ned in the scope. This
is a �attened list of all values of the respective symbol map, which is the result
of the getLocalStateSymbols method. Please note that in the example both
getLocalStateSymbols and getStateSymbols do not respect visibilities and de-
liver all symbols. Neither of the methods returns symbols de�ned in subscopes.

For resolving a given symbol name the most relevant methods are discussed in Section 9.8.
They respect visibilities and also examine subscopes.

Java �gen� IAutomataScope1 public interface IAutomataScope {
2

3 // provided for each kind of symbols (here: "State")
4 public Multimap<String,StateSymbol> getStateSymbols() ;
5 public List<StateSymbol> getLocalStateSymbols();
6

7 public void add(StateSymbol);
8 public void remove(StateSymbol symbol);
9

10 // resolving methods are not shown here
11 }

Listing 9.17: IAutomataScope core functions

IAutomataArtifactScope and its implementation AutomataArtifactScope
mainly concentrate on the storage of the list of imports that the artifact uses. These
imports are needed to tell the global scope where to look for foreign symbol tables when
their loading is needed.

Java �gen� AutomataGlobalScope1 public class AutomataGlobalScope {
2

3 public class AutomataGlobalScope extends AutomataScope
4 implements IAutomataGlobalScope {
5

6 public AutomataSymbols2Json getSymbols2Json()
7 public void setSymbols2Json(AutomataSymbols2Json s2j)
8

9 public void loadFileForModelName(String modelName)
10

11 public void loadState(String name)
12

13 public List<IStateSymbolResolver>
14 getAdaptedStateSymbolResolverList()
15 public void setAdaptedStateSymbolResolverList(
16 List<IStateSymbolResolver> r)

174

9.3. De�ning Scopes

17

18 // methods for automaton symbols and implementations
19 // of methods of IGlobalScope are not shown here
20

21 }

Listing 9.18: Method signatures of the AutomataGlobalScope class

Global scopes extend the scope class and implement the global scope interface of the
language, as described in Listing 9.18. As the global scope interface inherits from the
interface IGlobalScope, global scope classes contain the implementation for the methods
described in Listing 9.15 as well.

Each global scope has a getter and a setter method for the Symbols2Json class of the lan-
guage. This is used by the method loadFileForModelName for loading symbol tables
from a given name of a symbol table �le. Global scopes further have a loading method, such
as loadState, for each symbol kind of the language. The method loadState uses the
method calculateModelNamesForState of the language-speci�c global scope inter-
face to calculate candidates for symbol table �les that contain state symbols. Afterwards,
it loads the symbol table with the method loadFileForModelName. Loading of symbol
tables is described in more detail in Section 9.7.

For language composition, global scopes manage a list of symbol resolvers. For each symbol
kind of the language, the global scope has an individual attribute that enables resolving
for adapted symbols. Symbol resolvers are explained in more detail in Section 9.10.4.

All instances of scopes, artifact scopes, and global scopes must be obtained through the
mill (cf. Section 11.5) of a language because this enables language compositionality with
black-box reuse of functionality.

A tool may only use a single instance of the global scope (hence, the name �global�). This
global scope instance is obtained from the mill with the globalScope method. The
global scope object has to be handled with care: The global scope is not stateless, it has
to be initialized (init()) and reset (reset()) properly even during unit testing. This
clears the loaded artifact scopes of a global scope, model path entries that might have been
set, and the DeSers that might have been recon�gured.

9.3.4 De�ning Scope Attributes and Methods via scoperule

Similar to AST rules and symbol rules, scope rules are grammar rules that enable de�ning
extra attributes and methods for the scopes of a language, which results in �elds of the
generated scope class. The left-hand side of scope rules is only the keyword scoperule,
i.e., the name of the scope type is omitted as there is only one scope type. Like symbol
rules, the body of a scope rule contains attribute and method de�nitions. Attributes can
be marked optional (’?’) or as iterations (’*’). Using scope rules has the same bene�ts
over using the TOP mechanism on the scope class that are described for symbol rules.

175

9. Symbol Management Infrastructure

MCG1 scoperule = a:ISymbol* b:boolean
2 method public boolean isEmpty() {
3 return this.getSymbolsSize() == 0 ;
4 } ;

Listing 9.19: A scoperule that de�nes two attributes and a method of the scope

An example for the usage of scope rules is given in Listing 9.19. The scope rule in l. 1
de�nes two attributes and a method of the language's scope. The �rst attribute has the
name a and is of the iterated type ISymbol. In the generated scope class, this produces an
attribute of type List<ISymbol> and list-type access and mutation methods. The second
attribute b is of the built-in primitive type boolean and is translated to an attribute of
the same name and type in the scope class as well as a getter and a setter method in the
scope interface. The scope rule further de�nes a method isEmpty() that returns true if
no local symbol is contained in the scope and false otherwise. Through the scope rule,
the method will be available as Java method in the scope class.

9.4 Collaboration between AST, Symbol, and Scope

Figure 9.20 illustrates the relation between AST nodes, symbols and scopes by example of
an excerpt from the automata language introduced in Listing 9.6.

Prof. Dr. B. Rumpe

Lehrstuhl für

Software Engineering

RWTH Aachen

Seite 11

Relationship between AST, Symbol, and Scope

CD

«gen»

AutomataScope

StateSymbol

1

*

contains

1
ASTState

ast

0..1

enclosingScope

subScopes
*

symbol

enclosingScope
1

0..1

1 1
spannedScope

0..1

0..1

Figure 9.20: Relationship between AST, symbol, and scope by example

An AST node and a symbol are bidirectionally linked together if they represent the same
model element. For example, a state is represented by the node ASTState and the symbol
StateSymbol. That way, we group the information contained by these two classes and
use the information as needed. Not every type of AST node has a corresponding symbol,
e.g., the AST for an import statement has no symbol as it does not de�ne a name. Although
we usually create the symbols from the AST, this is not necessarily the case.

When an external symbol table is loaded a symbol exists without a corresponding AST
node. Thus, the association from StateSymbol to ASTState has the cardinality 0..1.
The opposite direction has the cardinality 1, even though an AST node is typically instan-
tiated in a much earlier model processing phase.

Both, AST nodes and symbols, are de�ned in the enclosing scope. For example, ASTState
and StateSymbol are de�ned in an AutomataScope. Each type of AST node, regardless

176

9.5. Using Symbols

whether it de�nes a symbol or not, has an enclosing scope, which is the scope de�ning the
namespace of the location of the AST node instance.

A scope has a map with symbols for each symbol kind it can potentially contain. While
in many languages it is forbidden to have multiple symbols with the same name and
kind in a scope, it is intended in some cases in which the symbols can be distinguished
based on further information. For instance, the scope of a Java class can contain multiple
method symbols with the same name, if these are distinguishable based on their arguments.
To realize this, the symbol maps in scopes are realized as multimaps and allow multiple
symbols with the same name and kind in a scope.

Scopes are usually arranged in trees. Thus, each scope except the global scope, which is the
root of the tree, has one enclosing scope. MontiCore realizes this with association with the
cardinality 0..1. For e�cient symbol resolution, the reverse direction of the association
exists, too and each scope has a collection of subScopes.

Some symbol kinds also span scopes. This can be indicated in the grammar if the respec-
tive nonterminal has both keywords symbol and scope and is re�ected in the abstract
syntax. For example, hierarchical states de�ne a symbol and span a scope. Therefore, the
StateSymbol has an association with the AutomataScope. Each state symbol spans
exactly one scope. However, as scope kinds are de�ned per language, not all scopes are
spanned by a state symbol. In fact, there may be other nonterminals in the automata
language that span scopes. To this end, the type of attribute spannedSymbol in the
AutomataScope is ISymbol and not StateSymbol. If a nonterminal spans a scope,
the respective AST node is in a bidirectional association with the scope. In the example,
the ASTState has an association with the AutomataScope. Similar to the association
between symbol and spanned scopes, the reverse direction of the association is less strictly
typed. This is due to the fact that a scope can be spanned by di�erent nonterminals,
therefore the concrete type of the AST node cannot be speci�ed in the scope.

The associations shown in Figure 9.20 are realized through Java attributes with the usual
access and manipulation methods speci�c to their cardinality. The signature of access and
manipulation methods in the scope is also contained in the scope interface.

9.5 Using Symbols

When a model element shall be used at another place in the model, then it is used by its
name. For example, in our Automata language State names are used in transitions. Ac-
tually in complex situations additional information may be necessary. Method overloading,
e.g., can only be resolved, because method name and argument types are available.

In a grammar the nonterminal Name can be extended by a su�x when it is used on the
right-hand side of a grammar rule. This su�x explains to which kind of symbol the name
refers to. Listing 9.6 repeats an excerpt of Listing 9.6 (p. 161), lines 12�, where a transition
is equipped with a source State and a target State.

source:Name@State instead of only source:Name leads to the generation of additional
methods to retrieve a symbol which a name is referring to in Listing 9.23. Internally, the

177

9. Symbol Management Infrastructure

Tip 9.21: Navigation from Symbol Usage to Symbol De�nition

There are several ways to establish navigation from symbol usage to de�nition of
a symbol. When this navigation is taken sporadically or the condensed information
in the symbol is already su�cient, it is usually su�cient to calculate the symbol
table infrastructure and then do all navigation through its lookup.

However, when navigation will happen often, it is e�cient to establish a direct
link in the form of an additional attribute in the using AST node linking to the
de�ning AST node. After the symbol table infrastructure has been used to establish
the links once, it may be bypassed through that direct link.

This is for example quite helpful, when interpreting an automaton, where the
transition node should be directly linked to the node of the target state and the
source states should be directly linked to the outgoing transitions (via a map that
takes the input into consideration).

Additional attributes can alternatively be added to a generated AST via the
grammar (see Section 5.4) or in the form of handwritten Java code (see Chapter 14).

MCG Automata1 Transition =
2 source:Name@State "-" input:Name ("|" Statement)? ">"
3 target:Name@State ";" ;

Listing 9.22: Repeated excerpt of Automata grammar

method implementation relies on symbol resolution that is explained in more detail in Sec-
tion 9.8. Based on the name symbol and the desired kind (in the example, StateSymbol),
it is resolved by the enclosing scope of the AST node. Once this has been resolved suc-
cessfully, the symbol is cached and subsequent requests do not have to execute resolution
for the same symbol again.

Java �gen� ASTTransition1 public class ASTTransition ... {
2 // additionally generated methods, because of
3 // Transition = source:Name@State ... target:Name@State
4

5 // Retrieving the symbol:
6 public StateSymbol getSourceSymbol();
7 public boolean isPresentSourceSymbol();
8 public StateSymbol getTargetSymbol();
9 public boolean isPresentTargetSymbol();
10 // Directly navigate to the definition of the symbol in the AST
11 // (if the defining model is loaded):
12 public ASTState getSourceDefinition();
13 public boolean isPresentSourceDefinition();
14 public ASTState getTargetDefinition();
15 public boolean isPresentTargetDefinition();
16 }

Listing 9.23: Extended signature of ASTTransitions

178

9.6. Instantiating Symbol Tables

As a convenient shortcut, it is also possible to directly retrieve the AST node (in the
example, of type ASTState), where the mentioned symbol is de�ned, in case the de�ning
model is loaded. In our Automata example, states are de�ned within the same model and,
therefore, navigation is always successful once the symbol table has been created from the
AST node.

In general, Name@K is allowed for any kind of symbols K known in a grammar. It is also
possible to apply this kind of reference to optional names, such as g:Name@A? or withing
alternatives, such as g:Name@A | h:Name@A, but not to lists. I.e, g:Name@A* is forbid-
den. The same names can also not hint toward di�erent kinds of symbols. I.e. g:Name@A
| g:Name@C would be forbidden because of the same "g" for both occurrences.

9.6 Instantiating Symbol Tables

For the actual instantiation of the symbols as well as the establishment of all links described
above additional code that can be executed after the parsing process is generated. Further-
more, if names are used in a model, where the corresponding referenced symbols neither
exist within the model nor within imported symbol tables, executable context condition
checkers with appropriate error messages are needed.

Because of the wide variety of possibilities of how to de�ne and look up symbols, it will at
least for complex cases be necessary to add handwritten extensions to realize proper symbol
table instantiation. However, in straightforward cases, such as �at scopes, or hierarchical
scopes with standard visibility, the generated scope classes can be used directly. For
detailed discussions, see [MSN17].

As the symbol table instantiation for the typed symbol table infrastructure largely depends
on the symbol and scope types of the language, all parts of the symbol table instantiation
are generated.

Conceptually, the symbol table is instantiated with the basis of the AST and therefore,
has to be performed after a model has been parsed. The instantiation of symbol tables is
itself separated into several phases.

9.6.1 Phase 1: Symbols and Scope Skeletons

In the �rst phase, the AST is traversed by a language-speci�c scope genitor that is realized
as a Java class, e.g. AutomataScopesGenitor implementing a language visitor. The
scope genitor creates the skeleton of the scope tree for the model and instantiates all its
symbols. Additionally, it connects the scope and symbol objects with their AST nodes as
described in Section 9.4. The scope genitor does not initialize any additional attributes of
the scope and symbol objects it created. These attributes have to be initialized manually.

The reason for this separation of skeleton creation and attribute instantiation is that symbol
attributes can require symbols from other parts of the symbol table, which could be created
after the �rst phase. This is, for example, the case when a variable has to refer to its state.

179

9. Symbol Management Infrastructure

Java �gen� AutomataScopesGenitor1

2 public class AutomataScopesGenitor implements AutomataVisitor2,
3 AutomataHandler {
4

5 protected Deque<IAutomataScope> scopeStack = new ArrayDeque<>();
6 protected AutomataTraverser traverser;
7

8 // creates the scope structure as skeleton
9 // and adds all symbols
10 public IAutomataArtifactScope createFromAST(ASTAutomaton node);
11

12 // predefined visit / endVisit methods for all
13 // nonterminals (for scopes and symbols)
14 public void visit(ASTAutomaton node);
15 public void endVisit(ASTAutomaton node);
16

17 public void visit(ASTState node);
18 public void endVisit(ASTState node);
19

20 public void visit(ASTTransition node);
21 public void endVisit(ASTTransition node);
22

23 public AutomataTraverser getTraverser();
24 public void setTraverser(AutomataTraverser traverser);
25

26 // when a new scope is needed:
27 public IAutomataScope createScope(boolean shadowing);
28

29 public void putOnStack(IAutomataScope scope);
30

31 // hook points to set scope attributes
32 protected void initScopeHP1(IAutomataScope scope);
33 protected void initScopeHP2(IAutomataScope scope);
34

35 // hook points to set scope attributes in the artifact scope
36 protected void initArtifactScopeHP1(IAutomataArtifactScope scope);
37 protected void initArtifactScopeHP2(IAutomataArtifactScope scope);
38

39 // hook points to set symbol attributes in the StateSymbol
40 protected void initStateHP1(StateSymbol s);
41 protected void initStateHP2(StateSymbol s);
42

43 }

Listing 9.24: Methods of the AutomataScopesGenitor

Listing 9.24 shows the signature of a scope genitor using the AutomataScopesGenitor
as an example. The class implements the visitor and handler interfaces. The creation of the
symbols and scopes is done in the visit methods. Many of the generated methods, especially
the visit and the endVisit methods, are completely realized. The methods containing
HP in their names are explicitly dedicated as hook points for manual adaptations.

180

9.6. Instantiating Symbol Tables

As Listing 9.24 shows, a generated scope genitor has a method createFromAST enabling
to instantiate a symbol table for an AST. This method creates all scopes and symbols and
links them accordingly and with the AST nodes as described above. It also returns the
top level scope as result.

The access methods for the traverser are prescribed by the handler interface and are
used by the createFromAST method to start the traversal.

Artifact scopes have prepared package and import attributes that are well suited
to be used in combination with the nonterminals MCPackageDeclaration and
MCImportStatement from the grammar MCBasicTypes. In certain cases, the
createFromAST method can set the package and import of an artifact scope automat-
ically. In other cases, however, the developer has to care manually because the package
and the imports are used for resolving symbols (cf. Section 9.8).

The genitor manages the stack of scopes scopeStack corresponding to the scope hierarchy
in which it currently acts.

During the traversal of each AST node, the scope on top of the scope stack is set as the
enclosing scope of symbols and AST nodes. Whenever the AST traversal encounters a
nonterminal that spans a scope, a new scope instance is obtained from the language mill
and put on top of the scope in the implementation of the visit method for the AST
node of the scope-spanning nonterminal. In the respective endVisit method, the scope
is removed from the stack. In a genitor, the visit and endVisit methods are not meant
to be overridden, but can be adapted using the hook points described below.

In case a nonterminal de�nes a symbol, a symbol object is instantiated via the mill in the
visit method of the nonterminal. The symbol is also linked with the enclosing scope.

In case a nonterminal spans a scope, the created scope instance is set as a subscope of the
current scope on the top of the scope stack.

If a nonterminal both de�nes a symbol and spans a scope, the created symbol is added to
the enclosing scope before the new subscope is created. That means a symbol that spans
a new subscope does itself not belong to this subscope but to the parent.

The prede�ned createScope and putOnStack methods create a scope respectively put
a scope on the stack. The methods are used within the visit methods. Even though they
are public, they are not directly intended for use by the language developer.

Furthermore, there are hook points to further initialize scopes and symbols. By default,
the implementation of these methods are empty. initScopeHP1 is called as the last step
of the scope creating visit method. initScopeHP2 is called even later in the corre-
sponding endVisit method, where the skeletons of subscopes and also the symbols have
been created. The methods initArtifactScopeHP1 and initArtifactScopeHP2
in analogy allow to initialize the created artifact scope. initArtifactScopeHP1 is
called before the traversal of the AST and initArtifactScopeHP2 after the traversal.

For each symbol kind Sym there are also the two methods initSymHP1 and initSymHP2
which serve as hook point. Again, method initSymHP1 is called at the end of the visit
method in which a symbol was created. The initSymHP2 method is called in the corre-
sponding endVisit method.

181

9. Symbol Management Infrastructure

Please note that a full initialization of the scope and the symbols may not be feasible with
these hook points because, for example, typing information may not yet be completed and
thus several relevant symbols may not yet be available. This is why the �rst pass only
de�nes the skeleton and some attributes of symbols and scopes are to be added in later
phases. However, the hook points allow to initialize some attribute already along with the
skeleton creation in the �rst phase.

9.6.2 Phase 2+: Filling Symbols with Value

After the �rst phase, symbols only carry their name and are appropriately linked with the
AST and scopes by default, but any other attribute still needs to be �lled.

In a second phase, which may also be realized in a visitor traversal, the above mentioned
additional symbol and scope attributes are �lled. Section 9.9 discusses how the generated
visitor infrastructure navigates over AST, symbol, and scope objects to simplify this.

Because the nature of such attribute initializations largely depends on the symbol or scope
attributes that are initialized, MontiCore does not generate further infrastructure. Instead,
it is recommended to de�ne one or more visitors that run in parallel, i.e. in a single phase,
in a composed visitor, or that are executed subsequently in several phases.

In complex languages, such as Java, it may be that more than two phases are needed. This
is typically the case when generic type systems are used (e.g. Java) or type classes are
allowed (e.g. Haskell).

9.7 Loading and Storing Symbol Tables

Symbol tables can be persisted and loaded again to improve the language infrastructure
for several purposes:

� As the scopes and symbols of a model contain the information required for type
checking, only symbol tables are needed to check the consistency of symbol uses,
type consistency and similar context conditions between models.

� Symbol tables contain the externally visible essence of a model only and they are
persisted in a form that is well accessible. Thus, loading a stored symbol table is
more e�cient than parsing the model, creating the symbol table from the AST of
the model, and then using this symbol table instead.

� The symbol table is a surrogate for the actual model. In model-driven development,
models are the central development artifacts. For integrating models with other mod-
els of foreign stakeholders, it can therefore be su�cient to communicate the symbol
table of the models only whereas the actual models remain private.

� Storing symbol tables fosters e�cient language aggregation. With persisted symbol
tables, novel forms of adapters can be realized between the persisted representations
of symbol tables.

182

9.7. Loading and Storing Symbol Tables

9.7.1 Stored Symbol Tables

Serialization is the process of translating an object structure into a character sequence and
deserialization is the opposite process that translates a characters sequence into an object
structure. To realize this, serialized objects are encoded in a serialization format such as
JSON, XML, or other textual forms.

MontiCore symbol tables are serialized in JSON as it is a commonly used, relatively com-
pact, yet human readable notation for which e�cient and sophisticated tool support exists.
The infrastructure for realizing serialization and deserialization of an object structure de-
pends on the type of the objects. In MontiCore, the serialization strategy for a type is
contained in a DeSer class for this type.

Figure 9.25 shows an excerpt of the symbol table, which is generated to
PingPong.autsym and comes from the well-known automaton PingPong e.g. de�ned
in Section 21.1.

JSON �gen� PingPong.autsym1 {
2 "generated-using": "www.MontiCore.de technology",
3 "name": "PingPong",
4 "symbols": [
5 {
6 "kind": "automata._symboltable.AutomatonSymbol",
7 "name": "PingPong",
8 "spannedScope": {
9 "symbols": [
10 {
11 "kind": "automata._symboltable.StateSymbol",
12 "name": "NoGame"
13 },
14 {
15 "kind": "automata._symboltable.StateSymbol",
16 "name": "Ping"
17 },
18 {
19 "kind": "automata._symboltable.StateSymbol",
20 "name": "Pong"
21 }
22]
23 }
24 }
25]
26 }

Listing 9.25: Content of an Example Symbol Table PingPong.autsym

The top element represents the artifact scope of the model. Line 3 contains the name of
the model, which is also used to qualify the symbols if needed. From the artifact scope, all
locally de�ned symbols are serialized via containment, i.e., in attribute "symbols" of the
artifact scope JSON object. Symbol "PingPong" in l. 7 describes the automaton, which

183

9. Symbol Management Infrastructure

in this case (and often) is identical to the model name. The other symbols, e.g. "Ping"
in l. 16, describe individual states.

Each symbol and scope object is de�ned by its "kind", which is actually a fully quali�ed
Java class. A symbol always contains its "name".

If a symbol spans a scope, the spanned scope is serialized as a JSON object contained in
the symbol. However, the spanned scope is only serialized if it exports at least one symbol
beyond the artifact scope.

MontiCore symbol tables are complex data structures encoding e.g. bidirectional asso-
ciations between scopes and subscopes, symbols and enclosing scopes, and symbols and
spanned scopes (cf. Section 9.4). For the serialization, only one direction of the association
is stored through containment to avoid redundancy and loops.

The opposite direction has to be re-established during the deserialization. MontiCore's
generated classes do that by default, but manual adaptations have to bear this in mind.

For reasons of compactness, stored symbol tables are serialized without any unnecessary
whitespace by default. Further, MontiCore has built-in strategies for reducing redundant
information by omitting the serialization of default values for some data types. Thus,
MontiCore omits the serialization of object members if they have values as follows:

� List, if it is empty

� Optional, if its value is absent

� Boolean, if its value is false

� String, if its value is the empty string

� int, etc.: numeric values, if it is equal to 0 (or 0L, 0.0f, etc.).

� scopes, if they do not contain any local symbols or if they do not export symbols
beyond the artifact scope.

To assure symmetry, the deserialization of built-in data types reconstruct absent values
with respect to the defaults accordingly.

9.7.2 RTE Classes For Symbol Table Persistence

Again, the MontiCore RTE and the generated classes work together to support the loading
and storing of symbol tables. The RTE classes include a common interface for all DeSers
of scopes, a common interface for all DeSers of symbols, and the infrastructure to parse
and print JSON. The classes of the JSON infrastructure are depicted in Figure 9.26 and
explained in the following.

IDeSer is the interface that all generated DeSer classes (cf. Section 9.7.3) for scopes
implement. The global scope manages the scope DeSer of the language to enable
symbol DeSers to use it for deserializing scopes spanned by symbols. The interface
is shown in Listing 9.27.

184

9.7. Loading and Storing Symbol Tables
Prof. Dr. B. Rumpe

Lehrstuhl für

Software Engineering

RWTH Aachen

Seite 17

Json

CD

«RTE»

JsonPrinter

beginObject()

endObject()

member(String name, int value)

beginObject(String name)

value(int value)

String getContent()

JsonParser

JsonElement parse(String json)

**

key

«interface»

JsonElement

Json

Array
Json

Object

Json

String

Json

Number

Json

Boolean

* * membervalues

Json

Null

excerpt of complete
list of methods only

Figure 9.26: Infrastructure for parsing and printing JSON

ISymbolDeSer is the interface that all generated DeSer classes (cf. Section 9.7.3) for
symbols implement. All implementing DeSers are added as con�guration to the
global scope for loading symbols and used directly for their storage. The interface is
shown in Listing 9.28.

JsonDeSers is a class containing a collection of methods supporting the realization of
concrete DeSers. The class further provides constant Strings for commonly used
member names in serialized symbol tables.

JsonPrinter is a class that contains an API for printing JSON elements. It contains
methods for printing individual JSON numeric, boolean, or String values as well as
methods for printing JSON objects and arrays. For objects and arrays, the printer
contains methods indicating the begin and the end of an object or array as well as
methods for printing array values or object members. For optimal results of nested
JSON structures, all DeSers should use the same instance of the JsonPrinter.

JsonParser is a class realizing a parser for JSON that creates instances of the abstract
syntax classes implementing the JsonElement interface. The parser is used through
the static method parse that accepts a Json-encoded String passed as a method
argument and returns an instance of the interface JsonElement.

JsonElement is the common interface for all classes of the abstract syntax of JSON.
This interface is required to form a common super type for values of a JSON array
of members of a JSON object. The interface contains methods to check the actual
type of an abstract syntax element. This relieves language engineers from using
instanceof checks and down casts.

JsonObject realizes the abstract syntax of a JSON object. For the deserialization, this
class o�ers a variety of methods for accessing the members of the serialized object.

JsonArray realizes the abstract syntax of a JSON array. The method getValues
returns a list of JsonElements contained in the array. It can be used for traversal
in a for-loop to handle the individual elements of the array one after another.

JsonString realizes the abstract syntax of a JSON String. The value of the String can
be obtained through the method getValue.

185

9. Symbol Management Infrastructure

JsonNumber realizes the abstract syntax of a JSON number. The value of the number
can be obtained as di�erent numeric Java types with individual methods, such as,
e.g., through the methods getNumberAsInt or getNumberAsDouble.

JsonBoolean realizes the abstract syntax of a JSON Boolean. The value of the Boolean
can be obtained through the method getValue.

Java �RTE� IDeSer1

2 public interface IDeSer<S extends IScope,
3 A extends IArtifactScope,
4 J> {
5

6 String serialize(A toSerialize, J symbol2json);
7 String serialize(S toSerialize, J symbol2json);
8

9 // Hookpoints to serialize additional attributes
10 default void serializeAddons(A toSerialize, J symbol2json) {}
11 default void serializeAddons(S toSerialize, J symbol2json) {}
12

13 default A deserialize(String serialized) { ...
14

15 A deserializeArtifactScope(JsonObject scopeJson);
16 S deserializeScope(JsonObject scopeJson);
17

18 // Hookpoints to deserialize additional attributes
19 default void deserializeAddons(A artifactScope,
20 JsonObject scopeJson) { ...
21 default void deserializeAddons(S scope,
22 JsonObject scopeJson) { ...
23 }

Listing 9.27: Signature of the IDeSer interface

The IDeSer interface shown in Listing 9.27 is generic with the types of the scope and the
artifact scope that the DeSer is able to (de)serialize and the type of the Symbols2Json
class of the language. The latter is required as an argument for the serialize method.

IDeSer de�nes the methods serialize and deserialize that realize the
(de)serialization strategy for either the artifact scope type or the scope type that the DeSer
handles. The argument object of the serialize method is serialized and returned as
String. The second argument is an instance of the language-speci�c Symbols2Json class to
traverse the symbol table that is being serialized. This argument is required as a symbol
that spans a scope contains the serialized spanned scope as an object member.

Methods to handle additional attributes (addons) are explained below.

Java �RTE� ISymbolDeSer1

2 public interface ISymbolDeSer<S extends ISymbol, J> {
3

4 String serialize (S toSerialize, J symbol2json);

186

9.7. Loading and Storing Symbol Tables

5

6 default S deserialize (String serialized){
7 JsonObject symbol = JsonParser.parseJsonObject(serialized);
8 return deserialize(symbol);
9 }
10

11 S deserialize (JsonObject serialized);
12

13 String getSerializedKind();
14 }

Listing 9.28: Signature of the ISymbolDeSer interface

The ISymbolDeSer interface shown in Listing 9.28 is generic with the class of the symbol
kind that the DeSer is able to (de)serialize and the type of the Symbols2Json class of
the language. The latter, again, is required as an argument for the serialize method.

ISymbolDeSer de�nes the methods serialize and deserialize that realize the
(de)serialization strategy for the symbol class that the DeSer handles. The argument
object of the serialize method is serialized and returned as a String. The second
argument is an instance of the language-speci�c Symbols2Json class to traverse the symbol
table that is being serialized. This argument is required as a symbol that spans a scope
contains the serialized spanned scope as an object member. A further method returns the
String indicating the symbol kind that the DeSer handles.

9.7.3 Generated Classes for Symbol Storage and Their Adaptation

For each language, MontiCore generates a DeSer class that is capable of serializing and
deserializing scopes and artifact scopes of the language. Furthermore, MontiCore generates
DeSer classes for each symbol kind that is de�ned in the language.

This also includes the additional attributes introduced via a symbolrule or a scoperule
with a distinction of several cases:

� Basic built-in types, such as int, boolean, and also String are directly translated
into a primitive type in Json. The (de-)serialization of an attribute A is realized in
the serializeA and deserializeA methods of the DeSers.

� Optional or List types with built-in typed arguments are also handled fully au-
tomatic.

� For object types and e.g. generic types, MontiCore does not generate a complete
serialization strategy, but instead, produces abstract serialize and deserialize methods
for the attribute. The presence of abstract methods in a DeSer enforces that the
DeSer class itself is generated as an abstract class.

To support serialization, the symbol tables of a language have to be traversed in a dedi-
cated order. The language-speci�c Symbols2Json class implements a language's visitor
interface and realizes this traversal.

187

9. Symbol Management Infrastructure

AutomataDeSer is the DeSer that serializes artifact scopes and scopes of the Automata
language. The class contains methods for both the scope interface and the artifact
scope interface. The methods of the DeSer are depicted in Listing 9.29.

StateSymbolDeSer is one of the DeSer classes serializing symbols, here for
StateSymbols. The class has serialize and deserialize methods sim-
ilar to scope DeSers. Further, the hook methods serializeAddons and
deserializeAddons are available in symbol DeSers in the same way they are
for the DeSers of scopes.

AutomataSymbols2Json is the interaction point for language engineers with the seri-
alization infrastructure as it provides load and store methods. While the loading
of symbol tables is realized as part of the symbol resolution algorithm, the storing of
symbol tables has to be performed by the language tool.

Internally the AutomataSymbols2Json realizes an Automata visitor. The seri-
alization of scopes and symbols is delegated to the respective DeSers. To enable
the recon�guration of DeSers in the global scope, the Symbols2Json classes obtain
the DeSers through the DeSer map in the global scope. Usually, it is not necessary
to extend this class with handwritten code. Instead, the scope and symbol DeSers
should be customized.

Java �gen� AutomataDeSer1 public class AutomataDeSer implements
2 IDeSer<IAutomataScope,
3 IAutomataArtifactScope,
4 AutomataSymbols2Json> {
5 public String serialize(IAutomataScope s)
6 public String serialize(IAutomataScope s, AutomataSymbols2Json s2j)
7 public void serializeAddons(IAutomataScope s,
8 AutomataSymbols2Json s2j)
9

10 public String serialize(IAutomataArtifactScope s)
11 public String serialize(IAutomataArtifactScope s,
12 AutomataSymbols2Json s2j)
13 public void serializeAddons(IAutomataArtifactScope s,
14 AutomataSymbols2Json s2j)
15

16 public IAutomataArtifactScope deserialize(String s)
17 public IAutomataArtifactScope deserializeArtifactScope(
18 JsonObject j)
19 public void deserializeAddons(IAutomataArtifactScope s,
20 JsonObject j)
21

22 public IAutomataScope deserializeScope(JsonObject j)
23 public void deserializeAddons(IAutomataScope s, JsonObject j)
24 }

Listing 9.29: AutomataDeSer for scopes and artifact scope of the Automata language

Listing 9.29 shows the signature of the generated AutomataDeSer class. It provides the
following methods:

188

9.7. Loading and Storing Symbol Tables

serialize methods serialize an (artifact) scope object passed as the method argument
and return the serialized String. There are further serialize methods with an ad-
ditional Symbols2Json class as argument, which perform the actual serialization.
The Symbols2Json class is employed for traversing the contained symbol and sub-
scope structure of the scope.

serializeAddons methods are hook points for the serialization of additional attributes
of the scope (or artifact scope). By default, the methods have an empty implemen-
tation but can be overridden if the DeSer is customized with the TOP mechanism.
These methods are invoked after the serialization of all other attributes of the (arti-
fact) scope, i.e., after the contained symbols are serialized.

deserialize methods deserialize a serialized (artifact) scope to an object of the respec-
tive type. There is only a single method with the actual name deserialize that
returns a deserialized artifact scope. To avoid clashes of return types, there are the
two methods deserializeScope and deserializeArtifactScope for deseri-
alizing both types individually. To enable delegation of the deserialization of a Json
object from the Symbols2Json class to the respective DeSer, the latter two methods
have a JSON object as argument.

deserializeAddons methods are the counterparts for the serializeAddons hook
points and should be handled in parallel. The body, which is empty by default, can
be overridden. The methods are invoked after the deserialization of all attributes of
the (artifact) scope, i.e., after the contained symbols are deserialized.

Java �gen� StateSymbolDeSer1

2 public class StateSymbolDeSer implements ISymbolDeSer<StateSymbol,
3 AutomataSymbols2Json> {
4 public String getSerializedKind()
5

6 public String serialize(StateSymbol s, AutomataSymbols2Json s2j)
7 protected void serializeAdjacentStates(List<String> adjacentStates,
8 AutomataSymbols2Json s2j)
9 protected void serializeAddons(StateSymbol s,
10 AutomataSymbols2Json s2j)
11

12 public StateSymbol deserialize(JsonObject j)
13 protected List<String> deserializeAdjacentStates(JsonObject j)
14 protected void deserializeAddons(StateSymbol s, j symbolJson)
15 }

Listing 9.30: StateSymbolDeSer for State symbols with addon attribute
adjacentStates of type List<String>

Listing 9.30 shows the signature of the class StateSymbolDeSer by the example of
State symbols and under the assumption that a symbol rule was de�ned that adds the
additional attribute adjacentStates of type List<String>. The other methods have
similar purposes as in scope DeSers.

189

9. Symbol Management Infrastructure

With attributes de�ned in scope rules (cf. Section 9.3.4) and symbol rules (cf. Section 9.2.3)
of a grammar, symbols and scopes receive additional attributes that have to be con-
sidered for the serialization and deserialization. For each such attribute, the generated
DeSer of the scope or symbol has two additional methods, as can be seen with attribute
adjacentStates above.

This attribute leads to the methods serializeAdjacentStates and
deserializeAdjacentStates. The �rst method is invoked by the serialize
method of the symbol to serialize instances of the attribute. The second method
deserializeAdjacentStates deserializes a JsonObject of the StateSymbol that
is passed as the method argument.

MontiCore generates implementations for attribute serialization and deserialization only
in case it has a built-in strategy for the attribute's type. Otherwise, the methods are
generated as abstract methods and, thus, the DeSer classes are also generated as abstract
classes, which need to be handled using the TOP mechanism.

If and only if a DeSer or its a TOP-extension are instantiatable, it is automatically added
to the map of DeSers in the global scope, where the DeSers reside to load symbols.

The control �ow for a serialization follows the typical visitor pattern, where the
visit/endVisit methods start and end the serialization of a ascope or symbol ob-
ject, while the standard traverse algorithm recursively includes e.g. symbols in a scope
or also nested scopes, if desired. Internally, the result is built by a JsonPrinter stored
in an Symbols2Json visitor.

9.7.4 Loading Symbol Tables

If models may use symbols of other models, then the loading of symbol tables becomes
part of the model processing pipeline for the language. Loading and storing symbol tables
is realized within the load and store methods of the generated Symbols2Json class.

Loading a symbol table begins with loading the content of a �le as a String, followed by
deserializing the Json-encoded String containing the stored artifact scope by using the
global scope's DeSers responsible for each serialized type.

The loading usually must not be used by the language engineer directly, but is embedded
in the global scope, when looking up a symbol. Loading of symbol tables is integrated into
the generated inter-model symbol resolution algorithm (cf. Section 9.8) that is realized in
the global scope.

A model path in the global scope describes a set of directories that contain stored symbol
tables. Package names allow to look deeper into subdirectories.

Therefore, to �nd stored symbol tables, the directories that contain symbol �les have to
be added to the model path in the global scope. In appropriate tools this is often done
using an external parameter, e.g. -modelPath or -mp in command line interfaces.

Other than that, no manual e�ort is required to load symbol tables. However, loading can
be adjusted by applying the TOP mechanism to the global scope interface. Typical spots
for manual adjustments are:

190

9.7. Loading and Storing Symbol Tables

� The global scope interface method calculateModelNamesForC that takes a qual-
i�ed symbol name of symbol kind C as argument and calculates a set of candidates
for model names that contain this symbol.

MontiCore's default implementation only considers symbols that are directly con-
tained in an artifact scope and does not look inside nested subscopes. If symbols
of nested scopes should be considered in inter-model resolution as well, this method
must be overridden.

� The global scope class method loadC iterates over the candidates for model names of
symbols with the kind C calculated by the method calculateModelNamesForX,
calculates symbol �le names, and uses the Symbols2Json class to load the correct
artifact scope.

This method should be overridden, e.g. if not only the symbol table, but as an
alternative the original model should be loaded. Loading a model is useful if the AST
of a loaded symbol table should be available, but otherwise this is not recommended.

� The global scope map contains a DeSer for each type that could be serialized. It can
be modi�ed to use di�erent DeSers for a speci�c type, e.g. for a speci�c symbol kind.

9.7.5 Storing Symbol Tables

When storing a symbol table, the symbol table is traversed by the visitor-based
Symbols2Json class, which serializes each type with the respective DeSers managed
by the global scope. The resulting serialized String is stored into a �le.

Storing a symbol table, however, requires some explicit decision by the language engineer
regarding where it has to be integrated into the pipeline of processing models.

The locally built symbol table can be stored after the initial model processing is �nished,
and all potential additional symbol attributes are calculated. We recommend to only store
a symbol table, if the model is checked to be well-formed.

To store a symbol table, the language tool requires an instance of the generated language-
speci�c Symbols2Json class. The store method of this class takes two arguments,
namely the artifact scope to be stored and the name of the �le in which the symbol table is
stored in. The �le has to be stated as a String and must include the full path name. This
path name usually includes an absolute or relative path to a general symbol table location
in combination with additional folders that resemble a package structure, a model name
and a standardized �le extension (if a Java like approach is used).

To enable an e�cient identi�cation of symbol tables with the built-in loading functionality,
it is viable that the naming guidelines for �les containing stored symbol tables are followed:

� Symbols are stored in a clearly identi�ed symbol output folder. As usual for generated
�les, it should be located in the target folder of a project.

� If a language supports package declarations, the package is translated to a folder
structure as in Java. For example, if a model M is contained in the package a.b.c,

191

9. Symbol Management Infrastructure

its quali�ed name is a.b.c.M and the folder structure relative to the symbol output
folder should be a/b/c.

� The name of the �le M that contains the symbol table of a model must match the
name of the artifact scope. Usually, the name of the artifact scope also matches the
name of the model (similar to Java).

� We suggest the convention to use sym as the su�x of any �le extension of any �le
storing a symbol table.

If a distinction between symbol table �les of di�erent languages is necessary, it may be
useful to use language-speci�c �le endings for symbol table �les, e.g. autsym for au-
tomata and sym for other models. In the example of the automata language, the symbol
table of a model PingPong.aut located in the package game could be stored to the
�le target/game/PingPong.autsym. However, this has the disadvantage that the
importing language tool needs to be aware of di�erent exporting languages, which is not
necessarily the case, if the exporting models are from di�erent languages, but they o�er
the same kinds of symbols and thus allow the importing tool to be agnostic regarding the
source of the symbols. For that speci�c reason, we also do not store the kind of the artifact
scope in the symbol table.

9.7.6 Realizing Custom Serialization Strategies

Sometimes, the default serialization strategy generated by MontiCore is not satisfactory
for language engineers. The reasons for this can be manifold, but include that MontiCore
cannot generate a serialization strategy for a symbol rule attribute, that an additional
symbol attribute is to be serialized, or that language engineers intend to omit that some
symbols are exported in stored symbol tables.

Customization of the serialization strategy can be handled either by extending the deseri-
alization to accept more variants of symbols or as joint adaption of the serialization and
deserialization. An example for realizing a custom serialization strategy for a data type
for which no built-in serialization strategy is available is explained in Section 21.6. The
following describes two further exemplary scenarios for modi�cations.

Adapting AutomatonSymbolDeSer

In the scenario, we customize the generated default serialization for symbol tables of the
Automata language. Listing 9.25 on pg. 183 shows an example, where artifact scope
contains a the automaton symbol, which has an attribute of the serialized spanned scope,
which again contains serialized state symbols.

To realize a more compact form of serialization, the language engineer intends to serialize
state symbols as a list of state names that are an attribute of a serialized automaton
symbol rather than serializing the scope spanned by an automaton. This should not have
any e�ects on the data structure of symbol table classes of the automata language, but
results in a �le similar to Listing 9.31.

192

9.7. Loading and Storing Symbol Tables

JSON �gen� PingPong.autsym1 {
2 "generated-using": "www.MontiCore.de technology",
3 "name": "PingPong",
4 "symbols": [
5 {
6 "kind": "automata._symboltable.AutomatonSymbol",
7 "name": "PingPong",
8 "spannedScope": {
9 "isShadowingScope": false
10 },
11 "states": [
12 "NoGame",
13 "Ping",
14 "Pong"
15]
16 }
17]
18 }

Listing 9.31: Optimized symbol table with state list only

This is feasible, if no additional symbol information is needed. In the example, we extend
the generated AutomatonSymbolDeSer with the TOP mechanism (cf. Listing 9.32).

Java �hw� AutomatonSymbolDeSer1 public class AutomatonSymbolDeSer
2 extends AutomatonSymbolDeSerTOP {
3 // store states as array of names
4 protected void serializeAddons(AutomatonSymbol a,
5 AutomataSymbols2Json s2j) {
6 JsonPrinter p = s2j.getJsonPrinter();
7 p.beginArray("states");
8 for(StateSymbol s : a.getSpannedScope().getLocalStateSymbols()) {
9 p.value(s.getName());
10 }
11 p.endArray();
12 }
13

14 // load states from such an array and instantiate symbols
15 protected void deserializeAddons(AutomatonSymbol a, JsonObject j) {
16 IAutomataScope s = a.getSpannedScope();
17 for (JsonElement e : j.getArrayMember("states")) {
18 String name = e.getAsJsonString().getValue();
19 StateSymbol state = AutomataMill.stateSymbolBuilder().
20 setName(name).build();
21 s.add(state);
22 }
23 }
24 }

Listing 9.32: Customization of the AutomatonSymbolDeSer

193

9. Symbol Management Infrastructure

The serializeAddons method uses the JsonPrinter of the
AutomataSymbols2Json to produce the JSON syntax. The additional serializa-
tion must only serialize one or more new JSON object members. In the example, a new
member with name "states" of the JSON array type is added using beginArray and
endArray. Inside the array all state symbols contained in the scope of the automaton
symbol are printed.

During the deserialization, additionally serialized symbol or scope attributes are usually
added to the symbol or scope object passed to the deserializeAddons method as
argument. In this example, however, the loaded state names should not be added to
the automaton symbol object. Instead, they de�ne new symbols that are added to the
automaton scope. As the method for deserializing addons is invoked after all other parts,
the spanned scope object has already been set. The iteration creates symbol objects using
the mill and adds the new symbols to the spanned scope.

Adapting AutomataSymbols2Json

As a result of the above modi�cation, state symbols are serialized twice, in the state list
and as symbols. To overcome this, we adapt the generated AutomataSymbols2Json
class with the TOP mechanism as depicted in Listing 9.33.

Java �hw� AutomataSymbols2Json1 public class AutomataSymbols2Json
2 extends AutomataSymbols2JsonTOP
3 implements AutomataHandler {
4

5 public AutomataSymbols2Json() {
6 super();
7 getTraverser().setAutomataHandler(this);
8 }
9

10 // adapt the traversal, such that state symbols are not visited
11 @Override public void traverse(IAutomataScope s) {
12 for (AutomatonSymbol aut : s.getLocalAutomatonSymbols()) {
13 aut.accept(getTraverser());
14 }
15 }
16 }

Listing 9.33: Customization of the AutomataSymbols2Json

AutomataSymbols2Json extends its generated TOP class and implements the
AutomataHandler interface, so that it can be added as a handler to the traverser. This
can be realized, e.g., in a constructor of the class.

By overriding the traverse method for automata scopes, the traversal of scopes during the
symbol table serialization is adjusted. In this example, the traversal of all state symbols
is omitted and only the automaton symbols contained in a scope are visited.

194

9.8. Resolving Symbols in Scopes

9.8 Resolving Symbols in Scopes

Symbol resolution is the main purpose of the whole symbol table infrastructure. Given
a name, the resolution mechanism has to identify the symbol (or symbols) �tting to that
name or return the information that no appropriate symbol exists. The symbols are then
used e.g. to check the well-formedness of models or to navigate from the usage of a symbol
to its de�nition.

The scopes introduced in Section 9.3.3 provide several resolve methods. A scope man-
ages individual maps of symbols for each symbol kind by encoding the symbol kind into
the name of the resolve methods. For example, the Automata language has the scope
IAutomataScope that provides resolve methods named resolveState for State sym-
bols.

Section 9.8.3 explains how the four variants of the resolveState as well as the six
variants of their generalizations resolveStateMany work in detail.

9.8.1 How to Use Symbol Resolution

The application is simple: Each AST node knows its enclosing scope, which can be asked
to resolve a symbol. For convenience, MontiCore also generates direct navigation from the
AST node to the symbol, when indicated in the grammar. For example to:Name@State
in a production for Transition generates to a method getToSymbol allowing to navi-
gate from ASTTransition directly to the destination StateSymbol.

The following lists an excerpt of the available resolve methods by the example of a state
symbol, the full list of methods is explained in Section 9.8.3. Each resolve method has a
String argument with the name of the symbol(s) to resolve for.

resolveState(String): Simple, standard search for a state symbol. If no matching
symbol is found in the current scope, the search will continue, e.g., in the enclosing
scope.

resolveState(String, AccessModifier): Searches for a state symbol with the
given name (�rst argument) and with the given access modi�er (second argument).
AccessModifier contain e.g. public, protected, and private.

resolveState(String, AccessModifier, Predicate<StateSymbol>): In
certain cases, additional information is used to identify the correct symbol. For
example methods are not only resolved due to their name, but also due to the
signature of the arguments. The �lter is de�ned by a predicate over StateSymbols.

The above methods all return an Optional<StateSymbol> object. This form of res-
olution algorithms is based on the assumption that for a given name (and predicate) at
most one symbol is visible in the respective scope. Resolving of course respects visibilities
and shadowing. If more than one would be resolved, the algorithm issues an error.

The symbol table infrastructure also provides resolveStateMany(...) methods that
resolve exactly as the resolveState methods, but return a collection of all symbols

195

9. Symbol Management Infrastructure

(e.g., List<StateSymbol>) that match the search criteria. The resolution mechanism is
rather complex and elaborated in detail in [MSN17] and only summarized in the following.
Each generated scope interface has four variants of the resolveStateMany methods for
each symbol kind. For each variant of the resolveState method as described above,
there is a corresponding resolveStateMany method with the same list of arguments
and a list of symbols as the return type. The signatures of the methods are depicted in
Listing 9.40.

The resolve methods described so far execute the resolve algorithm explained in Sec-
tion 9.8.2, i.e., begin resolving in the local scope, continue resolving in enclosing scopes
until the global scope, and proceed with resolving top-down into foreign artifact scopes.
There are further resolve methods that realize parts of the resolution algorithm:

resolveStateDown(..): These methods contain the top-down resolving for a single
state symbol and exist in variants with and without access modi�ers and predicates
as arguments. Top-down resolution begins in the current scope, and if no matching
symbol was found, continues the resolution in all subscopes.

resolveStateDownMany(..): These methods implement the top-down resolving for
multiple state symbols and exist in variants with and without access modi�ers and
predicates as arguments. The result is a list of state symbols.

resolveStateLocally(String): Resolve for a single state symbol with the given
name only in the current scope. The resolution does not consider any enclosing
scopes or subscopes.

resolveStateLocallyMany(..): Resolve for all state symbols with a given name in
the current scope, do not consider any enclosing scopes or subscopes.

9.8.2 Concept Of Symbol Resolution

The standard symbol resolution mechanism that MontiCore generates comprises three
consecutive phases:

� Bottom-up intra model resolution

� Inter model resolution

� Top-down intra model resolution

These phases correspond to the search in the tree structure of the parsed ASTs. Figure 9.36
shows the tree structure reaching over the global scope based on the tree already shown in
Figure 9.5 (p. 160).

If the scope structure and resolution algorithm shall behave di�erent from the default
presented here, it can be customized in various forms, as described in Section 9.8.4.

196

9.8. Resolving Symbols in Scopes

Tip 9.34: Example: Resolving a State Symbol

An example for the resolution of the state symbol Ping in the automaton model
PingPong.aut is depicted in Listing 9.35.

The artifact scope modelTopScope is asked by invoking the resolveState
method with the argument "Ping". The result is optional to indicate the absence
of a �tting symbol.

If more than a single symbol has been found, the resolution terminates with an
error.

Java1 // parse the model and create the AST representation
2 ASTAutomaton ast = parse("PingPong.aut");
3

4 // setup the symbol table
5 IAutomataArtifactScope modelTopScope =
6 createSymbolTable(ast);
7

8 // resolving a name in the model
9 Optional<StateSymbol> aSymbol =
10 modelTopScope.resolveState("Ping");

Listing 9.35: Example for resolving a state symbol
Prof. Dr. B. Rumpe

Lehrstuhl für

Software Engineering

RWTH Aachen

Seite 4

method1:

MethodScope

Resolution-in-Tree

OD
«tool»

global:

JavaGlobalScope

C1:Class

Symbol

d:

AttributeSymbol

while:

BlockScope

artifact1:

JavaArtifactScope

foo:

MethodSymbol

D1:Class

Symbol

class2:

ClassScope

artifact2:

JavaArtifactScope

class1:

ClassScope

scope classLegend:

symbol class

Source
models:

1: Bottom-up

2: Inter Model

3: Top-down

resolveClass("D1")

Figure 9.36: Principle of resolution in a hierarchy of scopes

Phase 1: Bottom-up intra model resolution

Bottom-up intra model resolution searches a symbol in the local scope. If a symbol with a
suitable name and kind is found and the current scope is a shadowing scope, the symbol is
returned and the algorithm terminates. Otherwise, the resolution continues the search in
the enclosing scope. This is iterated until the enclosing scope is the global scope. Then,

197

9. Symbol Management Infrastructure

the search proceeds in the global scope with inter model resolution.

Consider, for example, the usage of the variable x of Listing 9.37. A variable with this
name is de�ned in the same model (or same class). When resolving x, the search starts
in the innermost scope, i.e., the scope of the method m. Since x is not de�ned in m, the
resolution mechanism continues in the enclosing class scope, �nds x and returns it.

Java1 public class Example {
2 private int x = 0;
3

4 public void m() {
5 boolean b = x > 0;
6 }
7 }

Listing 9.37: Example class for bottom-up intra model resolution

Phase 2: Inter model resolution

Inter model resolution resolves for symbols beyond an artifact scope of an individual model.
Therefore, inter model resolution is realized in the global scope because global scopes know
where to look for symbol tables of foreign artifacts.

The resolution begins with identifying candidates for artifact names that are pre�xes of
the given symbol name and loads possible symbol tables on demand. Within the identi�ed
and now loaded symbol tables the symbol is resolved via top-down intra model resolution.

For instance, in Listing 9.38 the local variable d is of type D, which is de�ned outside the
current artifact and thus needs inter model resolution.

Java1 package q.e;
2 import t.*;
3

4 public class Example {
5 public void m() {
6 D d;
7 }
8 }

Listing 9.38: Example class for inter model resolution

Considering the package and the import statements, D could be de�ned in the packages
q.e or t, having the quali�ed name candidates q.e.D and t.D, respectively.

Hence, inter model symbol resolution is used to check, which of the candidates exist.
Inter-model resolution in the global scope at �rst identi�es candidates for quali�ed names
of artifact scopes. By default MontiCore assumes that (1) the full quali�er of the symbol
is the name of the artifact and (2) that the quali�ed symbol itself may be an artifact name.
Therefore, in this example, the �le name candidates are q.e and t and q.e.D and t.D.

198

9.8. Resolving Symbols in Scopes

The quali�ed symbol itself is added because in Java-inspired languages the name of the
artifact typically matches the name of the top-level symbol in the artifact scope. In Java,
class D is contained in �le D.

The global scope loads missing artifact scopes and their symbols on demand as explained
in Section 9.7 and manages them for further use.

The symbol resolution then proceeds with top-down inter model resolution in all artifact
scopes that are candidates for containing the searched symbol. Ambiguities that arise from
multiple symbols that are found are reported as errors, which in turn means that always
all relevant scopes are used and the resolution does not stop with the �rst symbol found.
This is slower but also safer because accidentally using the wrong symbol is detected and
directly prevented.

Phase 3: Top-down intra model resolution

The third phase is implemented in the methods of the sort resolveStateDown and
resolveStateDownMany.

Top-down intra model resolution begins with searching a symbol in the local scope. If the
symbol is found in the current scope, it is returned and the algorithm terminates. If the
symbol is not de�ned locally and the symbol name is unquali�ed, no further downward
resolution is applied.

If the symbol is not de�ned locally but the symbol name is quali�ed, the resolution uses
the quali�er to identify a subscope with a �tting name. If such a subscope exists, the �rst
part of the quali�ed name is cut o� and the top-down intra model resolution continues
searching for the remaining name in the scope spanned by the symbol.

For example, consider the assignment of Foo.bar to variable f in line 2 of Listing 9.39.
When resolving top-down for Foo.bar, no symbol is found in the scope of the class
Example. The resolution then identi�es symbol Foo that spans a scope for an enumera-
tion. The resolution algorithm cuts of "Foo.") and resolves the remaining name bar in
the spanned subscope, where it is actually found.

Java1 public class Example {
2 Foo f = Foo.bar;
3

4 enum Foo {
5 bar;
6 }
7 }

Listing 9.39: Example class for top-down inter model resolution

9.8.3 Generated Implementation for Symbol Resolution

As described above, a resolution is initiated through the resolve methods contained
in the scopes. In normal scopes, resolve methods realize the bottom-up intra model

199

9. Symbol Management Infrastructure

resolution algorithm. Global scopes realize the inter model resolution in these and call
artifact scopes again for top-down intra model resolution using the resolveDownmethods.

Language engineers therefore mainly use the resolve or resolveMany methods shown
in Listing 9.40, while the other o�ered methods are typically used internally.

Java �gen� IAutomataScope1 import java.util.function.Predicate;
2

3 public interface IAutomataScope {
4 Optional<StateSymbol> resolveState (String name)
5 Optional<StateSymbol> resolveState (String name,
6 AccessModifier modifier)
7 Optional<StateSymbol> resolveState (String name,
8 AccessModifier modifier,
9 Predicate<StateSymbol> p)
10 Optional<StateSymbol> resolveState (boolean foundSymbols,
11 String name,
12 AccessModifier modifier)
13

14 List<StateSymbol> resolveStateMany (String name)
15 List<StateSymbol> resolveStateMany (String name,
16 AccessModifier modifier)
17 List<StateSymbol> resolveStateMany (String name,
18 AccessModifier modifier,
19 Predicate<StateSymbol> p)
20 List<StateSymbol> resolveStateMany (String name,
21 Predicate<StateSymbol> p)
22 List<StateSymbol> resolveStateMany (boolean foundSymbols,
23 String name,
24 AccessModifier modifier)
25 List<StateSymbol> resolveStateMany (boolean foundSymbols,
26 String name,
27 AccessModifier modifier,
28 Predicate<StateSymbol> p)
29 }

Listing 9.40: Standard resolving method signatures for StateSymbols in the
IAutomataScope interface

As described above, resolve and resolveMany follow the standard procedure. Possible
arguments are symbol name, AccessModifier to retrieve also private, or only publicly
accessible symbols, a �ltering Predicate that allows searching for additional information,
such as method signatures, and foundSymbols, which is a boolean �ag indicating whether
the resolution call has found symbols already. The latter is for internal use in combination
with non-shadowing scopes only.

Additionally generated methods are shown in Listing 9.41. resolveLocally methods
resolve symbols only in the local scope, without proceeding to resolve in enclosing scopes
or subscopes.

In the combination with symbol adapters (cf. Section 9.10.3), MontiCore prepares hook

200

9.8. Resolving Symbols in Scopes

methods for resolving adapted symbols with empty defaults. They allow to adapt the
resolution mechanism using adapters as explained in Section 9.8.4.

Java �gen� IAutomataScope1 public interface IAutomataScope {
2 Optional<StateSymbol> resolveStateDown(..)
3 List<StateSymbol> resolveStateDownMany(..)
4

5 Optional<StateSymbol> resolveStateLocally(..)
6 List<StateSymbol> resolveStateLocallyMany(..)
7

8 List<StateSymbol> resolveAdaptedStateLocallyMany(..)
9

10 List<StateSymbol> continueAsStateSubScope(..)
11 List<StateSymbol> continueStateWithEnclosingScope(..)
12 boolean isStateSymbolAlreadyResolved()
13 setStateSymbolAlreadyResolved(..)
14 }

Listing 9.41: More generated resolving method signatures for StateSymbols in the
IAutomataScope interface

The resolution algorithm is encoded into a set of collaborating resolve methods to allow
adaptation, but also enable e�cient lookup along the scope hierarchy. For example, the
method continueAsStateSubScope is used as part of the top-down intra model reso-
lution. It matches a pre�x of the symbol name with the name of the symbol that spans
the scope. If the names match, it invokes the resolveStateDown method with the re-
maining symbol name. Artifact scopes have a separate implementation of these methods
as part of the inter model resolution.

The method continueStateWithEnclosingScope is part of the bottom-up intra
model resolution. It checks whether the resolution algorithm has to continue resolving
in the enclosing scope and if this is the case, proceeds resolving in the enclosing scope.
The resolution proceeds either (1) if no symbols are found in the current resolution yet or
(2) if the current scope is a non-shadowing scope.

The methods isStateSymbolAlreadyResolved and
setStateSymbolAlreadyResolved are part of a mechanism that prevents re-
solve method call loops in case that symbol adapters can be chained to produce cyclic
symbol adaptations.

9.8.4 Customizing Symbol Resolution

The generated symbol resolution mechanism handles many standard cases inspired by
Java's typing mechanisms and UML's many di�erent kinds of symbols. It should there-
fore also be suitable for languages with simpler or similar symbol concepts. For speci�c
customizations, all resolving methods can be overridden with the TOP mechanism. This
section presents two exemplary use cases for customization of the symbol resolution to
demonstrate some possibilities.

201

9. Symbol Management Infrastructure

Use Case 1: Finding Symbols in Foreign Artifact Scopes with Hierarchical Names

The default resolution calculates candidates for model names such that only symbols that
are directly contained in the artifact scopes of the corresponding models are found. There-
fore, symbols contained in nested scopes of foreign artifacts cannot be resolved by the
default implementation. For example, in a hierarchical automata language, a state S con-
tained in a state R that is itself contained in a state Q of the automaton P, by default, can
not be resolved from a scope outside of the automaton with the quali�ed name P.Q.R.S.

In our example, the language shall allow a quali�ed name to identify the package, here:
empty, model name, here P, named scopes within the model, here Q.R, and �nally the
name of the model element S.

To enable addressing foreign symbols contained in named subscopes, the calculation for
model name candidates has to be customized. This realizes a hierarchical namespace of
state symbols in a way similar to static inner types in Java. To achieve this, language
engineers have to apply the TOP mechanism to the IAutomataGlobalScope interface
and adapt the method calculateModelNamesForState, which calculates model name
candidates to consider all pre�xes as potential names for models that contain the symbol.

For example, a resolving for a state symbol with a quali�ed name P.Q.R.S by default
considers only P.Q.R.S and P.Q.R as potential names for a model that contains the
symbol S. To realize a hierarchical namespace of symbols within automata, also the model
name candidates P.Q and P have to be considered.

The generated SMI on the other hand is already capable of resolving quali�ed symbols
within an artifact. In particular, the artifact scope can by default resolve the remaining
name parts pointing to the symbols R.S (in artifact P.Q) and Q.R.S (in artifact P) in
addition to S (in artifacts P.Q.R and P.Q.R.S).

Java �hw� IAutomataGlobalScope1 @Override
2 default Set<String> calculateModelNamesForState(String name) {
3 Set<String> names = new HashSet<>();
4 // calculate all prefixes
5 while (name.contains(".")) {
6 name = Names.getQualifier(name);
7 names.add(name);
8 }
9 return names;
10 }

Listing 9.42: Handwritten adjustment of the method calculateModelNamesForState

For resolving for deeply nested states in an automaton during inter model resolution, the
calculateModelNamesForState method in the interface IAutomataGlobalScope
can be overridden as depicted in Listing 9.42. With the extended search of artifacts,
symbols in nested scopes can be found.

202

9.9. Visitors Also Handle Symbol Tables

Use Case 2: Selection of Symbol Table Files by their File Extension

By default, all �les that may contain artifact scopes must be located relative to a model
path entry. The quali�er of the model name candidate, e.g. P.Q.R.S, is translated into a
path in the same way as packages in Java and the calculated model name equals the name
of the symbol table �le, e.g. �le S extended by su�x sym in directory P.Q.R.

With the method setFileExt of global scopes, a regular expression for the �le extension
of symbol table �les can be set changing the default sym to a language-speci�c �le ending
of models (cf. Section 9.7).

To take into account symbol tables provided by foreign languages, the default �le endings
during loading of symbol tables is *sym. Sometimes this is too general and only symbol
tables of speci�c languages should be taken into account.

The �le ending can be set to, e.g., autsym for including only symbol tables of the speci�c
automata language.

9.9 Visitors Also Handle Symbol Tables

The visitors that MontiCore generates for each language (cf. Chapter 8) are not only able
to traverse the AST but also the symbol tables of a language. As for each AST node,
there are visit and endVisit methods for each symbol of the symbol table as well
as for the scope interface and the artifact scope interface of the language. Furthermore,
visitors contain methods for visiting the MontiCore RTE interfaces ISymbol, IScope,
and IArtifactScope that are the super types of language-speci�c symbols and scopes.
Given a language L and a symbol kind C, the signatures of all methods that the generated
visitor interfaces provide for visiting symbol tables are depicted in Listing 9.43.

The traverser and handler classes that MontiCore generates for each language include
traverse and handle methods for symbols and scopes of the symbol tables, too.

The default traversal algorithm as explained in Chapter 8 follows a depth-�rst strategy on
the AST. Whenever handling an AST node that spans a new scope, MontiCore additionally
traverses this scope and its symbols shallowly before returning to the AST. Thus, the
traversal algorithm follows the overall AST structure but also covers the symbol table at
its respective hook points, but does not directly traverse from a super-scope to any of the
super-scope's subscopes.

Since the AST and the symbol table together de�ne a graph structure, in general, loops can
occur when traversing, resulting in in�nite computations. The default AST and symbol
table structures ensure that these loops do not occur by traversing the above described
spanning tree only. However, when adapting the algorithm or manipulating the AST, the
language developer has to take this into account.

203

9. Symbol Management Infrastructure

Java �gen� LVisitor1 public interface LVisitor {
2 // ... simplified list of methods
3

4 // Hooks, to be adapted for concrete functionality:
5 // (here for symbol kind C and language L)
6 default public void visit (CSymbol s)
7 default public void endVisit(CSymbol s)
8 default public void visit (ILScope s)
9 default public void endVisit(ILScope s)
10 default public void visit (ILArtifactScope s)
11 default public void endVisit(ILArtifactScope s)
12

13 // language independent super interfaces
14 default public void visit (ISymbol s)
15 default public void endVisit(ISymbol s)
16 default public void visit (IScope s)
17 default public void endVisit(IScope s)
18 default public void visit (IArtifactScope s)
19 default public void endVisit(IArtifactScope s)
20 }

Listing 9.43: Symbol table method signatures of a Visitor of a language L

9.10 Symbol Tables in Composed Languages

Language composition a�ects the symbol tables of the individual languages. In fact, symbol
tables are of central importance for all kinds of language composition that MontiCore
supports as described in Chapter 7.

Language inheritance, language extension, and language embedding rely on inheritance
between the grammars of the individual languages. In all of these forms of language
composition, an integrated language infrastructure is generated (cf. Chapter 7). This
includes an integrated symbol table infrastructure that is explained in Section 9.10.1.

In language aggregation, no integrated language infrastructure is generated. Instead, the
symbol table infrastructures of the languages that are aggregated are con�gured to realize
the language aggregation through the exchange of stored symbol tables. This is explained
in Section 9.10.2.

When composing languages, a symbol of a foreign, unknown symbol kindmight be imported
into a language. In such a case, a symbol adapter translates one symbol kind into another
symbol kind. Symbol adapters are explained in Section 9.10.3.

These symbol adaptation mechanism can be applied between aggregated as well as between
composed languages, where symbols cross the language border within one model.

204

9.10. Symbol Tables in Composed Languages

9.10.1 Symbol Management Infrastructure for Language Inheritance

We explain the e�ect of language inheritance by example of the grammars A, B, C, and D
shown in Figure 9.44.

Prof. Dr. B. Rumpe

Lehrstuhl für

Software Engineering

RWTH Aachen

Seite 18

Scope Multi Inheritance in Language Composition

MCG

«interface»

IAScope

grammar D extends B, C { } grammar B extends A { }

«interface»

IBScope

«interface»

ICScope

«interface»

IDScope

CD

Figure 9.44: E�ect of grammar inheritance on inheritance between scope interfaces

Language inheritance has no e�ect on the symbols because a symbol is de�ned by a concrete
production and thus independent of the rest of the language

For scopes, the situation is di�erent. As described in Section 9.3, the scope interface and
the scope class in general, but also the artifact scope interface and class, as well as the
global scope interface and the global scope class depend on the language.

Thus, a composed new language leads to new scopes. But again, the general principle of
reuse is essential: To foster reusability of (1) handwritten extensions in the sublanguages
as well as (2) code written for and against the API of a sublanguage, the generated classes
must have a relatively complex structure:

Figure 9.44 shows that the scopes exhibit the same inheritance relations as the languages
themselves. This allows to reuse TOP-extended scope functionality from scopes. Scope
interface IDScope thus extends the scope interfaces IBScope and ICScope. Unfortu-
nately, this does not hold for scope implementations because of the issues arising from
multiple inheritance.

The inheritance structure is also retained for the interfaces of the global and the artifact
scopes as visualized in Figure 9.45

Through this forms of diamond inheritance, the scopes of a language can contain symbols
of symbol kinds that are de�ned in inherited languages and resolve methods for inherited
symbol kinds exist as well.

Please remember that all scope objects are instantiated through mills and that the mill
extension mechanism automatically delivers the correct scope object of the composed lan-
guage, even if a mill of a sublanguage is requested. This allows to reuse code written for
sublanguages.

The ScopeGenitors that instantiate symbol tables and the Symbols2Json classes that
load and store symbol tables are both realized as visitors and connected via Traversers
(cf. Chapter 8).

For instantiating symbol tables in the context of language composition, MontiCore gen-
erates a ScopesGenitorDelegator class for each language. This class instantiates a

205

9. Symbol Management Infrastructure
Prof. Dr. B. Rumpe

Lehrstuhl für

Software Engineering

RWTH Aachen

Seite 19

Artifact und Global Scopes in Language

Composition

«interface»

IBScope

«interface»

IBArtifactScope

«interface»

IBGlobalScope

«interface»

IAScope

«interface»

IAArtifactScope

«interface»

AGlobalScope

CD

«RTE»«interface»

IScope

«interface»

IArtifactScope

«interface»

IGlobalScope

«gen»

«gen»

Figure 9.45: E�ect of grammar inheritance on artifact and global scope interfaces

traverser of a language and adds scope genitors of the current language and all inherited
languages. It further provides a createFromAST method that delegates to the respective
method from the scopes genitor. The scopes genitor delegator is instantiated through the
method scopesGenitorDelegator() of a language's mill. Therefore, if a language
inherits from other languages, language engineers should use the scopes genitor delegator
to instantiate symbol tables instead of the scopes genitor.

Language inheritance does not produce inheritance in DeSer classes.

For symbols, language composition does not have an in�uence and thus, the
SymbolDeSers for these classes are not subject to change due to language composition.

DeSers for scopes, however, use symbol DeSers, which they obtain from the global
scope. In composed languages, this includes DeSers for all symbols kinds that are de�ned
in sublanguages.

9.10.2 Symbol Management Infrastructure for Language Aggregation

As said earlier, in language aggregation neither concrete, nor the abstract syntax of the
individual languages are a�ected. Thus also scopes and symbols remain una�ected.

However, when using symbols between models then often the symbol kind does not �t.
E.g. a state symbol Ping of an automaton needs to be mapped into method, enumeration
or variable symbols in Java to be accessible from there. Or vice versa, Java methods (with
empty signatures) might apply as message symbols in automata.

The support for language aggregation in the symbol management infrastructure, thus,
concentrates on symbol adapters.

9.10.3 Symbol Adapters

We explain the symbol adaptation principle on the example of the Automata language
that imports symbols from the Class Diagram (CD) language, where the method names of
a class are used as message stimuli to trigger transitions and thus imported from the CD.

206

9.10. Symbol Tables in Composed Languages

For realizing this, an automaton model explicitly contains an import statement that
refers to the CD, where the symbols come from. There are three options to where to adapt
symbols, when adaptation is needed:

1. The CD tool stores a symbol table with state symbols in it. Drawbacks are: the CD
tool needs to know which kinds of symbols could be expected in downstream tools
and has to store several formats.

2. The Automaton tool executes the adaptation when loading the foreign CD symbol
table. Drawbacks here: Basically the same, but this time on the other side: The
Automaton tool needs to know the kinds of symbols which it draws from.

3. Execute a stand alone adapter that reads a symbol table, adapts the symbols and
stores the symbols ready for use in the target language. Drawback is that there is
one additional tool to be executed in correct order in the tool pipeline and the overall
execution time increases.

Usually the upstream tools are de�ned earlier and more stable, so that option one is
probably rather rare. The other two options, however, can actually be chosen.

In any case an adaptation of symbols is needed, which manifests in a mapping from symbols
of one symbol kind into symbols of another kind and must not necessarily be only a 1-to-1
mapping. For example an association symbol in a CD may manifest into a potentially
larger number of access and manipulation function symbols for a logic language, like OCL.
It is also possible that the symbol name changes.

To keep the individual tool modular and reusable, a tool internally only resolves for symbols
of their own kind. Only when explicitly crossing a language border adapters can be added
to map between the symbol kinds. This happens in composite languages at scopes that
represent a language border and can be observed between artifact and global scopes.

Symbol adapters realize the adapter pattern and translate between symbols of a source
kind to symbols of a target kind. For this, a symbol adapter inherits from the symbol class
of the target kind and has an attribute delegate of the source symbol kind (also referred
to as �adaptee�). Our naming convention for symbol adapters translating from a source
symbol kind S to a target symbol kind T is S2TAdapter.

Listing 9.46 shows an example for a symbol adapter that adapts class symbols of the
CD language to stimulus symbols of the Automata language, which is a (not so elegant)
connection of CDs with automata using the State Design Pattern [GHJV94]. The adapter
extends the class of the target adapter kind, i.e., StimulusSymbol (l. 2) and has an
attribute of the source symbol kind, i.e., CDClassSymbol (l. 4). The source symbol
object is handed to the class as the constructor argument (l. 6). Relevant methods of
the super class, such as the method getName (l. 11), are overridden and delegate to the
corresponding methods in the source symbol object.

207

9. Symbol Management Infrastructure

Java �gen� CDClass2StimulusAdapter1

2 public class CDClass2StimulusAdapter extends StimulusSymbol {
3

4 protected CDClassSymbol original;
5

6 public CDClass2StimulusAdapter(CDClassSymbol o){
7 super(o.getName());
8 this.original = o;
9 }
10

11 @Override public String getName() {
12 return original.getName();
13 }
14 }

Listing 9.46: Symbol adapter for CDClassSymbols to StimulusSymbols

The symbol adapter delegates most methods to the original symbol, but may implement
certain methods individually. For example, usually the method getName() is just dele-
gated. Methods like getEnclosingScope() may need speci�c solutions ranging from
(1) raising an exception, over (2) resulting in a pseudo scope object in which the externally
loaded symbols are collected, to (3) adapting the entire scope graph data structure.

9.10.4 Resolving for Adapted Symbols

MontiCore provides two mechanisms for integrating symbol adapters into the symbol res-
olution process.

The �rst mechanism is for language inheritance and enables adapting symbols be-
tween a source and a target kind, which are both available within the scope. The
resolveAdaptedTLocallyMany methods for each available symbol kind T in the scope
interface act as hook points with empty default implementation and can e.g. be overridden
using the TOP mechanism. The handwritten interface can provide a strategy for �nding
adapted symbols.

Listing 9.47 shows an example that resolves StimulusSymbols by looking for
CDClassSymbols locally. For each suitable CDClassSymbol that is found, a
CDClass2StimulusAdapter is instantiated and added to the scope.

Java �hw� ICDAutomataScope1

2 public interface ICDAutomataScope extends ICDAutomataScopeTOP {
3

4 @Override
5 default List<StimulusSymbol> resolveAdaptedStimulusLocallyMany(
6 boolean foundSymbols, String name, AccessModifier m,
7 Predicate<StimulusSymbol> p)
8 {
9 // resolve source kind

208

9.10. Symbol Tables in Composed Languages

10 List<CDClassSymbol> cdClasses = resolveCDClassLocallyMany(
11 foundSymbols, name, m, x -> true);
12

13 List<StimulusSymbol> adapters = new ArrayList<>();
14

15 for (CDClassSymbol s : cdClasses) {
16 // instantiate adapter
17 CDClass2StimulusAdapter c2s = new CDClass2StimulusAdapter(s);
18 if (p.test(c2s)) { // check predicate
19 adapters.add(c2s);
20 this.add(c2s); // add adapter to scope
21 }
22 }
23 return adapters;
24 }
25 }

Listing 9.47: Resolving symbols with added adapters if the scope knows both symbol kinds

The resolution from the user perspective starts with the known resolve methods. All
the adaptation happens under the hood using the following typical strategy:

1. Resolve the symbol of the source kind S locally with resolveSLocallyMany.

2. If a symbol was found, instantiate a class S2TAdapter adapting the S symbol to
the target kind T.

3. To deliver the same object in repeated requests, the adapter symbol is added to the
list of symbols in the scope.

The second mechanism that MontiCore provides for integrating symbol adapters is useful
for language aggregation, as it does not require both source and target kind to be available
in a single type of scope.

The global scope manages a list of SymbolResolver hook points for each symbol kind.
During resolution of a symbol of kind S, the global scope iterates over all managed symbol
resolvers for the kind S.

For each symbol kind T, MontiCore generates the interface ITSymbolResolver that
de�nes the abstract method resolveAdaptedTSymbol. In this example, a subclass
S2TSymbolResolver is de�ned and hooked into the global scope. When the global
scopes looks for a symbol of kind T the hook is called and may now look for a symbol of
kind S in the same potential source artifacts (which are de�ned by the quali�ed package
names). If found, the adapter is added and returned.

In our example in Figure 9.48 the resolver CDClass2StimulusAdapters can be added
to the global scope of the automata language. The e�ect of this is that the method
resolveAdaptedStimulusSymbol of the resolver implementation is called during res-
olution for a StimulusSymbol. Internally, the method then resolves for a ClassSymbol.
If such a symbol is found, an adapter is instantiated and added to a list of adapted symbols,
which is then returned by the method.

209

9. Symbol Management Infrastructure

Java �hw� CDClass2StimulusResolver1 public class CDClass2StimulusResolver
2 implements IStimulusSymbolResolver {
3

4 @Override
5 public List<StimulusSymbol> resolveAdaptedStimulusSymbol(
6 boolean foundSymbols, String name, AccessModifier m,
7 Predicate<StimulusSymbol> p)
8 {
9 List<StimulusSymbol> r = new ArrayList<>();
10 Optional<CDClassSymbol> s = BasicCDMill.globalScope()
11 .resolveCDClass(name, m);
12 if(s.isPresent()){
13 CDClass2StimulusAdapter a
14 = new CDClass2StimulusAdapter(s.get());
15 if(p.test(a)){
16 r.add(a);
17 }
18 }
19 return r;
20 }
21 }

Listing 9.48: Example resolver for CDClass2StimulusAdapters

As usual, the generated classes can be extended by handwritten code to adapt the symbol
infrastructure management. All artifacts that MontiCore generates for the symbol table
realize a speci�c default solution for the management of symbols. Language engineers can
extend this to realize, e.g., sophisticated symbol visibility concepts, various forms of import
mechanisms speci�c to a symbol kind, �at name spaces of symbols in a model, symbols for
built-in types, or import functionality for symbols de�ned externally to MontiCore.

210

Chapter 10

Realizing Context Conditions

co-authored with Robert Heim

A language de�nition in MontiCore is based on a context-free grammar (CFG). Such a
grammar only de�nes the language features in general and does not support context-
sensitive restrictions (e.g., that a speci�c entity of a model must exist when used elsewhere).
In addition, some restrictions are much easier to express in a context-sensitive way, while
a context-free representation of the same constraint would be cumbersome (see below
for an example). Context conditions enable such context-sensitive restrictions. They are
predicates that further restrict the set of models described by a CFG and determine the
set of correct � also called well-formed � models of a language.

A context condition (CoCo) is a predicate on a CFG-correct sentence where the context of
a word is used to determine the total correctness, also called well-formedness.

A model/sentence of a language is well-formed if it ful�lls all context conditions. Well-
formedness is the basis to de�ne semantics, to generate code, etc.

Some typical forms of context conditions are:

� A variable must be declared before it is used.

� The type of a variable must exist.

� Only compatible values can be assigned to a variable.

� A method call must �t to its signature.

� A deterministic automaton must have exactly one start state.

� A class hierarchy does not have cycles.

There exist multiple kinds of context conditions, such as, conventions (e.g., names must
start with a capital letter), unreachable statements and many more.

Context conditions can be checked at di�erent times, but should always be checked before
a model is used for its designated purpose. Useful times for checking are:

1. After parsing and building the AST (see Chapter 6).

10. Realizing Context Conditions

2. After creating the symbol table from the AST (see Chapter 9).

3. When a modi�cation was applied on the AST, it may be worth to check all or some
context conditions again.

Many context conditions are and can only be checked during or after the symbol table is
created, since the symbol table provides helpful information and enables an e�cient way
of implementing them. However, if the symbol table is not needed, context conditions
can be checked against the pure AST. Also, context conditions can again be checked after
applying transformations on the AST to ensure that the AST still represents a valid model.

For example, the Automata language (cf. Section 21.1) requires context conditions such
as the following:

� State names must be unique.

� Source and target of a transition refer to an existing state.

� State names must start in uppercase.

The �rst one cannot be checked in a context-free way as names can be de�ned throughout
the model. The uniqueness of state names ensures that references to states (e.g., when
de�ning transitions) are unambiguously resolvable. The second restriction complements the
�rst one, since state names not only must be unique, but referenced states must be de�ned
in the model. This is a context-sensitive restriction, because names cannot be resolved
in a context-free way. While it is possible to formulate the requirement of capitalized
state names in a context-free manner, this would require some tedious amounts of token
de�nitions. Here, a context condition can easily check that state names are capitalized.
The following sections describe MontiCore's context condition infrastructure.

10.1 Context Condition Infrastructure

This section describes MontiCores infrastructure to implement context conditions for a
DSL. Given a grammar (such as the Automata grammar in Section 21.1), MontiCore
generates a context condition infrastructure. Context conditions are predicates concern-
ing speci�c model elements, such as states, classes, �elds etc. The implementation of a
context condition relies on the internal representation of a model element, which is the
respective AST node (and its sub-tree). Hence, MontiCore generates a set of interfaces
each providing a check method for a speci�c AST node type. In case of the Automata
language this results in three generated interfaces, namely AutomataASTStateCoCo,
AutomataASTTransitionCoCo and AutomataASTAutomatonCoCo, each de�ning a
check signature for the corresponding AST node.

For example, MontiCore generates the interface AutomataASTStateCoCo that de�nes
the method signature of the check method for nodes of type ASTState (cf. Figure 10.1).

Implementing a context condition on an AST element is as simple as implementing
the corresponding interface. As a best practice, each interface implementation should
only implement one context condition at a time. For example, the context condition

212

10.1. Context Condition Infrastructure
Prof. Dr. B. Rumpe

Lehrstuhl für

Software Engineering

RWTH Aachen

Page 17

CoCo Infrastructure for each Nonterminal

«interface»

AutomataASTStateCoCo

+ check(ASTState node)

StateNameStartsWithCapitalLetter

+ check(ASTState node)

common interface
for state cocos

«hc»

«gen»

A concrete coco
implementation
validating the
state name

@Override

public void check(ASTState node) {

// do checks on node

// if check fails: Log.error(…);

}

Automata-Tool CD
«interface»

AutomataVisitor2

«gen»

Figure 10.1: CoCo infrastructure for nonterminals

StateNameStartsWithCapitalLetter implements the former mentioned interface
for state nodes (cf. Figure 10.1). Listing 10.6 depicts the complete implementation of this
context condition.

To check the context conditions on a model MontiCore generates a so called checker for
a given grammar. For a language L the checker is called LCoCoChecker and provides
an addCoCo method for each generated coco interface (i.e. for each nonterminal). This
enables developers to register their implemented context conditions at the checker. Addi-
tionally, a checker provides a checkAll method that can handle any AST node of the
language. The latter executes all registered context conditions on the given AST node and
its children. Typically, one would hand the root node of an AST to the method to check
a complete model for well-formedness.

Prof. Dr. B. Rumpe

Lehrstuhl für

Software Engineering

RWTH Aachen

Page 18

«interface»

AutomataASTStateCoCo

+ check(ASTState node)

CoCo Checker

AutomataCoCoChecker
&

+ addCoCo(AutomataASTStateCoCo c)

+ checkAll(ASTAutomataNode n) *

add coco

to be checked

n.accept(traverser);

Automata-Tool CD
«gen»

Start the visitor

«interface»

AutomataTraverser

+ visit(ASTState n) &
1

traverser

traverser.add4Automata(c)

Figure 10.2: The generated CoCo checker

As an example, the Automata language's checker AutomataCoCoChecker is shown in
Figure 10.2. Internally, the checker uses a traverser (cf. Chapter 8) to traverse a given AST
node. Hence, in case of the Automata language the AutomataCoCoChecker uses the

213

10. Realizing Context Conditions

Java �gen� AutomataCoCoChecker1 public class AutomataCoCoChecker {
2

3 private automata._visitor.AutomataTraverser traverser ;
4

5 public void checkAll(ASTAutomataNode node) {
6 node.accept(getTraverser());
7 }
8

9 public void addCoCo(AutomataASTAutomatonCoCo coco) {
10 traverser.add4Automata(coco);
11 }
12

13 // ... analog infrastructure for other AST elements ...
14 }

Listing 10.3: Implementation of the AutomataCoCoChecker class

Java �hw� AutomataTool1 // setup context condition infrastructure
2 AutomataCoCoChecker checker = new AutomataCoCoChecker();
3

4 // add a custom set of context conditions
5 checker.addCoCo(new StateNameStartsWithCapitalLetter());
6 checker.addCoCo(new AtLeastOneInitialAndFinalState());
7 checker.addCoCo(new TransitionSourceExists());
8

9 // check the CoCos
10 checker.checkAll(ast);

Listing 10.4: Con�gure the AutomataCoCoChecker and check the context conditions

AutomataTraverser interface. Listing 10.3 shows the implementation of the checkAll
method and the method regarding the states.

Listing 10.4 shows a usage example of the AutomataCoCoChecker. First it is instan-
tiated (l. 2) and then con�gured by adding some cocos (ll. 5f). Assuming that a model
is available in the variable ast the checker is executed to check all registered context
conditions (l. 10) on the parsed model by handing the AST to the checkAll method.

Usually, context conditions as well as checkers are implemented in a state free form and
thus a single instance can be reused on many models.

10.2 Implementation of Context Conditions

Besides using the described infrastructure there are some best practices for implementing
context conditions. Every context condition should have a unique error code that makes it
easier to communicate the error (for example when asking developers for help) or identify
the error's source position. It also facilitates writing dedicated tests for a context condition

214

10.2. Implementation of Context Conditions

Tip 10.5: Fixed Sets of Context Conditions

A language typically has a �xed set of standard context conditions. A best
practice is that language implementations should provide con�gured coco checkers
to language users.

In case of the Automata language, the handwritten class named
AutomataCoCos implements the method getCheckerForAllCoCos that
creates an AutomataCoCoChecker object and con�gures it by adding the
common context conditions. Language users can use this method to obtain a
con�gured checker to check a model for well-formedness.

It is of course possible to add new CoCos to the checker or execute some afterwards
if desired.

(cf. Section 10.3 for details). An error message should be a human-readable, compact
explanation of why a speci�c context condition is not ful�lled and should contain the exact
source position. Both support the modeler in �xing a violation.

With the whole context condition infrastructure provided by MontiCore, it is easy to
develop own context conditions. Listing 10.6 shows the full implementation of the context
condition StateNameStartsWithCapitalLetter. The handwritten class implements
the generated interface for state context conditions (ll. 2f). Hence, its check method has
an ASTState node as parameter (l. 5). In case of a violation of the context condition
(ll. 6�.), the implementation uses MontiCore's logging infrastructure (cf. Chapter 15) to
issue a warning (ll. 12f). In a productive environment such an error terminates the program
and shows the error message. However, for testing purposes this behavior can be adjusted
by disabling the fail quick feature of the logger. Section 10.3 describes more details on
testing context conditions and the test setup.

Tip 10.7: Using the Symbol Table in Context Conditions

Normally the symbol table is used to understand, which symbols are de�ned,
what kind and what extra information they carry.

To use the symbol table within context condition implementations, the symbol
table must be created before executing the context conditions. Then, the links from
AST nodes to the corresponding symbols and scopes are set (cf. Chapter 9).

Often, context conditions use the symbol table to obtain required information. For exam-
ple, there are two options to check whether the source state of a transition exists. First,
one can iterate over all state children of the ASTAutomaton node and try to �nd the
correct state's AST node. Alternatively and more e�ciently, one can make use of the
resolving mechanism that is provided by the symbol table. Listing 10.8 shows the solu-
tion using the symbol table. It retrieves the enclosing scope of the AST node through
node.getEnclosingScope() (l. 5). Having the enclosing scope, one can try to resolve
the source state using its name (node.getFrom(), ll. 7f). If a state with the particular
name does not exist, this leads to an error (ll. 10f).

215

10. Realizing Context Conditions

Java �hw� StateNameStartsWithCapitalLetter1

2 public class StateNameStartsWithCapitalLetter
3 implements AutomataASTStateCoCo {
4 @Override
5 public void check(ASTState state) {
6 String stateName = state.getName();
7 boolean startsWithUpperCase =
8 Character.isUpperCase(stateName.charAt(0));
9

10 if (!startsWithUpperCase) {
11 // Issue warning...
12 Log.warn(
13 String.format(
14 "0xADD02 State name '%s' is not capitalized.",
15 stateName),
16 state.get_SourcePositionStart());
17 }
18 }
19 }

Listing 10.6: Implementation of a context condition for State objects

Java �hw� TransitionSourceExists1 public class TransitionSourceExists
2 implements AutomataASTTransitionCoCo {
3 @Override
4 public void check(ASTTransition node) {
5 IAutomataScope enclosingScope = node.getEnclosingScope();
6 Optional<StateSymbol> sourceState =
7 enclosingScope.resolveState(node.getFrom());
8

9 if (!sourceState.isPresent()) {
10 // Issue error...
11 Log.error(
12 "0xADD03 Source state of transition missing.",
13 node.get_SourcePositionStart());
14 }
15 }
16 }

Listing 10.8: Using the symbol table in a context condition

10.3 Testing Context Conditions

As a best practice for testing context conditions, one should test both, valid and invalid
models. The former make sure that valid models do not violate the context condition (i.e.
true positives and no false negatives), whereas the latter ensure that invalid models do
violate the context condition (i.e. true negatives and no false positives). Consequently, two

216

10.3. Testing Context Conditions

Java �hw� TransitionSourceExistsTest1 public class TransitionSourceExistsTest {
2

3 // setup the parser infrastructure
4 AutomataParser parser = new AutomataParser() ;
5

6 @BeforeClass
7 public static void init() {
8 LogStub.init();
9 }
10

11 @Before
12 public void setUp() throws RecognitionException, IOException {
13 Log.getFindings().clear();
14 }
15 }

Listing 10.9: Initial setup to test a context condition

di�erent kinds of tests should exist for every context condition.

In MontiCore tests for context conditions are implemented using the test-framework JUnit.
Listing 10.9 shows a best practice to initialize a context condition test. A reusable parser
object is initialized and stored as attribute in l. 4f, because it behaves as if stateless. The
init method (ll. 7) changes the behavior of the log by using a stub LogStub that does
not have side e�ects (no output) and disables the fail quick feature of MontiCore's logger
(cf. Chapter 15). This ensures that the test is further executed when the error occurs. The
test can then assert expected errors. Since this initialization is required only once before
all speci�c tests, the init method is annotated with @BeforeClass. Before every test,
the setUp method (ll. 11) � annotated with @Before � clears all �ndings (of potential
previous tests) to ensure a clean test setup.

10.3.1 Testing a Context Condition on a Valid Model

Testing a context condition on a valid model consists of the following three steps:

� Parse the model, obtain the AST, and create its symbol table.

� Check the context condition on that AST.

� Verify that no errors occurred.

Java �hw� TransitionSourceExistsTest1 @Test
2 public void testOnValidModel() throws IOException {
3 ASTAutomaton ast = parser.parse_String(
4 "automaton Simple { state A; state B; A -x> A; B -y> A; }"
5).get();
6

7 // setup the symbol table

217

10. Realizing Context Conditions

8 IAutomataArtifactScope modelTopScope = createSymbolTable(ast);
9

10 // setup context condition infrastructure & check
11 AutomataCoCoChecker checker = new AutomataCoCoChecker();
12 checker.addCoCo(new TransitionSourceExists());
13

14 checker.checkAll(ast);
15

16 assertTrue(Log.getFindings().isEmpty());
17 }

Listing 10.10: Testing a context condition on a valid model

Listing 10.10 demonstrates this by testing the context condition
TransitionSourceExists (cf. page 216). First of all, the model is speci�ed in
ll. 3f. An ArtifactScope that contains the symboltable of the model is created from this
model (cf. l. 8). For more information about ArtifactScopes, see Chapter 9. The context
condition is instantiated in and added to a checker. Next, the checker is executed on the
model (cf. ll. 11f). Finally, the test veri�es that no errors occurred in ll. 16f.

10.3.2 Testing a Context Condition on an Invalid Model

Testing a context condition on an invalid model is similar to the above check, but at the
end checks for the expected errors.

Listing 10.11 shows a test on an invalid model that does not de�ne the source state of a
transition. Again, the model is speci�ed (cf. l. 3) and the symbol table for this model is
created in l. 9. This model uses a state that has not been de�ned. A checker is con�gured
with the context condition under test and executed on the invalid model (cf. ll. 12f). This
example expects exactly one error with a given text. Checking that all expected �ndings
occurred (cf. ll. 18f) ensures that the context condition identi�es the invalid model as such.

Java �hw� TransitionSourceExistsTest1 @Test
2 public void testOnInvalidModel() throws IOException {
3 ASTAutomaton ast = parser.parse_String(
4 "automaton Simple { " +
5 " state A; state B; A - x > A; Blubb - y > A; }"
6).get();
7

8 // setup the symbol table
9 IAutomataArtifactScope modelTopScope = createSymbolTable(ast);
10

11 // setup context condition infrastructure & check
12 AutomataCoCoChecker checker = new AutomataCoCoChecker();
13 checker.addCoCo(new TransitionSourceExists());
14

15 checker.checkAll(ast);
16

17 // we expect one error in the findings

218

10.3. Testing Context Conditions

18 assertEquals(1, Log.getFindings().size());
19 assertEquals("0xADD03 Source state of transition missing.",
20 Log.getFindings().get(0).getMsg());
21 }

Listing 10.11: Testing a context condition on an invalid model

Please note that the use of LogStub prevents that the error is actually printed and the
program terminates. Instead the error message is only stored in the �ndings and continues
execution.

It is possible to check the source position of the error in the invalid model as well. However,
it is often useful to reduce the assertion to checking the error code (0xADD03), because
error messages are relatively often modi�ed.

219

Chapter 11

Design Patterns Used and Invented for

MontiCore

co-authored with Nico Jansen

Design patterns [GHJV94] are helpful concepts as they provide reusable solutions to com-
monly occurring problems. They can be used to structure a generated product as well as
the generator itself. This is in particular useful for handwritten extensions that need to
integrate with generated parts. While MontiCore uses quite a number of standard design
patterns such as template-hooks, visitors, adapters, factories, and builders, some design
patterns consistently used in MontiCore's context have been either substantially adapted
or even newly created.

The visitor pattern is a prominent example and is thus described in its own Chapter 8.
The builders used to create AST and symbols objects are also re�ned, and described in
Section 5.9. Their composition and adaptation is subject to Section 14.2. Other slightly
adapted design patterns follow in this chapter.

11.1 Static Delegator Design Pattern

The static delegator is a design pattern that combines the advantages of publicly acces-
sible static methods with the possibility to rede�ne them. For that purpose the pattern
introduces a hidden delegate object that can be replaced on demand for customization.
We demonstrate this on the method info(String, String) that is part of the logging
API described in Section 15.3 and shown in Listing 11.1.

The public static method, that is meant for external use and is therefore publicly available,
is eponymous for the pattern. The static host class provides one or more such public static
methods. Internally, the static method delegates to an object, which provides the actual
implementation in a so called do-method. Considering the example in Listing 11.1, the
static method info delegates the method call to its internally used object log, which is
an instance of the Log class. The static method calls the instance method doInfo that
provides the actual implementation. Static delegators may have many such pairs.

The static delegate object (log) in line 3 is kept hidden but exchangeable and is used
as a delegate for the static methods through the static getLog() method (ll. 6�.). The

11. Design Patterns Used and Invented for MontiCore

Java �RTE� Log1 public class Log {
2 // the single static delegator target
3 protected static Log log;
4

5 // Getter for the underlying Log.
6 protected static Log getLog() {
7 if (log == null) {
8 setLog(new Log());
9 }
10 return log;
11 }
12

13 // Allows to set an individually defined Log instance
14 protected static final void setLog(Log log) {
15 Log.log = log;
16 }
17

18 public static final void info(String msg, String logName) {
19 getLog().doInfo(msg, logName);
20 }
21

22 protected void doInfo(String msg, String logName) {
23 // a default implementation, but can be overridden
24 }
25 }

Listing 11.1: A static delegator method

method getLog() initializes automatically on its �rst use (l. 8), such that no external
initialization is required. However, the behavior can be changed by rede�ning the hidden
static instance in a new subclass as shown in Listing 11.2.

Java �RTE� LogStub1 public class LogStub extends Log {
2

3 protected LogStub() { }
4

5 // Initialize the LogStub as Log
6 public static void init() {
7 LogStub l = new LogStub();
8 l.isNonZeroExit = false;
9 Log.setLog(l);
10 }
11

12 // The customized behaviour
13 protected void doInfo(String msg, String logName) {
14 // adapted implementation
15 }
16 }

Listing 11.2: Customized static delegator method

222

11.2. RealThis Object Composition Pattern

After an explicit invocation of the method LogStub.init() shown in Listing 11.2,
line 6�., the static delegate object in Log will be an instance of LogStub and thus provide
its customized behavior of the info method. That is because the public static method
info of the class Log (cf. line 18 of Listing 11.1) now delegates to the protected method
doInfo (cf. line 13�.) of an instance of the class LogStub.

In many cases, e.g., in the shown logging, the method LogStub.init() has to be invoked
as early as possible to ensure proper initialization from the beginning.

The static delegator design pattern can be used in many circumstances, for example, builder
mills, protocol objects etc. It may come in variations, for example:

� Many static methods delegating to the same instance.

� Many static methods where each of the static methods internally has its own instance
object, thus allowing high con�gurability (cf. the generated AST builder mills de-
scribed in Section 5.9).

� The host class of the static methods and the delegate class can be decoupled (thus
having separate classes).

� Several subclasses may be de�ned allowing con�guration or even dynamic recon�gu-
ration during runtime.

The main bene�t of this design pattern is that one method or a certain set of methods is
available uniquely throughout all pieces of code, such that it is still possible to rede�ne
the methods even though they have a static externally visible interface. This also assists
mocking side e�ects of a static delegator (like protocols, database access, or GUI) when
testing the system, e.g., by replacing the static delegator by a dummy.

Limitations are also coming with the use of static methods. For instance, web frameworks
forbid static methods. If parallel processes want their own individual instantiations, then
con�icts between otherwise independent processes may occur and must be managed like
described in [Rum17].

In contrast to the delegation pattern in [GHJV94], this pattern is a conjunction of a
singleton and delegating methods. Thus, the static methods do not need to use the same
object to delegate to. Instead, there can be multiple objects stored and handled internally.

11.2 RealThis Object Composition Pattern

The central idea of this pattern is that several objects are composed in such a way that
they behave like one single object to the external world. For this purpose, this section
introduces the RealThis object composition pattern, which is essentially a combination of
the composite pattern, the callback pattern and the delegation pattern, where the composite
delegates to its components. For a tight integration, the components then callback to the
composite using the realThis link.

As in the composite pattern, there is a single class that is visible to the outside and
whose instantiated object acts as the central, externally known object. In the example in

223

11. Design Patterns Used and Invented for MontiCore

Figure 11.3, this is class A. Furthermore, there are several subclasses that realize partial
functionality. Objects of these subclasses can be freely combined as components of the
composite to de�ne the overall functionality. In Figure 11.3, these are the classes B and C. In
this example, A provides the method signatures foo and bar, which are not implemented
by A directly but by subclasses. Here B implements the method foo and C the method
bar. Note, that arbitrary many methods are allowed.

A internally holds for each method a link to an object that realizes the method. In the
example, there exist two links to the objects forFoo and forBar of type A. A valid
con�guration of A objects must set these links to appropriate objects of the subclasses.
In the example, forFoo is assigned with an instance of B and forBar is assigned with
an instance of C. Note that this is just one option, other con�gurations could be attached
only to B objects, etc. Each method can be con�gured using an individual subclass object
to delegate to.

Whenever A receives a call of foo or bar, it is delegated to forFoo or forBar respec-
tively. Thus in this example A uses the foo realization of B and the bar realization of C,
but externally acts as a single entity.

Prof. Dr. B. Rumpe

Lehrstuhl für

Software Engineering

RWTH Aachen

Page 2

RealThis

CD

B

A getRealThis()

setRealThis(A realThis)

foo()

bar()

A

A forFoo;

A forBar;

A getRealThis()

setRealThis(A realThis)

foo()

bar()

realThis

C

A getRealThis()

setRealThis(B realThis)

foo()

bar()

Some code +

getRealThis().bar()

Some code +

getRealThis().bar()

Implementations always use realThis in method calls.
This enables objects to collaborate without
classes knowing each other

forFoo.foo()

forBar.bar()

Delegation

Figure 11.3: Components use realThis instead of this to enable close collaboration

To ensure a tight collaboration between the objects in that composition, the callback to
realThis is used.

For this, A has two methods setRealThis and getRealThis to manage a realThis
instance of itself. The realThis instance is used instead of this, i.e., all calls of the form
this.bar() are made to realThis.bar() instead. This enables the interaction of the
individual objects. B and C inherit the realThis methods as well and thus collaborate �
potentially without even knowing each other syntactically.

In all objects B and C of that composition , however, the realThis is set to the instance
of A. This way, if something is called on the same object (but of course via the indirection
realThis), the control is given back to A again.

224

11.2. RealThis Object Composition Pattern

An exemplary �ow where foo is called on a:A is shown in Figure 11.4. Let us assume
B.foo() calls bar(), which by con�guration shall be from class C. As can be seen, in this
con�guration a:A delegates the call to its subobject forFoo:B. In B, instead of calling
bar() directly, getRealThis().bar() is called. This, in e�ect, calls bar again on
a:A and a:A delegates to c:C.

Prof. Dr. B. Rumpe

Lehrstuhl für

Software Engineering

RWTH Aachen

Page 3

RealThisProgramFlow

SDforFoo:B forBar:Ca:A

foo()
foo()

getRealThis()

abar()

bar()
delegating
bar()to forBar.bar()

Hand control back
to composing object

Composes
objects

Figure 11.4: The runtime program �ow in a realThis composition

When generating code, it is often convenient to generate independent artifacts in di�erent
generation phases or by di�erent generators. However, during runtime, a tight integration
may be necessary. This is, in particular, the case when parts of classes originate from
di�erent generators or a class functionality shall be partially handcoded and generated. To
allow separated artifacts (�les) but integrated runtime objects (actually an object group
that acts like a single object) in Java, individual classes need to be de�ned, but their
instantiated objects need to be closely composed. In MontiCore, this is achieved by using
the described RealThis pattern.

In general, the RealThis pattern enables late composition of functionality while users would
not recognize that they work with a composed object. A drawback is the overhead required
during the implementation since every explicit and implicit this usage must be correctly
identi�ed and replaced by realThis in all the participating subclasses. Also, during
runtime, such composition incorporates many object instances and an increased method
delegation stack occurs (cf. Figure 11.4).

In practice, it is possible to add as many subclasses as desired and select each time only
the exactly desired subset of functions. If a link is not set, an empty default behavior may
be implemented in the composite A itself.

If attributes need to be shared among the objects, these attributes should be located in
the composite class A and made available through appropriate access methods.

It is also possible to operate with subclasses like B in an isolated form because then the
realThis link just points to the B object itself. Furthermore, it is possible to even
nest the structures, i.e. A may contain and delegate to another A object or B might use
delegation as well.

In C#, partial classes serve a similar purpose. Compared to the realThis approach, they
have the advantage that native language support is provided, but the disadvantage that

225

11. Design Patterns Used and Invented for MontiCore

the partial classes need to be compiled together and are statically �xed (thus no individual
use or con�gurable variability in the composition is possible).

Variant of the RealThis Pattern without Common Superclass

To overcome the single inheritance limitation of Java, interfaces can be used. That means
method signatures are de�ned in an interface of the class and the realThis attribute
is of the interface type (cf. Figure 11.3). This enables a composing object to extend
all interfaces of the composed objects (cf. Figure 11.6) and does not enforce a common
superclass anymore.

This is the case, for example, when a language is composed of sublanguages. In this
case, the sublanguages already provide parts of the functionality required by the composed
language. Users of the composed language then only interact with the composed object
and not with its participating objects. Since Java does not support multiple inheritance,
a strict separation into interface and implementing class is needed. The interfaces o�er all
methods including getRealThis and setRealThis. The example in Figure 11.5 shows
the interfaces B and C and their implementations BImpl and CImpl. B o�ers the method
foo while C o�ers the method bar.

Prof. Dr. B. Rumpe

Lehrstuhl für

Software Engineering

RWTH Aachen

Page 4

RealThis Variant

CD

BImpl

B getRealThis()

setRealThis(B realThis)

foo()

«interface»

B

B getRealThis()

setRealThis(B realThis)

foo()

realThis

CImpl

C getRealThis()

setRealThis(C realThis)

bar()

«interface»

C

C getRealThis()

setRealThis(C realThis)

bar()

realThis

Figure 11.5: Splitting Classes in Interface and Implementation

As before, within classes, no call may use this, but call are made through a call through
the getRealThis accessor method.

These classes and interfaces can now be combined by a third class AImpl so that they
behave as a single object, as shown in Figure 11.6.

The implementations of these methods in A again delegate to the respective object. As
before, AImpl sets itself as realThis of the two internal objects b and c.

Thus the object as well as the method call structure of this variant of the pattern are
identical to the �rst variant, but the class structures di�er.

As an advantage, the composite AImpl o�ers the method signatures and implementations
of B and C, which is an advantage over the �rst variant, where the o�ered methods are
�xed by the superclass and cannot be extended. As a disadvantage, a new subclass D in
the �rst variant can be directly included, while in the second variant, the interface A and
the class AImpl have to be adapted to make D usable.

226

11.3. Attribute and Association Access Pattern
Prof. Dr. B. Rumpe

Lehrstuhl für

Software Engineering

RWTH Aachen

Page 5

RealThisComposition

CD
«interface»

A

A getRealThis()

setRealThis(A realThis)

c

b.foo()

realThis is injected to b
and c using an AImpl instance

b

AImpl

AImpl(B b, C c)

A getRealThis()

setRealThis(A realThis)

foo()

bar()

(

realThis

this.b = b;

this.c = c;

realThis = this;

b.setRealThis(realThis)

c.setRealThis(realThis)

method implementation may delegate back to
realThis (i.e., the AImpl instance)
� inversion of control

c.bar()

«interface»

B

B getRealThis()

setRealThis(B realThis)

foo()

«interface»

C

C getRealThis()

setRealThis(C realThis)

bar()

Figure 11.6: Composing objects using the realThis approach

The visitor infrastructure of MontiCore is built on the second variant of this pattern to
enable visitor composition (see Chapter 8), where the integrative composite classes are
newly generated for each language composition.

11.3 Attribute and Association Access Pattern

When discussing the architecture of a piece of software, we often only look at the data
structure, namely classes, their attributes, and if explicitly modeled their associations.
Developers using that data structures, however, need to know the access and modi�cation
methods that allow modifying attributes as well as the implementation of associations. Us-
ing a systematic derivation from attributes to their access methods has two big advantages.
First, developers know the names and signatures of the methods by only looking at the
data structure. And second, generators can be used to actually execute that derivation.

MontiCore uses the following patterns consistently. We also recommend that generators in
general use these patterns, but of course are free to add additional functionality dependent
on the desired realizations.

11.3.1 Attribute Access Pattern

Ordinary Attribute. An ordinary attribute a of type Person, which is stored in a class
Group, needs exactly the two classic get/set methods, one that allows to retrieve the
value and one that allows to set the value (see Listing 11.7).

We generally assume that null is not part of the values in the system and thus also do
not check for or against null. If the absence of a value shall be modeled, optionals shall
be used.

227

11. Design Patterns Used and Invented for MontiCore

Java Group1 class Group {
2 void setA(Person a);
3 Person getA();
4 }

Listing 11.7: Classic get and set method signature for an attribute

We could use the same simple generation mechanism for all kinds of attributes, but at
least for the container attributes List, Set, Map, and Optional, it is useful to not fully
expose the container, but o�er methods for manipulation of the container content directly.
Writing all those methods manually is usually tedious and often error-prone, but when a
generator is available, it is relatively simple to generate appropriate access functionality in
a systematic way.

Optional Attribute. For optional attributes, it is convenient to have some additional
methods for checking if a value is present and for setting the value absent. For convenience,
we therefore provide the four methods depicted in Listing 11.8 for each optional attribute
b, which here is of type Optional<Person>.

Java Group1 Person getB();
2 boolean isPresentB();
3 void setB(Person a);
4 void setBAbsent();

Listing 11.8: Methods for an optional attribute

Method isPresentB allows to directly understand whether the real value is present.
Method setBAbsent directly sets the value absent and with setB, the unwrapped, but
existing real value can be stored in the optional attribute. The normal getB method can
fail, because the stored value may be absent. So the method may only be used when the
developer is sure that the real value is stored, e.g., after asking with isPresentB.

Dependent on the context, the partiality of the getB method is implemented by fail quick,
i.e., the message issues an exception which in a generator (like MontiCore) normally leads
to erroneous termination of the generation process.

The provided methods are systematically derived from the underlying container class
java.util.Optional: (1) The name of a method is composed of the name of the
underlying method, e.g., "isPresent", and a su�x derived from the name of the respec-
tive attribute in a capitalized form, e.g., "B". (2) The method is just delegating to the
respective method in the container class. This principle also is applied systematically to
the other containers described below.

List Attribute. The java.util.List interface provides more than 30 methods for re-
trieving data from the list or for manipulating this data. When interested in hiding the

228

11.3. Attribute and Association Access Pattern

list attribute and for comfort, it is indeed useful to systematically translate the list meth-
ods into a signature for access and modi�cation of the list attribute under consideration.
Therefore, Listing 11.9 shows all 30+ methods that are directly mapped into the signature
of a class containing a list attribute c here of type List<Person>.

Java Group1 void clearC();
2 boolean addC(Person element);
3 boolean addAllC(Collection<? extends Person> collection);
4 boolean removeC(Object element);
5 boolean removeAllC(Collection<Object> collection);
6 boolean retainAllC(Collection<Object> collection);
7

8 boolean containsC(Object element);
9 boolean containsAllC(Collection<Object> collection);
10 boolean isEmptyC();
11 int sizeC();
12

13 void addC(int index, Person element);
14 boolean addAllC(int index,
15 Collection<? extends Person> collection);
16 Person setC(int index, Person element)
17 Person getC(int index);
18 int indexOfC(Object element);
19 int lastIndexOfC(Object element);
20 Person removeC(int index);
21 List<Person> subListC(int start, int end);
22

23 Iterator<Person> iteratorC();
24 ListIterator<Person> listIteratorC();
25 ListIterator<Person> listIteratorC(int index);
26 void forEachC(Consumer<? super Person> action);
27 Spliterator<Person> spliteratorC();
28 boolean removeIfC(Predicate<? super Person> filter);
29 void replaceAllC(UnaryOperator<Person> operator);
30 void sortC(Comparator<? super Person> comparator);
31

32 Person[] toArrayC(Person[] array);
33 Object[] toArrayC();
34 Stream<Person> streamC();
35 Stream<Person> parallelStreamC();
36

37 boolean equalsC(Object o);
38 int hashCodeC();
39

40 List<Person> getCList();
41 void setCList(List<Person> c);

Listing 11.9: Methods for a List attribute

Again, all names are derived by adding the attribute name after the name of the underlying
method taken from the List interface.

229

11. Design Patterns Used and Invented for MontiCore

However, for readability, sometimes an additional trailing s is added to a method name,
especially when the argument is itself a list of several objects.

Because all functions are directly available on that interface, it will not be necessary to
retrieve the list object directly. Still, with the last two methods getCList and setCList,
it is also possible to directly handle the list.

11.3.2 Association Access Pattern

Unidirectional Association. If an association is unidirectional, then it is implemented as
an attribute of appropriate type. Dependent on the cardinality, it is

� a normal (mandatory) attribute with normal get/set methods,

� wrapped in an Optional attribute with the same access methods as described above,
or

� its values are collected in a List, Set, or Map attribute which can be accessed and
manipulated using a generated set of functions which is systematically derived from
the java.util.List/Set/Map classes.

The signature to access and modify these attributes has been discussed above, and espe-
cially Listings 11.8 and 11.9 show how the signature for a given unidirectional association
looks like. Therefore, from the implementation view, unidirectional associations and at-
tributes of the above types have the same access and manipulation signatures.

Bidirectional Association. If an association is bidirectional, then a natural form of im-
plementation is to have attributes and access/manipulation functionality on both sides. So
from a usage point of view bidirectional associations behave like unidirectional associations
and it is especially relevant that they provide the same access and manipulation methods.

While storing an association on both sides is an e�cient and also well usable e�ective im-
plementation, it also introduces redundancy. Encapsulating this redundancy appropriately
allows preventing the association from becoming inconsistent. As described in [Rum16],
this means that each manipulation function needs to call the appropriate manipulation
on the other side of the association to keep it consistent. I.e., for developers one call of
a manipulation function is su�cient and the association remains consistent on both ends.
As a consequence, the developers still have the same interface available and do not have
to care about consistency issues.

However, it is necessary to note that associations with cardinality restrictions could need
even more restrictive manipulation methods. It might also be interesting to restrict the
ability to manipulate an association to one side and allow to navigate only on the other
side of the association.

230

11.3. Attribute and Association Access Pattern

11.3.3 The Extended Builder Pattern

MontiCore uses an extended version of the builder pattern originated from [GHJV94].
While the classic builder pattern concentrates on methods to set values for their attributes
even in the building process (1) the already de�ned values need to be retrievable and
(2) especially containers like lists and sets need methods for incremental construction. A
classic builder pattern does not provide any assistance for these two problems and thus
forces the developer to maintain values in addition.

MontiCore's extended builder pattern uses the same method signature as shown above for
respective attributes, with one slight di�erence. While above the manipulation functions
often have void as a result, the respective manipulation functions of a builder return
the builder object itself and thus allow chaining of manipulation calls as usual. Based on
attributes a, b, and c in class Group, the GroupBuilder has access functions exactly
like the Group class, but the manipulators look like shown in Listing 11.10.

Java GroupBuilder1 class GroupBuilder {
2 // manipulating attribute: Person a
3 GroupBuilder setA(Person a);
4

5 // manipulating attribute: Optional<Person> b
6 GroupBuilder setBAbsent();
7 GroupBuilder setB(Person a);
8

9 // manipulating attribute: List<Person> c
10 GroupBuilder clearC();
11 GroupBuilder addC(Person element);
12 GroupBuilder addAllC(Collection<? extends Person> collection);
13 GroupBuilder removeC(Object element);
14 GroupBuilder removeAllC(Collection<Object> collection);
15 GroupBuilder retainAllC(Collection<Object> collection);
16

17 GroupBuilder addC(int index, Person element);
18 GroupBuilder addAllC(int index,
19 Collection<? extends Person> collection);
20 GroupBuilder setC(int index, Person element)
21 GroupBuilder removeC(int index);
22 GroupBuilder forEachC(Consumer<? super Person> action);
23 GroupBuilder removeIfC(Predicate<? super Person> filter);
24 GroupBuilder replaceAllC(UnaryOperator<Person> operator);
25 GroupBuilder sortC(Comparator<? super Person> comparator);
26

27 GroupBuilder setCList(List<Person> c);
28 }

Listing 11.10: Manipulation methods provided by builders

Because manipulators return the GroupBuilder itself, chaining becomes possible:
b.setA(p1).setB(p2).addC(p3).addC(p4). For this convenience, however, sev-
eral other results, such as boolean for a successful adding or the added object itself, are

231

11. Design Patterns Used and Invented for MontiCore

sacri�ced. Unlike the real object, a builder does not enforce consistency when attributes
are changed, only during the build() consistency is enforced.

This mechanism for attribute access is implemented in many data classes of the RTE,
especially into class ASTNode and its generated descendants as shown in Section 5.7 and
discussed in Sections 5.8 and 5.9.

11.4 Template Hook Pattern

The template-hook pattern (often also called template method [GHJV94]) is one of the
simplest and most basic patterns. We explicitly mention it here because it exhibits its
strengths in object-oriented programming languages. It is not only useful for frameworks,
but especially also for the integration of handwritten and generated code, while keeping
both sorts of code separated in individual artifacts.

Please note that "template" in this section does not refer to FreeMarker templates, but to
Java methods.

The pattern in its simplest form consists of two methods: the template method and the hook
method. The template contains a prede�ned algorithm and calls the hook for executing
more primitive or speci�c actions. The hook, however, is empty and meant for rede�nition
in subclasses. The pattern may be applied several times, using a method sometimes as
template and sometimes as hook. Chains of hooks may also occur. See e.g. [Pre95, FPR01,
GHJV94] for a more detailed discussion. Two variants are partially shown in Figure 11.11:

� Defaults for the hooks exists vs. keeping the hook abstract,

� Template and hook are implemented in the same class vs. the template delegates to
the hook in a di�erent class (object).

Prof. Dr. B. Rumpe

Lehrstuhl für

Software Engineering

RWTH Aachen

Page 6

Template Hook Pattern

CD

MyHookClass

+ hookMethod()

'

«hc»

TemplateHookClass

+ templateMethod()

+ hookMethod()

«gen»

template
calls hook

abstract
method
or default

MyHookClass

+ hookMethod()

'

«hc»

HookClass

+ hookMethod()

«gen»

TemplateClass

+ templateMethod()

«gen»

(a) Integrated Variant (b) Delegation to Hook

Figure 11.11: Template hook pattern variants that can be used for integrating handwritten
and generated code

A conjunction of core functionality and delegates of some basic actions to hook methods
is a key mechanism in frameworks, where the template method belongs to the framework
and the hook method is meant to be de�ned by the individual application via subclassing
respective framework classes (or implementing framework interfaces).

232

11.5. Mill Pattern to Assist Composition

In some cases generated code is intended to be extended by handwritten code or at least
an option to extend generated by handwritten code should be provided. In this case,
providing such hooks leads to �exibly extensible generated code. That means, a generated
piece of code is designed similar to a framework providing various hook methods.

MontiCore extensively uses the TOP mechanism to integrate handwritten code with gener-
ated parts of the program (see Section 14.3). The created TOP-classes are subclassed with
handwritten classes and thus allow to override parts. Thus, almost all methods in a gener-
ated class can act as hook methods. This is an advancement compared to the generation
gap pattern [Vli98]. The TOP mechanism also uses subclassing for handwritten code, but
the generator is sensitive to the code and renames the generated superclass, such that the
handwritten class not only adapts the implementation, but also extends the signature.

MontiCore also applies the template-hook design pattern to FreeMarker templates using
the hook point mechanisms explained in Section 13.5.

11.5 Mill Pattern to Assist Composition

MontiCore extensively assists composition of language components. To enable composition
as well as extensibility and reuse of code for components, the handwritten or generated
code needs to ensure several properties. Because this problem is not only relevant for a
language workbench, but in general for composable components, this section describes the
mill design pattern that has been created to solve the following problems:

1. The data structure needs to be extensible, which means subclasses can be injected
allowing the extension of the data structure, without any need for change of the
provided functionality of a component.

2. Component functionality must still be usable in a compositional setting, even if it
creates new objects, e.g., when manipulating the AST or the symbol table.

3. Black-box reuse of component functionality must be the standard case. That means
that component functionality normally has not to be adapted for the extended, com-
posed case, neither does it have to be recompiled, but can be reused as is.

4. Simple access to relevant functionality.

These requirements, and especially 2, are tricky because they prevent any component func-
tionality to directly use a static creation method of an object, i.e., a constructor, because in
a composed setting, an appropriate subclass has to be instantiated instead of the statically
known class. The appropriate solution is to use a builder (respectively a factory) object.
However, the builder also needs to be created and because of the compositionality require-
ment, not only the data objects but also the builders must be extensible and replaceable
through subclasses. As a consequence, the builders must also not be created through a
static constructor call. We need a factory for the builders, which we call mill.

In the following, we explain the mill pattern and mill composition on the example of the
language mills that MontiCore uses. Figure 11.12 shows the mill of a composed language
G2 and the mill of one of its components G1, where we assume nonterminal Foo is de�ned
in G1 and adapted in G2 and Bar is added in G2.

233

11. Design Patterns Used and Invented for MontiCore
Prof. Dr. B. Rumpe

Lehrstuhl für

Software Engineering

RWTH Aachen

Page 7

Mill Pattern

G1Mill

+ init()

+ G1Parser parser()

+ G1Traverser traverser()

+ ASTFooBuilder fooBuilder()

G2Mill

+ G2Parser parser()

+ G2Traverser traverser()

+ ASTFooBuilder fooBuilder()

+ ASTBarBuilder barBuilder()

CD

Mill provides a set of
statically available
methods e.g. to create
builder, traverser, parser

Each component mill is a facade to the
real composed mill: methods provide
same functionality

Figure 11.12: Publicly available interfaces of the mill pattern for object creation

Mill provides functionality. In the example, the mill is used as a source to create builders
as described in the above Section 11.3.3, e.g., for ASTFoo, which in turn then creates the
real ASTFoo objects. The mill also creates builders for symbol and scope classes.

And the mill also creates functional objects from a component that may change behavior
when composed. In MontiCore, these are, e.g., the parser, traversers, and builders of
a language. In MontiCore, the mill of a language component is therefore the general
access point for the infrastructure generated for the language component as well as all
subcomponents.

Mill as static access point. The mill pattern combines the generally available static
access to functionality while retaining their adaptivity, because it is based on the static
delegator pattern described in Section 11.1.

Mill allows overriding of the static functionality. The static delegator pattern internally
delegates from the static method to a protected instance method that actually executes
the desired creation function. In our example, G1Mill.parser() actually delegates to
method _parser() of the G1Mill object. This instance is protected and managed by
the mill itself. So from the outside, developers do not have to cope with this instance at
all. However, if desired, developers may inject their own version using the initMe(.) as
described below.

Mills in a Composed Setting. The mill pattern is designed in such a way that it is
particularly suitable for composition of components. For this purpose, it uses the facility of
the static delegator pattern to inject mill objects of mill subclasses to override functionality
behind the statically available functions.

That means in the example that all static mill functions of G1 are still available and
can be used. This is particularly useful for functionality that is programmed against
a component, like G1. In MontiCore, this is used, e.g., for AST nodes like ASTFoo
in Figure 11.13 that is de�ned in language G1 and overriden in language G2. Thus,
G1Mill.fooBuilder() actually instantiates a builder for class G2.ASTFoo. The parser
retrieved by G1Mill.parser() now delivers a G2Parser object. As discussed in Sec-
tion 7.9, these extension mechanisms, however, only work safely in MontiCore, if the com-
posed language G2 is a conservative extension of component language G1.

234

11.5. Mill Pattern to Assist Composition

For example, G1Mill.parser() and G2Mill.parser() deliver the same resulting
object because all the static methods in the various *Mill classes are only facades to the
same composed mill behavior.

Initialization of the Mills in a Composed Setting. To ensure the appropriate mill to be
in operation, it is in a composed setting necessary to instantiate the composition mill exactly
once. For this, the composed mill o�ers an init() method and none of the component
mills need to be instantiated in addition. The init() method initializes the internal
instances of the mill and all its component mills.

This is a strong form of initialization because it really con�gures all mills appropriately
to produce only objects that belong to the composed language even if accessed through a
mill facade of a component. Please note that in MontiCore, init() will always override
all initializations of all components. So really, only one initialization is useful at the very
beginning of the program. In another realization of such a pattern, init() could recognize
that there was already an initialization and behave appropriately.

Mills in a Composed Setting. Because composition may involve multiple components,
the mill mechanism cannot be realized by using inheritance but needs the typical appli-
cation of the delegation pattern to establish a kind of multiple inheritance from several
components.

Prof. Dr. B. Rumpe

Lehrstuhl für

Software Engineering

RWTH Aachen

Page 8

Mill Pattern2

G1Mill

+ init()

+ initMe(G1Mill me)

+ G1Parser parser()

G1Parser _parser()

+ G1Traverser traverser()

G1Traverser _traverser()

+ ASTFooBuilder fooBuilder()

ASTFooBuilder _fooBuilder()

CDG2Mill

+ init()

+ G2Parser parser()

G2Parser _parser()

+ G2Traverser traverser()

G2Traverser _traverser()

+ ASTFooBuilder fooBuilder()

ASTFooBuilder _fooBuilder()

+ ASTBarBuilder barBuilder()

ASTBarBuilder _barBuilder()

2. calls

delegation

G1MillForG2

#G1Parser _parser()

#G1Traverser _traverser()

ASTFooBuilder _fooBuilder()

delegation

identical G1 specific methods are overridden
subclass object is injected to G1Mill
when calling G2Mill.init()
providing identical functionality

1. instantiates

Figure 11.13: Internal Structure of the Mill Pattern

A composed mill does include all functions of its component mills. That means the com-
posed mill (object) is the same behind all the component mills (objects). Internally the
composed mill object is still instantiated as a singleton and all component mills are re-
placed by delegating objects. The MontiCore generator, however, slightly optimizes this
by expanding the function content directly, which means that G1MillForG2 and G2Mill
share a number of identical method implementations as shown in Figure 11.13.

235

11. Design Patterns Used and Invented for MontiCore

11.6 Multiple Interface Composition PatternProf. Dr. B. Rumpe

Lehrstuhl für

Software Engineering

RWTH Aachen

Page 9

Interface Pattern

«interface»

IAScope

AScope

«interface»

ICScope

«interface»

IBScope

CScope BScope

methods for
A, B and C

CD

Figure 11.14: Interface Pattern for language composition

The Multiple Interface Composition Pattern addresses the absence of multiple inheritance
for Java classes. While Java has good reasons to not provide multiple inheritance on
classes, this sometimes enforces that a multiple inheritance mechanism has to be realized
on interfaces to allow to reuse some functionality, while at the same time overriding it in
subclasses (i.e., subinterfaces).

The MontiCore generator uses this design pattern on several occasions, which is system-
atically applicable, because usually all these classes and interfaces are generated. This
design pattern is especially necessary to allow to inject handwritten code, for example,
by the TOP mechanism as described in Section 14.3, because it allows to modify some
functionality of a generated class and still inherit this modi�cation to subclasses, i.e., into
composed languages.

An example using this pattern was shown in Chapter 9. Scope classes are generated for
each language. Since languages can be composed of many sublanguages, this means that
the implementation of the scopes or the resolving has to be composed as well.

The idea of this pattern is that the implementation is carried out as much as possible
within the interfaces by default methods. If attributes are needed, they are mapped to
abstract getter and setter methods, which are then realized in concrete subclasses together
with the actual attribute. As shown in Figure 11.14, for each component A, B, and C, an
individual interface is created. The multiple inheritance is realized by the inheritance of
the interfaces. In addition, there is a class for each language that implements the interface
of the language.

This pattern ensures that the potentially overriding implementations of the compositions
(subinterfaces) are reused. As said, this is compatible with the TOP mechanism, when
adaptations via TOP mechanism are only made to the interfaces. If this is respected, these
adaptations are also passed on to composed languages.

236

Chapter 12

FreeMarker for Code Generation

co-authored with Robert Eikermann

The generator engine in the backend of MontiCore produces textual �les from internal
representations of the abstract syntax. MontiCore uses the freely available generator engine
FreeMarker [Fre21], which can easily be customized using templates. This feature allows
to write pieces of code with holes in it, which will be �lled upon generation. MontiCore
currently uses FreeMarker's version 2.3.281. FreeMarker's version history is available online
on the FreemMarker homepage2.

This chapter explains some essentials about the FreeMarker template language, which are
especially helpful for using FreeMarker when integrated in MontiCore. FreeMarker has
much more functions described in this tutorial [Fre21].

The various APIs that MontiCore provides for use within FreeMarker are described in the
next Chapter 13 including AST access, template calls, or adaptation of templates.

12.1 The FreeMarker Template Languages

FreeMarker stores its templates as �les with extension "ftl". Templates describe the
general structure of the target to be generated in combination with an expression and a
control language that are evaluated when the templates are being processed.

FreeMarker was chosen, because it is comfortable to use, �exible, and easily integrable
into larger projects. This section concentrates on a number of basic mechanisms that
FreeMarker provides, independent of MontiCore. Listing 12.1 shows a �rst example pro-
ducing the result shown in Listing 12.2, when applied with the ast variable pointing to
information about a Person class.

FTL1 <#-- we assume variable ast is pointing towards an AST object
2 containing class information (this is a FreeMarker comment)
3 -->

1Status Mar 2020
2http://freemarker.org/docs/app_versions.html

12. FreeMarker for Code Generation

4 package ${ast.packageName};
5

6 <#assign cname = ${ast.name}>
7 /* Definition of a standard ${cname}Factory (a Java comment) */
8 public class ${cname}Factory {
9

10 protected static ${cname}Factory f = null;
11

12 protected ${cname}Factory() {}
13

14 public static ${cname} create() {
15 if (f == null) { ... }
16 }
17 }

Listing 12.1: Principle of FreeMarker: Copy the template content, execute FreeMarker
commands, and inject their results into the output

Java �gen� PersonFactory1 package de.myOwnPackage;
2

3 /* Definition of a standard PersonFactory (a Java comment) */
4 public class PersonFactory {
5

6 protected static PersonFactory f = null;
7

8 protected PersonFactory() {}
9

10 public static Person create() {
11 if (f == null) { ... }
12 }
13 }

Listing 12.2: Result when applying the template

FreeMarker simply copies everything written in the target language, such as HTML-
commands, Java, etc. to the output. However, it is sensitive to

� expressions enclosed in ${ast.name},

� control directives, such as <#if ...>, and

� variable assignements with <#assign ...>, and

� comments like <#-- ... --#>

12.2 Expressions in FreeMarker

Expressions are almost ordinary Java expressions that can use accessible variables (see
Section 13.4.4 on variable management) and can contain method calls to underlying Java

238

12.2. Expressions in FreeMarker

Tip 12.3: Real Java is not fully equal to FreeMarker's Java

When Java is also the target for a generation process, it is important to di�eren-
tiate between the target and the expression Java language.

FreeMarker's Java expressions enclosed in ${...} are executed when generating
the target Java. Target language Java is not interpreted, but only copied to the
result. This is compiled only later and, if not erroneous, �nally executed in the
product.

To avoid confusion, the user is advised to use disjoint sets of variable names.

objects. When an expression is evaluated, the result is transformed into a string by the
method toString(). The resulting string is inserted in place of the expression.

A FreeMarker expression can contain Java method calls and also attribute access. For
example ${ast.name} at �rst tries to apply the get-method ${ast.getName()} to
the object ast. Only if this method does not exist, the FreeMarker engine attempts to
directly read the attribute name.

Please note that FreeMarker was designed as part of a web server and thus tries to be robust
by continuing to operate, even if the variable is not assigned to an object or the attribute
does not exist. Sometimes, this con�icts with the idea of quick failure of a generator,
which runs non-interactive and should not deliver a result in case a failure exists during
the generation process. Thus, FreeMarker is operated in a mode that detects errors and
assists the fail quick principle.

In addition to standard Java, FreeMarker provides its own data types:

� String: "Hello World"

� Number: 15 or -3.7

� Boolean: reserved words true and false

� Date: "10/25/1995"?date("MM/dd/yyyy")

� Hash: {"name":"mouse", "price":50}

� Sequence: ["foo", "bar", 12.3]

For complex data structures a sequence or a hash container with key-value pairs can be
used. Sequence elements as well as hash keys or values can be arbitrary objects and their
types may di�er. Sequence and Hash are thus untyped, but otherwise very similar to
Java's List and Map.

To manipulate data, FreeMarker provides a number of built-in functions. They extend the
Java syntax in form of exp?functionname. The function must exist for the data type that
exp evaluates to. Some examples for built-in functions are:

� "abcde"?substring(1,3) evaluates to "bc"

� "abcde"?cap_first evaluates to "Abcde"

239

12. FreeMarker for Code Generation

� "abcde"?contains("de") evaluates to true

� 2.6?round evaluates to 3

� ["c","a","b"]?first evaluates to "c"

� ["c","a","b"]?seq_index_of("a") evaluates to 1

� ["c","a","b"]?sort evaluates to ["a","b","c"]

The following convenient functions deal with the date of execution:

� ${.now} evaluates to, e.g., 02.04.2027 23:46:06

� ${.now?date} evaluates to, e.g., 02.04.2027

� ${.now?time} evaluates to, e.g., 23:46:06

Other functions allow to examine whether a variable is de�ned or provides a default if it
is not. Some examples are:

� varName?? is true when varName is de�ned,

� varName! evaluates to the empty string if varName is unde�ned,

� varName!"John" evaluates to default "John", if varName is unde�ned,

� (obj.varName)!"John" evaluates to the given default "John" if obj is unde-
�ned, varName attribute does not exist or does not have a value (null).

Tip 12.4: Use Additional FreeMarker Functions with Care

FreeMarker provides a lot of functions [Fre21]. The FreeMarker manual can be
found here:

http://freemarker.org/docs/

However, extensive data manipulation should be implemented in Java directly as
Java is much better suited for programming. A drawback, on the other hand, is that
recompilation of the entire tool is necessary once changes are applied to the Java
code. Modi�cations of the FreeMarker templates do not require a recompilation.

12.3 Control Directives in FreeMarker

FreeMarker directives allow to control the execution of a template similar to an ordinary
programming language. This includes the usual control constructs, such as case distinction,
loop, switch-statement and variable assignment. FreeMarker also allows to call other tem-
plates and the de�nition of custom functions. MontiCore, on the contrary, replaces these
options by customized versions (cf. Section 13.4.2) and suggests to de�ne new functions
only in Java.

240

12.3. Control Directives in FreeMarker

Directives are generally enclosed in tags of the form <#directive parameters> and
</#directive> or they just consist of a single tag. The following directives are prede-
�ned in FreeMarker:

� Variable declaration: <#assign name=value>

� Variable access: ${name}

An example for a conditional is given in Listing 12.5. The conditional shown in the code
snippet will be evaluated to 4 is smaller than 8. The conditionals are expressions
evaluating to true, while cases are expressions that evaluate to strings.

FTL1 <#assign i=4>
2 <#assign j=8>
3 <#if (i==j) >
4 ${i} and ${j} are equal
5 <#elseif (i<j) >
6 ${i} is smaller than ${j}
7 <#else>
8 ${i} is bigger than ${j}
9 </#if>

Listing 12.5: FreeMarker conditional

An example for a switch case is given in Listing 12.6. The template will evaluate to the
String Size is neither small nor big.

FTL1 <#assign size="medium">
2 <#switch size>
3 <#case "small">
4 Size is really small <#break>
5 <#case "big">
6 Size is really big <#break>
7 <#default>
8 Size is neither small nor big
9 </#switch>

Listing 12.6: FreeMarker switch statement

The loop directive can be used to iterate over a FreeMarker sequence or a Java list. The
de�nition of a loop directive is shown in Listing 12.7 where item is the loop variable. Inside
the <#list> directive, two special variables are automatically available. The variable
item_index holds the current index number of item in the sequence. The variable
item_has_next is true, if and only if item has a successor in the sequence.

FTL1 <#list sequence as item>
2 text-body with variables
3 item: value in current iteration of the loop
4 item_index: index number of the current item

241

12. FreeMarker for Code Generation

5 item_has_next: true if not at the end of the sequence
6 </#list>

Listing 12.7: FreeMarker loop

In Listing 12.8 this is applied to an object p of class Person which has a children
attribute of type List<Person>. Java lists are handled like FreeMarker sequences. Loops
can also be nested. Listing 12.9 shows an extended form with various extras.

FTL1 Children of ${p.firstName}:
2 <#list p.children as child>
3 ${child_index + 1}) ${child.name} born in ${child.age}
4 </#list>

Listing 12.8: Example for a FreeMarker loop

FTL1 <#list sequence-expression>
2 text-header executed once if we have items
3 <#items as item>
4 text-body repeated for each item
5 </#items>
6 text-footer executed once if we have items
7 <#else>
8 alternate text executed when sequence is empty
9 </#list>

Listing 12.9: Extended form of a FreeMarker loop

Besides these, FreeMarker provides more directives. For readers of the generated source
code, <#compress> ... </#compress> might be interesting to look up. This construct
produces texts with condensed white spaces. Unfortunately, starting white spaces are
completely omitted and thus the directive does not format produced code according to
Java's indentation guidelines.

12.4 FreeMarker Add Ons

FreeMarker unfortunately is completely untyped and heavily relying on re�ection, which
can lead to bad or sporadic forms of errors during runtime that are di�cult to identify and
heal. The availability of the robust generator framework, however, and that it easily runs
in batch tools were two arguments to integrate it into MontiCore. Freemarker's template
errors occur at development time and thus need not be handled by end users.

But we also have added some precautions e.g. using a signature statement, discussed
in Section 13.4.2 that adds some additional safety.

242

12.4. FreeMarker Add Ons

FTL1 ${signature("stimuli",
2 "className")}
3

4 public abstract class ${className} {
5

6 <#-- Add the list of stimuli as method calls -->
7 <#list stimuli as stimulusName>
8 void handle${stimulusName?cap_first}(${modelName} sc) {
9 ...
10 }
11 </#list>

Listing 12.10: signature asserts variables to be de�ned

Listing 12.10 shows a parameterized template that can be used to map state machines
to Java code. The template enforces in ll. 1 that it is called with two parameters (see
Section 13.4.2) that are stored in the two local variables stimuli and className. Please
note, that this only ensures that the variables do have a value, but not what kind of value
it is. For example the usage of the two variables in l. 4 respectively l. 8 further demand
that className is a String and stimuli is a list of Strings. More variables may exist,
for example the global variable modelName is used in the template body as well, but not
mentioned in the signature on purpose.

243

Chapter 13

Generator Engine using Flexible

Templates

The generator engine is used to produce textual �les from internal representations of the
abstract syntax and thus is the last step in a typical generation process. MontiCore uses the
freely available generator engine FreeMarker [Fre21] for its backend, because FreeMarker
provides a rich and �exibly adaptable infrastructure for templates and assists extensions
well. The FreeMarker language has already been described in Chapter 12. In addition to
this, this chapter explains:

� How to use the FreeMarker template engine in a MontiCore based tool.

� The API MontiCore provides for usage within FreeMarker templates, including AST
access, calls of other templates, or adaptation of the call structure between template.

� The hook point mechanism to �exibly adapt the generation process.

� How this adaptation �exibility can be used demonstrated by an illustrative example
at the end of this chapter.

13.1 Methodical Considerations

Template engines are a powerful and �exible mechanism and thus are suited for generation
of code or many other forms of possible output, such as documentation or webpages.

However, there are other possibilities to generate code. One could manually write the
print statements that produce the target artifacts while traversing the AST, e.g., assisted
by visitors. This is often su�cient when pretty printing the AST only. In this case, a
collection of templates executing the pretty print is not necessary.

However, it is typically not su�cient to pretty print the AST many times, but additional
outputs should be generated which are not available in the input. This is the case for
example when adding access methods for attributes or when generating whole new classes
such as builders or visitors.

In the following, we use the term conceptual distance in an informal way. The more con-
cepts of the source language are present in the target, the smaller is the amount of work
to map between the language. The more concepts of the source language are not available

13. Generator Engine using Flexible Templates

in the target, the more complex the mapping will become. It would be nice to have a mea-
surement that quanti�es such a conceptual distance between languages. The conceptual
distance between source AST and target language typically also increases necessities that
the recursive decent along the source AST tree structure must be interspersed increasingly
often. The conceptual distance between the available AST and the target language is to a
large extent responsible for the complexity of the templates and in particular for the com-
plexity of the template call structure. In most cases, the AST structure and the output
order �t relatively well (and e.g., 100% in pretty printing situations). In case di�erent �les
are generated but the AST structure is well-suited for the templates used, it is su�cient to
execute these di�erent template sets from the top level. However, in case the generation
process needs information from di�erent parts of the AST, additional infrastructure for
calculations based on the AST is helpful. Especially the symbol table typically is used for
navigation shortcuts from the usage position of a symbol to its de�nition or the symbol
itself carries extra information, such as how to access or modify the item represented by the
symbol. For example local variables are mapped to relative stack addresses in compilers.

If the conceptual distance, however, becomes too large, it is advisable to transform the
AST of the input language to an AST that is better suited for the output language (if not
directly the output language itself).

In case the output is Java, it is advisable to use a target AST that is directly Java or
conceptually similar to it such as class diagrams. A good balance between conceptual sim-
ilarity (i.e. only a small conceptual distance) and simplicity of the internal transformation
is desirable.

As an example: The MontiCore generator processes grammars (cf. Chapter 4). To produce
the output it maps the grammar to a class diagram of the language CD4Code [Rot17] inter-
nally. CD4Code provides classes, attributes, associations and method signatures. Missing
method bodies are implemented in templates and attached to the respective method signa-
tures using hook points (see Section 13.5). This allows to write method implementations
in a rather compact and understandable form within templates, yet ensures that method
signatures and attributes are only generated once, preventing potentially uncompilable
code.

Templates are untyped. On the one hand this o�ers a lot of �exibility, but on the other
hand it is a burden, because it raises the number of potential errors. Fortunately, when
generating into a solid compilable language, such as Java, the language compiler detects
quite a number of those errors. It would be much better, if the template engine itself would
detect errors early, but something like static typing of templates is still a research direction
in its infancy.

If the number of templates becomes larger and the interaction between templates becomes
more complex, we advise to explicitly describe the template, e.g., in its header. We argue
that each template has a template signature. This signature should contain:

� What is the result: The result can typically be described by a nonterminal of the
target language, potentially equipped with a cardinality. Possible characterisations
could be Type, ImportStatement* or Attribute?.

246

13.2. Generator API

� What is the input (arguments): Which variables are de�ned and which elements do
they carry. In MontiCore, the ast variable is mostly expected to point to a valid
AST node. Each template typically expects a certain type (i.e. nonterminal of the
input language) for the ast variable (which varies between the templates as the ast
pointer describes the recursive descent). More variables may be expected, either in
the local or in the global variable store (see Section 13.4.4).

� Templates may expect an array of additional template arguments that are passed to
the template when being called (see e.g. Sections 13.2, 13.4).

� Which explicit hook points are provided (see Section 13.5).

� Does the template open new �les and thus write its content to a new �le or does
it assume the target �le is already open. This usually concurs with the resulting
nonterminal of a template.

� Which templates are used by the template. This is important because (1) all used
templates need to be shipped together with the template and (2) each template call
creates further (implicitly de�ned) hook points that can be used for adaptation (see
Section 13.5).

In addition, we suggest to separate the list of used templates into groups: (1) Templates
that produce output and assume that the target �le is already open and add content to
it, and (2) templates that control the output �les that should be created. The latter
do not directly produce output, but concentrate on controlling the AST traversal and
call other templates that create the output, using the write methods of the template
controller as explained later in this chapter. Furthermore, special templates can be used
for con�guration, i.e., assigning values to variables, but that can also be managed through
the Groovy interface (see Section 16.5) or of course directly within Java.

As an alternative, it is always possible to organize the control of what to be written within
the Java part itself and use templates only to describe e.g. the structure of a target class or
the body of speci�c methods. Using Java for the control is typically more robust, but less
�exible, because changes of what is to be generated and which additional hooks are to be
bound must then be organized within Java and a recompilation of the tool is needed. To
reduce this challenge, we have also added Groovy as con�guration language in Section 16.5.

13.2 Generator API

To start the generation process in MontiCore and process the templates, we use the
GeneratorEngine class.

There are several parameters that can be con�gured to adapt the generation process.
Because quite a number of these parameters are rather stable and reusable in the gen-
eration process, we use the class GeneratorSetup as a con�guration class for the
GeneratorEngine. The setup is passed to the generator engine as a parameter of the
constructor. GeneratorSetup contains various con�gurable attributes, such as the form

247

13. Generator Engine using Flexible Templates

of comments, the �le I/O object, the paths to templates or handcoded �les, the output
directory, and more. See Section 13.3 for a detailed description.

The GeneratorEngine o�ers several generate (and generateNoA) methods with
varying signatures. All methods called generateNoA do not have an instance of an
ASTNode as a parameter, where as generate methods have one. In total the following
parameters are provided to run a generation process:

String templateName provides the quali�ed template name that shall be executed. It
is assumed that the template produces a complete artifact as output. The template
name is searched in the list of provided template paths.

Path filePath is the artifact name that is to be created upon executing the template.
It is recommended that the �le path is relative to the con�gured output directory
speci�ed in the GeneratorSetup, but filePath could also be an absolute path.

Writer writer is an alternative to the filePath. Here, the �le or a string writer is
already opened.

ASTNode node is the starting point, i.e., the AST that the templates act on.

Object... templateArguments allow to provide additional arguments to the initial
template, which can be accessed after the signature method is executed in the
template. The number and form of arguments highly depends on the individual
template and should be explained in the template header itself (see Section 13.1).

The other parameters are usually provided when calling a generate method. Listing 13.1
shows the signature of six generate methods, which can be used as the starting point for
the generation. The di�erent names are necessary to distinguish if an ASTNode is passed
as explicit value for the variable ast.

Java GeneratorEngine1 class GeneratorEngine {
2

3 public GeneratorEngine(GeneratorSetup gs)
4

5 void generate(String templateName,
6 Path filePath,
7 ASTNode node,
8 Object... templateArguments);
9

10 void generateNoA(String templateName,
11 Path filePath,
12 Object... templateArguments);
13

14 void generate(String templateName,
15 Writer writer,
16 ASTNode node,
17 Object... templateArguments);
18

19 void generateNoA(String templateName,
20 Writer writer,

248

13.2. Generator API

21 Object... templateArguments);
22

23 StringBuilder generate(String templateName,
24 ASTNode node,
25 Object... templateArguments);
26

27 StringBuilder generateNoA(String templateName,
28 Object... templateArguments);
29 }

Listing 13.1: Signature of a generate and generateNoA method

The �rst generatemethod (ll. 5f) opens a �le and executes the given template on the AST
node. It incorporates two �exibility mechanisms: (1) The template replacement discussed
in Section 13.5 may interfere with the template execution and (2) the TOP mechanism
explained in Section 5.10 may adapt the output �lename as well as potential content (like
the class name).

The additional arguments templateArguments can be empty. MontiCore passes those
arguments to the template and with the special operator signature they become argu-
ments available in the called template. See Section 13.4 for details. The second, fourth and
sixth generateNoA methods (ll. 10f, 19f, 27f) omit the AST node argument, assuming
that the template called does not rely on it. The generate methods (ll. 14-19) do not
open a �le, but use the writer argument to write to an already open �le. The last two
methods (ll. 23-27) also do not open a �le, but return the produced text in form of a
StringBuilder. These methods can also be used, when the called template is a con-
trol template (instead of an output template), which will open a �le itself and the control
template does not produce any useful output.

Please note that all generate methods have a template name as one of its arguments,
which is subject for a possible replacement and extension as described in Section 13.5.

In Listing 13.2, we demonstrate how the GeneratorEngine can be created and used.
The GeneratorSetup acts as the storage of the con�guration of the generator engine.
In the case shown, the output directory for the generated �les is de�ned in l. 2. Lines 3-5
de�ne the start and end marker to be used for generated comments and switch the tracing
of templates on. If tracing is on, at the beginning of the code produced by a template a
comment is added that states the templates name. For details see Section 13.3.

Afterwards, an instance of the GeneratorEngine is created (l. 7). With this instance
the generate method is called for two templates (ll. 9) to generate two �les.

Java1 GeneratorSetup s = new GeneratorSetup();
2 s.setOutputDirectory(new File("gen"));
3 s.setCommentStart("/*-- ");
4 s.setCommentEnd(" --*/");
5 s.setTracing(true);
6

7 GeneratorEngine ge = new GeneratorEngine(s);
8

249

13. Generator Engine using Flexible Templates

9 ge.generate("tpl/DemoStateMachine1.ftl", Paths.get("demo1"), ast);
10 ge.generate("tpl/StateMachine.ftl", Paths.get("pingPong.aut"),ast);

Listing 13.2: How the GeneratorEngine can be used

13.3 Con�guring the Generation Process

In Listing 13.2 we have already seen that MontiCore provides some options to con�gure the
generation process. This con�guration is typically de�ned within Java or could be de�ned
in a Groovy script (see Section 16.5). The special con�guration class GeneratorSetup
contains all relevant information and is best explained by showing its attributes.

Listing 13.3 shows the attributes that are stored in the generator setup to con�gure po-
tential output.

Java GeneratorSetup1 class GeneratorSetup {
2 File outputDirectory; // def: "out"
3 String defaultFileExtension; // def: "java"
4 IterablePath handcodedPath; // IterablePath.empty()
5 List<File> additionalTemplatePaths; // def: empty
6 boolean tracing; // def: true
7 String commentStart; // def: "/*"
8 String commentEnd; // def: "*/"
9 Optional<String> modelName; // def: Optional.empty()
10 GlobalExtensionManagement glex; // defaults
11 FreeMarkerTemplateEngine freeMarkerTemplateEngine; // exist
12

13 // and a configuration method
14 TemplateController getNewTemplateController(String templateName);
15 }

Listing 13.3: Con�guration options of the GeneratorSetup class

The GeneratorSetup allows to set each con�guration attribute independently. If the
attribute is not set, defaults apply.

Therefore, each con�guration attribute has an accessor and mutator having the same name
as the attribute but with a get and set pre�x.

� outputDirectory: The output directory speci�es where the generated �les are
placed. If none is speci�ed, the directory out is used by default in the current
path. (Also compare this to the -o argument when calling the CLI discussed in
Section 16.1.2).

� defaultFileExtension: Files that shall have a default extension do get this
string as su�x of their �lename. In case no explicit �le extension is given as an
argument the default is used during execution of a template that creates a �le using
the write method. The default is java.

250

13.3. Con�guring the Generation Process

� handcodedPath: This is a list of directories, where handwritten classes can be
found. As explained in Chapter 14, MontiCore allows handwritten replacements for
the generated Java classes. It detects handwritten classes in any of the speci�ed
paths during code generation and adapts the generated sources. By default this path
is empty and has to be manually con�gured (cf. CLI argument -handcodedPath;
see also Chapter 14).

� additionalTemplatePaths: This is a list of paths where additional templates
can be found that will be used for code generation. These templates can be injected
into the generation process by either replacing or adding a template using the glex
mechanism. These additional templates are considered during code generation if
the path containing the templates is listed in the additionalTemplatePaths
variable. These additional paths need to be added manually, because by default an
empty path is con�gured (cf. CLI argument -templatePath).

� tracing: When tracing is enabled, the generated �les will contain information on
which template contributed which piece of the generated artifact. This information
will be added in form of comments before the template content is executed. It is
especially helpful when debugging a code generator, but generally leads to unreadable
artifacts and contributes to performance as well as storage overhead. By default,
tracing is enabled.

� commentStart: If, e.g., tracing is enabled, this string describes the begin of a
comment in the target language. Because the MontiCore code generator may target
di�erent target languages, the comments to be generated have to be de�ned. Using
the mutator for the commentStart the start symbol(s) for the comment can be
de�ned. By default the comment start is "/*". Please note that the comment start
can be for a single line comment, but then the comment end should contain a newline.

� commentEnd: Besides the start of the comment, the end of a comment has to be
de�ned. This variable stores the symbol(s) for the comment end, which is by default
"*/".

� modelName: The source model name is printed in a comment in the generated code
if tracing is turned on. By default the model name is absent and then the according
tracing info is not printed at all. The model name is optional and has no default.

� glex: The GlobalExtensionMangement manages hook points, global variables,
and template replacements. In particular, it allows to create and bind hook points
as well as global variables. For templates it is allowed to replace existing ones or add
a template before or after an existing template. See Section 13.4.4. The default for
an unset glex is an instance of class GlobalExtensionManagement.

Reuse of the glex object allows even to reuse global variables that may be de�ned
or changed in one generate call, and accessed or changed in a subsequent call. If
not used with care this may unfortunately also be a source of multiple de�nition of
global variables which leads to an error.

� freeMarkerTemplateEngine is the instance of the FreeMarker template engine
that will be used. The default for an unset con�guration attribute is an instance of
class FreeMarkerTemplateEngine.

251

13. Generator Engine using Flexible Templates

In addition, the generator setup provides the method getNewTemplateController,
which iteratively creates new TemplateController objects � one for each template
execution. This method is meant for overriding, when a di�erent TemplateController
class should be used.

13.4 MontiCore APIs for Templates

Adapting existing templates or writing new templates requires an understanding of how to
access the AST, the symbol tables and other helpful functionalities within the templates.
The available Java data structures are de�ned in Chapter 5, but custom extensions are
possible. Additional Java APIs of the tooling are available allowing the template developers
to access auxiliary functions of various forms within the templates.

MontiCore provides an elaborated API to support generator developers. There are stan-
dard objects and methods that are directly available within the templates through the
variables tc, glex, and ast, respectively through the statically available methods in
class Log:

� TemplateController tc provides typical template operations and template-
speci�c information (see Section 13.4.2).

� Log provides static methods for logging, warning and error methods (see Sec-
tion 13.4.3).

� GlobalExtensionManagement glex manages global variables and the handling
of extensions and hook points (see Section 13.5).

� Variable ast allows access to the processed model. It points to the currently pro-
cessed node of the abstract syntax (i.e., the internal representation of the model
discussed in Chapter 5). The type of variable ast changes, and the available meth-
ods are therefore dependent on the currently processed node.

The objects (respectively class Log) provide various methods that will be discussed
in the following sections. Throughout all templates glex always refers to the same
GlobalExtensionManagement object. In contrast, tc holds information speci�c to
each template and is thus instantiated on each template invocation, but always with an
object of type TemplateController. Finally, the templates can process di�erent parts
of the model, and hence, ast contains the corresponding AST node that changes while
processing di�erent parts of the AST usually but not necessarily for each template.

13.4.1 Shortcuts: Aliases in Templates

For the sake of convenience, the MontiCore template engine provides aliases for methods
that are often invoked within a template. Thus, the objects tc and glex can often be
omitted when accessing their functions from templates.

Table 13.4 shows the signatures of these aliases. As a rule, we favor the alias ver-
sion of a method instead of its long version since it improves the readability of the

252

13.4. MontiCore APIs for Templates

templates. So, for example, we write ${include("my.Template")} instead of
${tc.include("my.Template")}.

Table 13.4: Aliases provided for templates

Alias Expanded Command

Include and read signature commands, see Section 13.4.2

include(template) tc.include(template)
include2(tpl, ast) tc.include(tpl,ast)
includeArgs(tpl, par...) tc.includeArgs(tpl, par...)
signature(par...) tc.signature(par...)

Warnings, errors, infos ..., see Section 13.4.3

error(message) Log.error(message)
warn(message) Log.warn(message)
info(message, logger) Log.info(message, logger)
debug(message, logger) Log.debug(message, logger)
trace(message, logger) Log.trace(message, logger)

Global variable management, see Section 13.4.4

defineGlobalVar(name, value) glex.defineGlobalVar(name, value)
changeGlobalVar(name, value) glex.changeGlobalVar(name, value)
addToGlobalVar(name, value) glex.addToGlobalVar(name, value)
getGlobalVar(name) glex.getGlobalVar(name)
requiredGlobalVar(name) glex.requiredGlobalVar(name)
requiredGlobalVars(name...) glex.requiredGlobalVars(name...)

Hook point management, see Section 13.5

bindHookPoint(name, hp) glex.bindHookPoint(name, hp)
defineHookPoint(name) glex.defineHookPoint(tc, name)
defineHookPoint(name, ast) glex.defineHookPoint(tc,name,ast)
defineHookPointWithDefault(glex.defineHookPointWithDefault(
name, default) tc, name, default)
defineHookPointWithDefault3(glex.defineHookPointWithDefault(
name, ast, default) tc, name, ast, default)
existsHookPoint(name) glex.existsHookPoint(name)

Please note that class Log needs to be quali�ed with the package if explicitly accessed,
that means de.se_rwth.commons.logging.Log needs to be used. For this case, the
shortcuts are helpful. Because FreeMarker is untyped, unfortunately overloading of meth-
ods is not possible. Therefore, sometimes numbers are added to methods, e.g., include2
with two parameters.

The list of aliases is stored in the template

de.monticore.generating.templateengine.freemarker.Aliases

It is called by default at the beginning of each generation process and can be overridden

253

13. Generator Engine using Flexible Templates

by using the replaceTemplate mechanism when desired, e.g., to add more aliases.

13.4.2 The TemplateController

The TemplateController provides methods for typical template operations such as
the inclusion of sub-templates or the instantiation of further auxiliary classes as helpers.

The TemplateController additionally provides access to template-speci�c information,
for example, the name and the package of the current template. Consequently, every
template execution holds a new TemplateController object, which can be accessed
through variable tc within the template.

It is possible to adapt the template controller by de�ning a subclass of
TemplateController. For a repeated instantiation of this class the factory method
getNewTemplateController needs to be adapted in a subclass of GeneratorSetup.

Including Templates without Arguments

Tip 13.5: Template Names Pointing to Files

In many methods, Strings are used as names for templates. Those template names
are quali�ed names that point to the �le containing the template. They could be
fully quali�ed, but normally only de�ne the package they can be found in. In the
latter case, they are looked for in the template path.

The quali�er path can be de�ned like a Java style package name, like
"tpl4.F.ftl", and also without default extension, like "tpl4.F".

It is also possible to use a pathname of the underlying operating system, such as
"tpl/F.ftl" in Unix. However, "tpl/F" does not work.

To include sub-templates into a template, the includemethods are used. Their signatures
are shown in ll. 3-12 of Listing 13.6. By calling tc.include(templateName, ast),
the template templateName is processed on the AST node ast. The result is included
into the current output, i.e., the corresponding position of the template, where the call was
issued. If the included template works on the same ast object (or the ast is just not of
interest), we can use the method in ll. 11-12 as a shortcut. If the methods are called with
lists of templates or lists of AST nodes, then a method applies all templates of the �rst
list on all nodes of the second list. This mainly acts as a shortcut for iterative application.
If both arguments are lists, this is equivalent to having two nested loops where the outer
loop iterates over the templates and the inner loop over the AST nodes.

Java TemplateController1 class TemplateController {
2

3 StringBuilder include(String templateName,
4 ASTNode ast);
5 StringBuilder include(List<String> templateNames,

254

13.4. MontiCore APIs for Templates

6 ASTNode ast);
7 StringBuilder include(String templateName,
8 List<ASTNode> astlist);
9 StringBuilder include(List<String> templateNames,
10 List<ASTNode> astlist);
11 StringBuilder include(List<String> templateNames);
12 StringBuilder include(String templateName);
13 }

Listing 13.6: Include methods provided by the TemplateController tc

Please note that the include commands are subject for substitution by the hook point
mechanism as described in Section 13.5.

The example in 13.7 shows how to use the includemethods within FreeMarker templates.
The include methods are used from within templates by generator developers, but these
methods could also be called from within Java source code.

FTL1 ${include("my.Template")}
2 ${include(["a.Template1","a.Template2"])}
3 ${include2("my.Template",ast.getOneChild())}
4 ${include2(["a.Template1","a.Template2"],ast.getSomeChildren())}

Listing 13.7: Examples for including sub-templates within a template

In general, these methods replace and improve the template inclusion mechanism that
FreeMarker provides by a better management of variables and template hook points. Thus,
we ignore FreeMarker's own template inclusion and use that of MontiCore.

Including Templates with Explicit Arguments

A second group of include methods uses a slightly di�erent approach for variable passing.
The includeArgs methods allow us to call a new template and pass a list of arguments
as additional parameters. Listing 13.8 shows their signatures.

Java TemplateController1 class TemplateController {
2 StringBuilder includeArgs(String templateName,
3 ASTNode node,
4 List<Object> templateArguments)
5 StringBuilder includeArgs(String templateName,
6 List<Object> templateArguments)
7

8 StringBuilder includeArgs(String templateName,
9 String... templateArgument)
10

11 void signature(List<String> parameterNames)
12 void signature(String... parameterName)
13 }

Listing 13.8: The includeArg methods provided by the TemplateController tc

255

13. Generator Engine using Flexible Templates

The includeArgs methods accept one template to be executed, optionally an explicit
ast node and a list respectively array of (untyped) arguments. Within the called template
only the variables glex, tc and ast are available. The ast variable contains the currently
processed AST object of the calling template if it is not explicitly given as argument.

The list of further arguments is only implicitly passed to the called template. To make this
implicit list explicit and accessible through variable names, there exists a method called
signature provided by the template controller. This method can be used inside the
called template and allows a template designer to describe what the additional parameters
of a template are and initializes these parameters. This is a workaround to deal with the
problem that FreeMarker itself does not allow to declare parameters and pass arguments.
The signature method should be one of the �rst commands of a template: It de�nes
a part of the signature of the template, because it lists the names of the variables (pa-
rameters) where the arguments shall be stored in. The parameter list must have as many
entries as the arguments. This is checked at runtime and leads to an error if the number
of arguments is wrong. Unfortunately, no type checking happens which may lead to errors
when using these variables within the template.

The signature method can only be called once per template and stores variables locally
only. The signature can be omitted, if no argument is passed. An empty list is also
possible to clarify that no extra arguments are expected.

Please note that the TemplateHookPoint class discussed in Section 13.5 also allows to
add parameters. These parameters are passed to the template with the same mechanism:
The �rst list of parameters comes from the Java method includeArgs and the second
part of the list comes from the TemplateHookPoint constructor.

The example in Listing 13.9 shows a template call and the signature command that would
bind the variables ast to the caller's child, the string prefix to the variable "text1",
and the string postfix to the "text2". In the second part, the content of the variable
ast is bound to the value 32+10 and i becomes 42. Unfortunately, the variable names
need to be enclosed in quotation marks.

FTL1 // Call of a template
2 ${tc.includeArgs("my.Template",ast.getAChild(),"text1","text2")}
3

4 // Line 1 of the called "my.Template"
5 ${tc.signature("prefix", "postfix")}
6 // binds variable prefix to String "text1", ...
7

8 // Call of another template
9 ${tc.includeArgs("my.Template2", 32+10)}
10

11 // Line 1 of the called "my.Template2"
12 ${tc.signature("i")}
13 // binds variable i to value 42

Listing 13.9: Examples for using signature

256

13.4. MontiCore APIs for Templates

This form of template calls introduces more �exibility and also a better form of reuse, as it
allows to avoid passing information along globally de�ned variables. It mimics the spirit of
ordinary method calls between Java methods, although it does not provide the advantages
of static typing.

Please note that if a template is replaced or decorated using the hook point mechanism,
then the same form of argument passing occurs, which means that the replacing or decorat-
ing template has to have the same signature as the replaced template. The only exception
may be that the TemplateHookPoint adds additional arguments, which enlarges the
parameter list in the replacing template accordingly.

Tip 13.10: Template Signature: Parameters

The signature method can be used within templates to describe which pa-
rameters need to be set, when executing the template with the includeArgs or
writeArgs methods.

It checks correctness of the number of arguments of the call and assigns the
arguments to the listed parameters.

This is not a full type check, but at least provides some safety and comfort,
because it mimics traditional parameterized method calls.

Writing Results of Template Executions to Files

The write methods, e.g., Listing 13.11 (ll. 2), are used to create complete artifacts. These
methods process the template templateName and stores the result in the newly created
�le fileName.extension. fileExtension can be null or the empty string "".
If the fileExtension does not start with ".", but is not empty, a dot is inserted.
So ".java" and "java" have the same e�ect. Unless not absolute, the fileName
(respectively filePath) is relative to the con�gured target directory.

The template �lename may be quali�ed (using "."). In case it is not quali�ed, the quali�er
is taken from the current package (same as the calling template).

Other versions of write methods use the default extension (ll. 5) or an already de�ned
Path object (ll. 8).

The �le is opened, content is written, and the �le is closed. For this purpose, the write
methods use the class FileReaderWriter. This class is implemented as static delega-
tor, which means it can be adapted, and handles a number of additional tasks, such as
checking, which handcoded �les are existing, and recording for the reporting described
in Section 15.5. It is recommended to use the write methods, respectively directly the
FileReaderWriter in all occasions to ensure proper recording of activities - and e�-
ciency when using builds incrementally (like in make or gradle).

Java TemplateController1 class TemplateController {
2 void write(String templateName,

257

13. Generator Engine using Flexible Templates

3 String qualifiedFilename, String fileExtension,
4 ASTNode ast);
5 void write(String templateName,
6 String qualifiedFileName,
7 ASTNode ast);
8 void write(String templateName,
9 Path filePath,
10 ASTNode ast);
11

12 void writeArgs(String templateName,
13 String qualifiedFileName, String fileExtension,
14 ASTNode ast,
15 List<Object> templateArguments);
16 void writeArgs(String templateName,
17 Path filePath,
18 ASTNode ast,
19 List<Object> templateArguments);
20 }

Listing 13.11: Write methods provided by the TemplateController tc

The writeArgs versions (ll. 12-19) also allow developers to pass additional arguments to
the template. In this respect they behave like the includeArgs methods.

The main di�erence between the include methods described above and the write
methods is that the latter open �les and write contents to them. The write methods
are therefore the entry points for code generation and usually called from Java. The
GeneratorEngine uses these methods.

In principle, it is possible to write to an artifact, while one artifact is already being written
to, i.e. write into a new �le can be called within templates that contribute to other �les.
However, nested writing processes may be di�cult to understand.

Tip 13.12: Controlling Templates

It is possible to use templates for controlling the output. Such a controlling
template contains variable de�nitions, some control decisions and write commands,
but does not itself produce text.

The advantage of a controlling template is that it can be adapted without touch-
ing Java �les and thus without recompilation of the tool. Unfortunately, Java is
better suited for complex control algorithms. Other possibilities would be a de-
tailed Groovy script for output control or the use of hook points for extension or
replacement.

For manageability, controlling templates and producing templates should be
strictly separated and clearly marked.

258

13.4. MontiCore APIs for Templates

More Methods in the TemplateController

The TemplateController object tc provides some more methods. An overview is
given in Listing 13.13.

Java TemplateController1 class TemplateController {
2

3 String getTemplatename();
4

5 Object instantiate(String className);
6

7 Object instantiate(String className, List<Object> params);
8

9 boolean existsHandwrittenFile(String fileName);
10

11 boolean existsHandwrittenFile(String fileName, String extension);
12 }

Listing 13.13: Further methods provided by the TemplateController tc

� getTemplatename (l. 3) allows to retrieve the name of the template.

� instantiate (ll. 5-7) allows to instantiate a Java class from its name. If the name
is not quali�ed, the same package as the calling template is used. Quali�cation is
dot-separated. The version in line 5 assumes a constructor without arguments, while
the version in line 7 allows to set the arguments of a constructor.

The instantiate methods allow to create additional objects that can for example
be used as helpers. If stored in a local or global variable, they extend the API by
providing additional methods to access Java AST, symbols, or other structures to
be used in templates. Please note that this is a re�ective mechanism and should
be handled with care, because it has no compile-time time check, but can fail at
runtime.

� existsHandwrittenFile (l. 9-11) check whether a �le exists in the handcoded
path. This allows a template to react on whether a handcoded class exists (and
generate something di�erent). If the extension is omitted as second argument,
the default extension is taken.

13.4.3 Logging within a Template

Error management and logging are always important components for a helpful tooling. The
details of logging are de�ned in Section 15.3. This section especially introduces statically
available methods in class Log that can also be used from templates.

As a shortcut a subset of the logging API (described in Section 15.3) is directly available
through aliasing within templates. Hence, the example shown in Listing 13.14 is intended
for template developers who use logging information in templates.

259

13. Generator Engine using Flexible Templates

FTL1 // error and warning go to stdout
2 ${error("0x12345 A critical error occured.")}
3 ${warn("AST value is empty, skipping template ...")}
4

5 // infos, debug and trace have additional component names
6 ${info("Starting template.", "component-name")}
7 ${debug("Value of node is " + ast.getValue(), "component-name")}
8 ${trace("Generating line 5.", "component-name")}

Listing 13.14: Logging examples from within templates

As shown in Listing 13.14, this API allows to issue log messages with �ve di�erent levels
of severity in descending order. While the higher severity levels error and warn are used
to signal critical events or failures, the lower level severities are used for information. The
distinction between these di�erent levels allows to control the verbosity of the actual logging
output. Log messages can be �ltered according to their severity level and per component.
This is what the second parameter of the log API for info, debug, and trace is for.
Issuing an error leads to immediate termination of the generation process, as we strictly
follow the fail quick policy when the generation cannot be completed successfully.

13.4.4 Variables in the Templates with GlobalExtensionManagement

Two kinds of variables are available in the templates: local and global variables. Local
variables are only visible in the scope of the template that de�nes them, whereas global
variables are stored globally, hence, can be de�ned and accessed in any template as well
as from the underlying Java.

Local variables can be de�ned and assigned using the built-in assign directive that
FreeMarker o�ers (see Section 12.1). Because FreeMarker does not o�er a global variable
management, MontiCore provides the glex (GlobalExtensionManagement) object
that allows to de�ne and manipulate variables that are visible in template executions.

Global variables should be used rarely, because they are shared and thus can have unex-
pected side e�ects. To reduce unwanted side e�ects the GlobalExtensionManagement
class provides functionality to de�ne and access global variables and handle them as if they
were constants. Often these variables are used to access additional Java objects that help
generating from the AST or symbol infrastructures or contain additional template paths.

To set, change or retrieve a global value one of the methods in Listing 13.15 can be used.

Java GlobalExtensionManagement1 public class GlobalExtensionManagement {
2 void defineGlobalVar(String name, Object value);
3

4 void changeGlobalVar(String name, Object value);
5 void addToGlobalVar(String name, Object value);
6

7 boolean hasGlobalVar(String name);
8 Object getGlobalVar(String name);

260

13.4. MontiCore APIs for Templates

9 Object getGlobalVar(String name, Object default);
10

11 void requiredGlobalVar(String name);
12 void requiredGlobalVars(String... names);

Listing 13.15: Methods to manage global variables with glex

defineGlobalVar(name,value) de�nes a new global variable called name and as-
signs it the value value. If the variable is already de�ned, an error is issued. Because
FreeMarker is untyped, values generally are of type Object. changeGlobalVar replaces
the value of an already existing global variable. If the value does not exist yet an error
is logged, so check whether the global variable is present, before trying to change it is
necessary.

addToGlobalVar(name,value) assumes that the argument for name refers to a global
variable of type List and adds the argument for value to the list. This is convenient, e.g.,
when building up a list of templates that shall later be executed and thus allows some kind
of con�guration within the templates themselves. Variable name needs to be initialized
with a list, like defineGlobalVar("name",[]).

hasGlobalVar(name) checks if a global variable exists (boolean) and getGlobalVar
returns the value of the global variable. If the global variable does not exist then either
a default is provided as a second argument, or it exits with exception to facilitate the fail
quick policy.

A value of a global variable can be used in many ways. By calling requiredGlobalVars,
we can require global variables to be de�ned. If a variable does not exist an error is thrown
during execution. Using this early in templates de�nes a weak form of precondition for
template execution. Together with the signature command, requiredGlobalVars
de�nes a second form of input signature.

While all the above methods can be called from Java, they can also be called within a
template. Listing 13.16 demonstrates this.

FTL1 ${glex.requiredGlobalVar("v3")}
2

3 ${glex.defineGlobalVar("v1",33+2)}
4 Var v1 is ${glex.getGlobalVar("v1")}
5

6 <#if glex.hasGlobalVar("v1")>
7 Ok.
8 ${glex.changeGlobalVar("v1","Aha")}
9 </#if>
10

11 ${glex.defineGlobalVar("v2",[])}
12 ${glex.addToGlobalVar("v2",16)}
13 ${glex.addToGlobalVar("v2",[18,19])}
14 ${glex.addToGlobalVar("v2",17)}
15 <#list glex.getGlobalVar("v2") as elem> ${elem},</#list>

Listing 13.16: Manipulating global variables from within a template

261

13. Generator Engine using Flexible Templates

Please note that the global variables are the same within all template executions, and
thus allow to transport data from Java to the templates and between templates call-
ing each other. It even allows to share data between di�erent generator calls, if the
GlobalExtensionManagement object glex remains the same.

13.5 Hook Points for Adaptation

Sometimes a code generator does not deliver the optimal form of code, e.g. if additional
generated functionality is desired, a generated modi�er shall be adapted, or additional
annotations shall be attached to generated attributes. Therefore, it is helpful if a generator
provides mechanisms for adaptation of the generator and thus of the generated code.

MontiCore provides a �exible mechanism for generator adaptation that is based on hook
points in templates.

13.5.1 The Concept of Hook Points

A hook point is a place within a template that is meant for adaptation [Rot17]. A hook
point can either be de�ned explicitly or exists by default for decorating or replacing a
called template. If a hook point is not explicitly bound to a value it defaults to an empty
string.

A hook point consists of a name, which is a unique string that identi�es the place in the
template, where to hook in, and a value that is bound to the hook point name. The hook
point is de�ned explicitly by giving it a name or implicitly, because every template itself
acts as hook point name.

Explicit hook points in templates are therefore providing the same adaptation power as
hook methods in a programming language [Pre95]. Furthermore, decorator hook points are
used to add code before or after a template and act like decorating aspects [KLM+97].
Figure 13.17 shows a classic hierarchical calling structure of templates. Here, the caller
knows and includes the called template via the include statement. Each template called
serves as a hook point. Please note the direction of the arrows. The resulting text on the
right side exhibits the execution order of the template parts.

Figure 13.18 demonstrates the e�ects of decoration with hook points. The include("B")
in template A provides the option to hook in a template before or after the included
template B. The e�ect is demonstrated by hooking in the template C before and the
template D after the template B. The result is shown on the right, the start of A is printed
�rst. The decorated include results in D being printed next, followed by B and then D.
Finally, the rest of A is printed.

It is particularly important to notice that the decoration is de�ned outside the a�ected
templates A and B. Both templates neither have explicit knowledge about the hooks they
are decorated with, nor need to be changed. Only their execution is adapted. This gives
developers the possibility to add decorations later in the development process and especially

262

13.5. Hook Points for Adaptation
Prof. Dr. B. Rumpe

Lehrstuhl für

Software Engineering

RWTH Aachen

Page 27

Template Include Commands

Templates

A1 .. hello

include(“B”)

A2 .. bye

A.ftl

B1

include(“C”)

include(“D”)

B2

B.ftl

D.ftl

C.ftl

include

include

include

Include-command enforces
static knowledge:
A.ftl knows B.ftl

Shows order
of execution

Result.txt

A1 .. hello

B1

C1 .. txt

D1 .. foo

B2

A2 .. bye

C1 .. txt

D1 .. foo

Figure 13.17: Hierarchical include structure induced by the include commands. The
knowledge direction goes from A to B to C and D

Prof. Dr. B. Rumpe

Lehrstuhl für

Software Engineering

RWTH Aachen

Page 28

Decoration of Included Templates

A1 .. hello

include(“B”)

A2 .. bye

A.ftl

B1

B.ftl

D.ftl

C.ftl

include

Shows order
of execution

Result.txt

A1 .. hello

C1 .. txt

B1

D1 .. foo

A2 .. bye

C1 .. txt

D1 .. foo

setBeforeTemplate("B", "C")

setAfterTemplate ("B", "D")

setBefore

setAfter

Template bound
to the hook point

Hook point

Hook point

Figure 13.18: Decoration before and after a template. The knowledge direction is inverted:
C and D know B

allows to adapt a generation process (de�ned in A, B) that is already �xed in a library
without having to change A, B directly or make a copy/paste adaptation.

There are two kinds of hook points:

1. A hook point can be explicitly de�ned within a template (see Section 13.5.3).

2. Each template acts as an implicitly de�ned hook point, through its template name,
which can be used to decorate or replace the template.

Figure 13.20 shows the e�ect of a template replacement, where the template name is used
as hook point name.

Tip 13.19: Kinds of Hook Points

Hook points can be explicitly de�ned within a template introcuding an explicit
hook point name, but also each template itself (by its quali�ed name) acts as an
implicitly de�ned hook point.

Both kinds of hook points can be used for non-invasive adaptation of the gener-
ation process.

263

13. Generator Engine using Flexible Templates

Again the template A includes the template B. Besides the hook points before and after
an included template, the include itself can be used to hook in a di�erent template and
thus replacing the originally included template. In this example, the original template B is
replaced by the template E. As a result, the content of B is not printed, only the content
of E is.

Prof. Dr. B. Rumpe

Lehrstuhl für

Software Engineering

RWTH Aachen

Page 30

Replacement of Included Templates

replaceTemplate("B", "E")

E.ftl

replace

Replacement command:

A1 .. hello

include(“B”)

A2 .. bye

A.ftl

B1

B.ftl

include

Result.txt

A1 .. hello

E1 ..

I am new

A2 .. bye

E1 ..

I am new

B1 doesn’t occur

Figure 13.20: External replacement of a template

Figure 13.21 shows the e�ect of an explicit de�nition and binding. This time the template
A de�nes an explicit hook point P. The command in the upper part of the �gure is neither
part of A nor of B, but from externally binds the template B to the explicit hook point P.
This results in the content of B being printed at the position of the hook point P.

Prof. Dr. B. Rumpe

Lehrstuhl für

Software Engineering

RWTH Aachen

Page 29

Explicit Hook Points

bindHookPoint("P", "B")

Template bound
to the hook point

A1 .. hello

defineHookPoint(“P”)

A2 .. bye

A.ftl

B1

B.ftl

Result.txt

A1 .. hello

B1

A2 .. byebind

Hook Point

Binding command:

Figure 13.21: De�ning an explicit hook point and binding it

An even more speci�c replacement is possible such that a replacement is only de�ned for
some AST nodes the templates is called for: We use the paired combination of template and
an AST object the template acts on as hook point name (i.e. more precisely "identi�er")
and allow an individual decoration or replacement.

Therefore, MontiCore provides the following mechanisms:

� A hook point can be used to replace an existing template (see Figure 13.20).

� Existing templates can be decorated with additional hook points that are executed
before or after the original template (see Figure 13.18).

� For a fully �ne grained output control, a template and the AST object it acts on,
quali�es as hook point name and can individually be decorated or replaced.

264

13.5. Hook Points for Adaptation

� Explicit hooks points within the generation process can be �lled with content (see
Figure 13.21).

The paired, AST-dependent hook point replacement is rather helpful, e.g., when the output
AST shall not be constructed completely, but some parts of it remain in templates. For
example, method signatures can be constructed in the AST, but this results in a rather
complicated AST construction. Thus, individual method bodies remain in templates and
are attached individually to the corresponding AST method node.

If a hook point is bound several times (using bind, setBeforeTemplate,
setAfterTemplate, or replaceTemplate multiple times), then only the last state-
ment is e�ective. The last binding overrides the earlier ones.

Decoration and replacement is only e�ective for the explicitly included templates, such as
A in Figures 13.20 and 13.21. In these �gures, templates C, D, and E cannot be decorated
or replaced. However, the decoration of template B in Figure 13.22 remains active, when
B itself is replaced.

Prof. Dr. B. Rumpe

Lehrstuhl für

Software Engineering

RWTH Aachen

Page 31

Replacement And Decoration of Included Templates

A1 .. hello

include(“B”)

A2 .. bye

A.ftl

B1

B.ftl

D.ftl

C.ftl

include

Result.txt

A1 .. hello

C1 .. txt

E1 : its me

D1 .. foo

A2 .. bye

C1 .. txt

D1 .. foo

setBefore

setAfter

E.ftl

replace

E1 : its me

Figure 13.22: External template replacement keeps its decoration (execution order is 1..5)

It is noteworthy, that we could also replace an existing and used template by de�ning a
new one with the same name and path, copying the new one into a local directory and
including the new template in the template path. The new template just needs to have
the same name (including package) and the storage place must be mentioned before the
overridden old one in the template path. However, this process is brittle and somewhat
di�cult to understand, when you do not fully control the order of the template path.

It is also noteworthy, that direct handcoded adaptations of the resulting Java code are
possible, but a�ect only single artifacts and are thus somewhat limited in their power.
Such adaptations are described in Chapter 14.

Adding functionality through template adaptations can be challenging, because the de-
veloper requires knowledge about the template structure, the target and the generator
language, the generator architecture, and the generated artifact architecture.

Con�guring template replacements and hook point bindings can be done before the gener-
ation is started or during the generation. Using Java code for this enforces recompilation.

265

13. Generator Engine using Flexible Templates

Alternatively, templates can themselves con�gure the use of other templates, as explained
in Section 13.5. Or the MontiCore Groovy script is adapted accordingly (see Section 16.5).

13.5.2 Forms of Hook Points

So far we have discussed �lling hook points with templates. However, MontiCore also
provides the following forms of hook point values that allow to inject a normal string, an
inline template or even Java code. A hook point can be �lled by one (or if allowed several)
hooks. We distinguish between four types of hooks that de�ne hook point values:

1. String hook : The hook point is �lled with a simple, uninterpreted string value.

2. Template hook : The hook point is �lled by executing a template given by a quali�ed
template name. During code generation this template is loaded, executed and the
result is added to the template de�ning the hook point.

3. Template-string hook : Like the template hook, but the template content is already in
the string, i.e., a string that contains FreeMarker expressions. During code generation
this template string is evaluated and the returned string is embedded in the template
de�ning the hook point. No �le is loaded.

4. Code hook : The hook point is �lled with a code hook, namely the value resulting from
its execution. This is the most powerful type of hook point. A code hook is a Java
class that can be used to implement additional functionality. During code generation
this Java class is executed and the returning string is inserted in the template that
de�nes the hook point.

Tip 13.23: Hooks in Object Oriented Programming

Hook points share properties with hook methods in OO programming frameworks,
where the hook is de�ned as empty method and is meant to be overridden in a
subclass. But, do not use hook points over excessively, because this complicates
understanding the execution order of templates and hooks.

Each of these forms of hooks are de�ned by a subclass of HookPoint. Its signature is
shown in Listing 13.24.

Java HookPoint1 package de.monticore.generating.templateengine;
2 public abstract class HookPoint {
3

4 public abstract
5 String processValue(TemplateController controller,
6 ASTNode ast);
7 public abstract
8 String processValue(TemplateController controller,
9 List<Object> args);
10 public abstract

266

13.5. Hook Points for Adaptation

11 String processValue(TemplateController controller,
12 ASTNode node,
13 List<Object> args);
14 }

Listing 13.24: Signature that HookPoints provide

The subclasses that implement the forms of hooks are:

1. StringHookPoint implements a string hook, i.e., an uninterpreted string value.

2. TemplateHookPoint implements a template hook, i.e., a template given by qual-
i�ed name is interpreted. All additional arguments are handed over to the called
template using the signature command.

3. TemplateStringHookPoint accepts an inlined template text, i.e., no �le is in-
volved, but the text is executed as template content.

4. CodeHookPoint is itself an abstract class and is intended to be subclassed by all
forms of code hooks.

The �rst three classes are meant for direct use. They are instantiated by one of the
constructors shown in Listings 13.25- 13.27.

Java StringHookPoint1 public class StringHookPoint extends HookPoint {
2 // constructor of StringHookPoint
3 public StringHookPoint(String value);
4 }

Listing 13.25: Constructor for StringHookPoints

Java TemplateHookPoint1 public class TemplateHookPoint extends HookPoint {
2 // constructors of TemplateHookPoint
3 public TemplateHookPoint(String templateName);
4

5 public TemplateHookPoint(String templateName,
6 Object... templateArguments);
7 }

Listing 13.26: Constructors for TemplateHookPoint

Java TemplateStringHookPoint1

2 public class TemplateStringHookPoint extends HookPoint {
3 // constructors of TemplateStringHookPoint
4 public TemplateStringHookPoint(String statement)
5 throws IOException;
6 }

Listing 13.27: Constructor of TemplateStringHookPoint

267

13. Generator Engine using Flexible Templates

The GlobalExtensionManagement provides access to global variables and also for
hooks. In particular, template and code hooks can access and modify global variables.
Parameters that are de�ned, e.g., in the includeArgs method calls, are also passed to
the hook templates and can be extracted to local variables using the signature command.

The second constructor in class TemplateHookPoint allows to pass additional argu-
ments to the template. These arguments are managed like the arguments passed to
includeArgs. They are at �rst implicit in the called template, but they can be as-
signed to variables using the signature command. The list of parameter names in the
signature consists of two parts: �rst the arguments of the includeArgs class and
then the parameters from the constructor in class TemplateHookPoint.

This form of arguments is only necessary for TemplateHookPoint, because it allows to
decouple the de�nition and the provisioning of arguments to three points: (a) de�nition of
a reusable, parameterized template, (b) creation of the hook point, where some arguments
are �xed and (c) execution of the hook point in the context of the replaced template, where
the rest of the arguments is provided.

As said, hooks themselves are not subject to further replacement and thus names of
template hooks do not act as hook names. In particular, the template de�ned in class
TemplateHookPoint can not be replaced or decorated, but again hook points can be
de�ned in this template and further include calls are subject for replacement and decora-
tion.

The abstract class CodeHookPoint is not instantiated directly, but used by implementing
subclasses. Such a subclass needs to implement three methods called processValue
which receive all necessary information through the arguments, i.e. variables tc and ast.
The methods di�er in their parameters: while all have a template controller as a parameter,
the �rst receives only the AST in addition, the second only a list of arbitrary arguments
and the third the AST as well as further arguments. The tc contains e.g. access to
the glex or the GeneratorSetup object. If a CodeHookPoint wants to access the
signature arguments of a called template, it may ask the tc with getArguments to
retrieve the list of objects that were passed as arguments.

Using a subclass of CodeHookPoint provides of course a general and mighty form of
hook point de�nition. However, using this kind of hook points requires recompiling the
tool (respectively MontiCore) before using it, while templates are interpreted.

13.5.3 De�ning Explicit Hook Points in Templates

To simplify the adaptation and extension of templates, hook points can be explicitly de�ned
in templates. A hook is a place in a template that is planned for extension. Every hook
gets a name through its de�nition. If the name was bound to one of the above mentioned
hook points, this hook point is executed and the result is inserted in the template.

To de�ne a hook point in a template the TemplateController class pro-
vides defineHookPoint methods that are used only within templates as
shown in Listing 13.28. In this listing the hook point with the name

268

13.5. Hook Points for Adaptation

"<JavaBlock>?TemplateName:member" is called. How hook point names like this
one are constructed will be discussed later. If the hook point should work on the same
ast node as the including template then the ast argument can also be omitted. If an
alternative default is needed, several defineHookPointWithDefault methods allow
to de�ne what is included if the hook point is left empty.

To check if a hook point with a speci�c name is already existing, the existsHookPoint
method is typically used within template control structures.

FTL1 // defining a hook point (if it is bound,
2 // the hook point value is inserted here)
3 ${glex.defineHookPoint(tc,"<JavaBlock>?TemplateName:member",ast)}
4 ${glex.defineHookPoint(tc,"<JavaBlock>?TemplateName:member",
5 ast.getAChild())}
6 ${glex.defineHookPoint(tc,"<JavaBlock>?TemplateName:member")}
7

8 // either hook point value or a given default
9 ${glex.defineHookPointWithDefault(
10 tc, "<JavaBlock>?TemplateName:member", ast, "default text")}
11 ${glex.defineHookPointWithDefault(
12 tc, "<JavaBlock>?TemplateName:member", "default text")}
13

14 // to find out, whether a hook point is bound (if necessary)
15 ${glex.existsHookPoint("<JavaBlock>?TemplateName:member"))}
16

17 // shortcuts with the same effect as above
18 ${defineHookPoint("<JavaBlock>?TemplateName:member",ast)}
19 ${defineHookPoint("<JavaBlock>?TemplateName:member")}
20 ${defineHookPointWithDefault("<JavaBlock>?TemplateName:member",
21 ast,"default text")}
22 ${defineHookPointWithDefault3("<JavaBlock>?TemplateName:member",
23 "default text")}

Listing 13.28: Methods to de�ne a hook point in a template

The aliases described in Section 13.4.1 allow developers to use the shortcuts shown in
ll. 18f.

Please note that it is not possible to pass additional arguments from explicit hook point
de�nitions to the executing hook point except through global variables. Only the standard
ast and tc are usually available.

Hook Point Naming Conventions

Hook points need memorable names such that developers have a unique identi�cation. Due
to a lacking type system for templates in general and thus also hook points, we suggest the
following convention for hook point names. The following naming scheme helps developers
to better recognize what to do and how to achieve the desired e�ect. A hook point name,
like "<Block>?ClassImpl:ConstructorInit" consists of

269

13. Generator Engine using Flexible Templates

1. the type of the expected result (given as nonterminal <Block>). It is associated
with a cardinality, such as * or ? (default: ?, i.e., maximum one), to describe that
omission or repetition is allowed,

2. the template name in which the hook point is de�ned, if the hook point with that
name is de�ned only once (here: ClassImpl),

3. the type of the ast where the hook point is applied to (here: ConstructorInit),
and

4. optionally the purpose of the hook point.

This convention encodes some typing information in the hook point name: For example, a
hook point is de�ned in the ClassImpl template that requires a Class ast, returns an
arbitrary set of JavaBlock statements, and is de�ned to add class members. This hook
point can be named with <JavaBlock>*ClassImpl:member.

But for convenience often used hook point names can be de�ned even simpler. For example,
the hook point called JavaCopyright expects a comment containing some copyright
information for each generated Java class. A call of this hook point with the simple name
is shown below.

FTL1 ${glex.defineHookPoint("JavaCopyright")}

13.5.4 Binding Hook Points

Binding a hook point means to assign one or several hook point values to a pre-
viously de�ned hook point name. Binding is usually applied, when the hook point
was de�ned explicitly by name and is not a template. To set a hook point the
GlobalExtensionManagement provides the method bindHookPoint.

Java GlobalExtensionManagement1 class GlobalExtensionManagement {
2 String defineHookPoint(TemplateController controller,
3 String hookName, ASTNode ast);
4 String defineHookPoint(TemplateController controller,
5 String hookName);
6 String defineHookPoint(TemplateController controller,
7 String hookName, Object... args);
8 String defineHookPoint(TemplateController controller,
9 String hookName, ASTNode ast, Object... args);
10

11 String defineHookPointWithDefault(TemplateController controller,
12 String hookName, String defStr);
13 String defineHookPointWithDefault(TemplateController controller,
14 String hookName, ASTNode ast, String defStr);
15 String defineHookPointWithDefault(TemplateController controller,
16 String hookName, String defStr, Object... args);
17 String defineHookPointWithDefault(TemplateController controller,

270

13.5. Hook Points for Adaptation

18 String hookName, ASTNode ast, String defStr,
19 Object... args);
20

21 void bindHookPoint(String hookName, HookPoint hp);
22 void bindStringHookPoint(String hookName, String content);
23 void bindTemplateHookPoint(String hookName, String tpl);
24

25 boolean existsHookPoint(String hookName);
26 }

Listing 13.29: Methods of the GlobalExtensionManagement class for hook point man-
agement

The class GlobalExtensionManagement is not only responsible for managing global
variables, but also organizes hook points in templates. Listing 13.29 describes the methods
it provides for this purpose.

The e�ect of the methods which are called from templates, namely defineHookPoint,
defineHookPointWithDefault and existsHookPoint are already described in Sec-
tion 13.5.3.

The bindHookPoint method is used to bind a hook point name to one of the forms
of hook points described in Section 13.5.2. This method can be used from Java as
well as within templates. The convenience methods bindStringHookPoint and
bindTemplateHookPoint allow to de�ne hook points more easily from within tem-
plates. If the hook point already had a binding, a warning is issued and the hook point
name gets bound to the new value, so the new value overrides the old.

Binding Hook Points in Templates

A hook point can also be bound or adapted within a template. The code examples in
Listing 13.30 demonstrate this. We advise to use the shortcuts only.

FTL1 ${glex.bindHookPoint("aComment1",
2 tc.instantiate(
3 "de.monticore.generating.templateengine.TemplateHookPoint",
4 ["tpl4/SE-Copyright.ftl"]))}
5

6 <#-- or with these shortcuts: -->
7 ${glex.bindTemplateHookPoint("aComment2",
8 "tpl4/SE-Copyright.ftl")}
9

10 ${glex.bindStringHookPoint("aComment3",
11 "// Developed by SE RWTH\n")}

Listing 13.30: Example: setting a hook point

271

13. Generator Engine using Flexible Templates

13.5.5 Replacing and Decorating Hook Points

When the hook point is a template, then replacement and decoration of the template is
possible. The following methods can be applied for template names and for explicitly
named hook points.

As already mentioned, this mechanism mimics aspect orientation for templates: an "as-
pect" template can decorate or replace the basic template, without the basic template
knowing that its e�ect is modi�ed.

The class GlobalExtensionManagement provides appropriate methods shown in List-
ing 13.31.

Java GlobalExtensionManagement1 class GlobalExtensionManagement {
2 replaceTemplate(String oldTemplate,
3 HookPoint hp);
4 replaceTemplate(String oldTemplate,
5 ASTNode node,
6 HookPoint newHp);
7

8 setBeforeTemplate(String template,
9 HookPoint beforeHp);
10 setBeforeTemplate(String template,
11 List<? extends HookPoint> beforeHps);
12

13 setAfterTemplate(String template,
14 HookPoint afterHp);
15 setAfterTemplate(String template,
16 List<? extends HookPoint> afterHps);
17 }

Listing 13.31: GlobalExtensionManagement for hook point management

replaceTemplate replaces a template call (via include, includeArgs, write, or
writeArgs) by the provided hook point, which is executed instead. The version of
replaceTemplate with the three argument only replaces the template if called on a
speci�c ast node.

The two methods setBeforeTemplate and setAfterTemplate allow to decorate
templates (as well as explicitly named hook points).

This mechanism provides a powerful approach to extend a code generator. Likewise, it
should be used with care, because it may provide unwanted side e�ects.

13.5.6 HookPoint Replacement and Decoration Strategy

Irrespective, whether the hook point name is explicitly de�ned or a template name, the
hook point binding respectively replacement and decoration strategies are the same.

However, the strategy is complex and thus is detailed here:

272

13.5. Hook Points for Adaptation

Tip 13.32: Use Template Replacement And Decoration with Care

To avoid confusion with the aspect-like template decoration and replacement,
developers should only either replace a template or decorate it with extensions, but
not both. Template replacement is also error prone and should thus be handled with
care.

If a hook point name hpn and a concrete AST node ast are given and the hook point
shall be executed, then the following is calculated:

1. If hpn is decorated with one or more before hook points, then this before decoration
is executed. This may be a list of hook points.

2. If there is a speci�c replacement (depending on hpn and ast), then this replacement
hook point is executed.

3. Otherwise, if there is no speci�c replacement (depending on hpn and ast), then it is
checked, whether a general replacement (dependent on hpn) exists. If so, then this
replacement hook point is executed.

4. Otherwise, if there is no replacement at all and hpn is a template, then the template
is executed (this typically happens within include and write methods).

5. Otherwise, if there is no replacement at all and the hook point was explicitly de�ned,
it defaults to the empty string (this typically happens with the defineHookPoint
method).

6. At the end: If hpn is decorated with one or more after hook points, then this after
decoration is executed. This may be a list of hook points.

The various binding, replacement and set methods do have a variety of e�ects:

bindHookPoint(hpn,hp) binds hp to hpn. If hpn was already bound, the value is
overwritten, but also a warning issued. bindHookPoint does not a�ect decoration.

replaceTemplate(hpn,hp) binds hp to name hpn. If name hpn was already replaced,
the value is overwritten, but there is no warning issued. replaceTemplate does
not a�ect decoration and does not a�ect speci�c replacements.

replaceTemplate(hpn,ast,hp) binds hp to identi�er (hpn,ast). If name
(hpn,ast) was already replaced, the value is overwritten, but there is no warn-
ing issued. replaceTemplate does not a�ect decoration, but setting a speci�c
replacement has the e�ect that it overrides general replacement or binding.

setBeforeTemplate(hpn,hp) decorates the hook point named hpn such that hook
point value hp is executed before. setBeforeTemplate does also take a list of
hook points, but a second call of setBeforeTemplate overrides the �rst value.
Only the last call counts. If the decorated template is also replaced, the decoration
remains active.

273

13. Generator Engine using Flexible Templates

setAfterTemplate(hpn,hp) : like setBeforeTemplate, but applied after the
main hook point execution.

None of the binding, decoration and replacement methods is transitive. That means a
template mentioned within a TemplateHookpoint is not a hook point name and will
therefore not be further replaced or decorated.

All replacing and decorating hook points have the same signature as the basis template.
In particular, TemplateHookPoints should have the same signature command, even
though the names of the parameters might vary.

bindHookPoint and replaceTemplate have very similar e�ects, when applied on tem-
plate names. The main di�erence is that bindHookPoint is usually applied on explicitly
de�ned and thus otherwise empty hook point names, while replaceTemplate is usually
applied to replace a non empty template.

If the hook point is de�ned explicitly with bindHookPoint, decoration or replacement
have the same e�ect, as long as only one form is used, because replacement of an empty
default looks like decoration.

Technical Info 13.33: How hook points are managed internally

Hook point names are just strings. This holds for template names as well as freely
de�ned strings for explicit hook points.

The bindHookPoint and replaceTemplate (with two arguments) methods
store their replacement in the same Map<String,HookPoint>.
setBeforeTemplate and setAfterTemplate have multimaps with type

Multimap<String,HookPoint> to be able to store lists of hook points.
Finally, the three argument version of replaceTemplate stores its replace-

ments in a map of maps: Map<String, Map<ASTNode, HookPoint>>. This
map stores a hook point individually for each hook point name and AST node.

13.5.7 A HookPoint Replacement and Decoration Example

The mechanisms to replace hook points are powerful and can be used in various ways. We
demonstrate this on a relatively simple example, where an existing generator translating
automata into Java classes using the state pattern is adapted. We assume the state pattern
is realized through a set of templates:

templates/src/main/resources/Statechart.ftl
templates/src/main/resources/StatechartStateAttributes.ftl
templates/src/main/resources/AbstractState.ftl
templates/src/main/resources/ConcreteState.ftl

We assume these templates together with the language de�ning the relevant context con-
ditions etc. are part of a �xed library project lib that must be reused in the following
without changing the �les.

274

13.5. Hook Points for Adaptation

Replacing the Generation of State Attributes

Template AbstractState describes the implementation of the abstract superclass of all
states and template ConcreteState is used for generation multiple times, mainly for
each state of the automaton. Template StatechartStateAttributes describes, how
the instantiated objects of these generated state classes are stored in an attribute in the
generated Statechart. It uses a static attribute and instantiates objects for all state classes
initially as shown in Listing 13.341.

FTL lib/StatechartStateAttributes1 <#assign name = ast.getName()>
2 public static ${name}State ${name?uncap_first}
3 = new ${name}State();

Listing 13.34: Producing attributes in the State Pattern

When applied for example to our well known PingPong automaton the resulting code
contains among others (Listing 13.35):

Java original result1 public static NoGameState noGame
2 = new NoGameState();
3 public static PingState ping
4 = new PingState();

Listing 13.35: Resulting code for State attributes

Because the public access of internal attributes is to some extent problematic, we decide
to adapt the generation. Unfortunately, the original template cannot be modi�ed, because
it is shipped in a library project. We therefore locally de�ne a replacement template
MyStateAttributes shown in Listing 13.36.

FTL local/MyStateAttributes1 <#assign n = ast.getName()>
2 protected static ${n}State ${n?uncap_first}
3 = new ${n}State();

Listing 13.36: Modi�ed generation template

We now can enforce the template replacement by a piece of code that can be added as
Java code in the tool, in a Groovy con�guration script or even in another template that is
executed early in the generation process. Here, we just de�ne a new tool class that adds
the replacement (Listing 13.37):

Java local/Hookstool1 glex.replaceTemplate("StatechartStateAttributes.ftl",
2 new TemplateHookPoint("MyStateAttributes.ftl"));

Listing 13.37: Replacing the default template

1The example has illustrative character and is only a simpli�cation of a really usable and well engineered
design pattern.

275

13. Generator Engine using Flexible Templates

Now we get the desired result in which all the attributes are protected (Listing 13.38):

Java result1 protected static NoGameState noGame
2 = new NoGameState();
3 protected static PingState ping
4 = new PingState();

Listing 13.38: Resulting State attributes for adapted generation

Decorating the Generation of State Attributes

It was also decided to add an access function for each of the generated attributes. Unfor-
tunately, the �xed Statechart template does not provide an explicit hook point for this.
But because attributes and methods are de�ned on the same level in a class, we reuse the
StatechartStateAttributes as hook point and decorate the template by adding a
getter-function de�ned in Listing 13.40 by the call in Listing 13.39:

Java local/Hookstool1 glex.setAfterTemplate("StatechartStateAttributes.ftl",
2 new TemplateHookPoint("MyStateGetter.ftl"));

Listing 13.39: Decorating the default template

FTL local/MyStateGetter1 <#assign n = ast.getName()>
2 public static ${n}State get${n}State() {
3 return ${n?uncap_first};
4 }

Listing 13.40: Decorating template for StatechartStateAttributes

The desired result now contains protected attributes and public get-functions (Listing
13.41):

Java result1 protected static NoGameState noGame
2 = new NoGameState();
3 public static NoGameState getNoGameState() {
4 return noGame;
5 }
6 protected static PingState ping
7 = new PingState();
8 public static PingState getPingState() {
9 return ping;
10 }

Listing 13.41: Resulting code including get functions

This example demonstrates two aspects. On the one hand, thanks to the template
StatechartStateAttributes we were able to add the desired code to the genera-
tion, but on the other hand it also shows that we had to extend a template here contrary

276

13.5. Hook Points for Adaptation

to the original intention. When designing a template for a reusable library it is advisable to
think about possible extensions and to integrate some hook points for additional elements.

Using Explicit Hook Points to Count Method Calls

It shall also be counted how often the methods of a state are called. Fortunately, the
ConcreteState template shown in Listing 13.42 provides a number of explicit hook
points, where we can add our additional pieces of code. To understand the example:
Variable outgoing contains a map of pairs with stimulus name and respective transition.

FTL lib/ConcreteState1 ${defineHookPoint("<Import>*ConcreteState")}
2

3 public <#if existsHWCExtension>abstract </#if>
4 class ${className} extends Abstract${modelName}State {
5

6 <#list outgoing as stimulusName, transitionAST>
7 @Override
8 public void handle${stimulusName?cap_first}(${modelName} sc) {
9 sc.setState(${modelName}.${transitionAST.getTo()?uncap_first});
10 ${defineHookPoint("<JavaBlock>?ConcreteState:handle")}
11 }
12 </#list>
13 ${defineHookPoint("<Field>*ConcreteState")}
14 }

Listing 13.42: Template generating a State class

Relevant for us are l. 10, where the body of the handle methods can be extended, and l. 13,
where additional attributes and methods can be added to the body of the state class. If
needed we could also extend the import list via the hook point in l. 1. Because the template
content is small and simple, we use inlined Strings to bind the hook points (Listing 13.43):

Java local/Hookstool1 "<JavaBlock>?ConcreteState:handle", "count++;");
2 glex.bindStringHookPoint("<Field>*ConcreteState", "int count;");

Listing 13.43: Binding strings to the hook points

The resulting code now contains, for example, the newly added statements in l. 4 and 9,
which is equal for all handle methods in all state classes (Listing 13.44):

277

13. Generator Engine using Flexible Templates

Java result1 @Override
2 public void handleReturnBall(PingPong sc) {
3 sc.setState(PingPong.ping);
4 count++;
5 }
6 @Override
7 public void handleStopGame(PingPong sc) {
8 sc.setState(PingPong.noGame);
9 count++;
10 }
11 int count;

Listing 13.44: Resulting method bodies and count attribute

278

Chapter 14

Integrating Handwritten Code

co-authored with Klaus Müller, Alexander Roth

Not every piece of code can and should be generated. Sometimes no appropriate modeling
language exists, algorithms are already well implemented, or various external libraries shall
be used. Thus, quite often speci�c functionality is implemented by hand. We call this
handcoding and the result handwritten code often marked by �hw�. E�cient techniques
for a smooth integration of handwritten and generated code are essential in a practical
development process. This integration is also necessary when using several generators
producing di�erent pieces of code.

Hence, in this chapter we discuss two solutions to add handcoded functionality into the
code generated by a MontiCore tool.

As described in Chapter 13, it is possible to adapt the generation process itself by writing
new templates that are aware of the handcoded functionality and are thus able to directly
use these functions.

14.1 Integration of Handwritten Code

Reusability of a code generator is an essential property. This includes that it is possible
to change the source model and to re-generate new code easily. This allows to reuse and
evolve the source model, because in practice models will be adapted, enhanced, extended,
and refactored plenty of times. Therefore, the generated code must not be modi�ed by
hand. We repeat this important principle:

Tip 14.1:

Generated code must not be modi�ed by hand.

Thus, any handcoded parts need to be located in separate artifacts. Each artifact is either
completely handcoded or generated, but not a mixture. Actually, there are approaches
that try to mix hand coded and generated code within artifacts, but they seem to be not
robust against manual errors, as well as refactorings and optimizations of smart IDEs.

14. Integrating Handwritten Code

Furthermore, they put completely unnecessary burden of heavy con�ict resolution of inde-
pendently generated code to the user.

Tip 14.2: Keep Generated and Handwritten Code Separate

� Keep generated and handwritten code in separate artifacts.

� Generated code must not be modi�ed by hand.

� Ideally separate the artifacts in di�erent directory hierarchies, such that clean-
ing of all generated artifacts is simple.

� Do not put any generated artifacts under version control.

A good generator aims for extensibility of the resulting code. This can be accomplished by
integrating design patterns (see e.g. Chapter 11 and [GHJV94]) into the generated code.
As a consequence, developers are able to add their own subclasses and to inject them appro-
priately. This kind of usage facilitates the generated code like a framework. In particular,
the template method pattern1 is a standard technique for handcoded extensibility.

MontiCore also uses a second technique: It generates the code while being aware of existing
handcoded classes and directly integrates them into the generated code. For that purpose
the MontiCore generator examines the handcoded path (argument -hcp) and reacts on
existing handwritten classes.

Because all generated classes are stored in the out directory (argument -out) the hand-
coded and the generated classes can be kept separate. This allows to clean up generated
�les easily and also prevents developers from accidentally storing generated �les in version
control.

In Java, the package structure is re�ected in the directory structure. Consequently, the
output directory can have a larger substructure, representing the di�erent packages that
contain generated code while the directories above the package structure are used to sep-
arate handcoded and generated classes. Handcoded classes are thus part of the same
package, but reside in a di�erent directory structure.

14.2 Adaptation of Generated Code by Subclassing

It is always possible to de�ne subclasses of generated classes or implement generated inter-
faces. Depending on the concrete form of usage, it is, however, simpler or more complicated
to inject objects of subclasses into the generate code structures. For example, the parser
creates lots of instances of the AST-classes. In case subclasses should be used instead, the
parser needs to create objects of appropriate subclasses. This, however, needs to be done
without changing the generated parser.

1The template method pattern has nothing to do with our Freemarker templates. A template method
contains an implemented, reusable part of code and uses (empty) hook methods for extensibility. Subclasses
rede�ne these hooks and thus add functionality.

280

14.3. Adaptation of Generated Code using the TOP Mechanism

For that purpose, many classes (including all AST-classes and symboltable-classes) have
corresponding builder classes. Builders and their providers, the builder mills, are generated
in form of the static delegator pattern (see Section 11.1) and can be adapted through
building a subclass, instantiating the subclass and injecting the single instance (see Figure
14.3). The AST mill for a language L is generated as a class LMill and the symboltable
mill for a language is generated as a class LSymTabMill.

Prof. Dr. B. Rumpe

Lehrstuhl für

Software Engineering

RWTH Aachen

Page 2

Integrating Handwritten Code in Subclass

MyASTState

ASTState

«hc»

«gen»

Tool-CD

ASTStateBuilder

+ ASTState build()

*

«gen»

MyASTStateBuilder

+ ASTState build()

*

«hc»

delivers

«gen»

AutomataMill

+ ASTStateBuilder stateBuilder()

ASTStateBuilder _stateBuilder()

MyAutomataMill

ASTStateBuilder _stateBuilder()

«hc»

delivers

Figure 14.3: How a given class can be extended by building a subclass

Tip 14.4: Adaptation through Subclasses

When building a subclass of a generated class, you typically also need to adapt
the builder for that class. This is usually done by subclassing the generated builder
as well.

This approach is robust, because it allows re-generation. When the superclass
is not re-generated (in the same form), the handcoded subclass becomes erroneous
and does not compile anymore, which allows developers to detect necessary changes
during compile time.

This approach is robust, but has the disadvantage that it is not possible to add new
methods to the signature of the ASTState class directly, but to the subclass only. So
either the subclass needs to be explicitly known in the rest of the system, and downcasts
of ASTState objects are necessary, or no additional functionality is available.

14.3 Adaptation of Generated Code using the TOP
Mechanism

A second and for developers less labor-intensive approach is to directly write the desired
class by hand. This has the advantage that the implementation can be extended and
method bodies overridden, but also the method signature can be extended and the newly
de�ned methods are available for users of the generated class. There is no need for users,
to explicitly know (and import) subclasses to be able to use these methods.

Figure 14.5 demonstrates this. Here a handwritten class ASTState is existent in the path
for handcoded �les (argument -hcp) that replaces the generated ASTState class. The

281

14. Integrating Handwritten Code
Prof. Dr. B. Rumpe

Lehrstuhl für

Software Engineering

RWTH Aachen

Page 3

Handwritten Code Overrides Generated Class

Tool-CD

ASTStateTOP

«gen»

ASTStateBuilder

+ ASTState build()

*

«gen»

delivers

optional

ASTState

+ newMethod()

*

«hc»

Figure 14.5: How a given class can be replaced by a handwritten class

handwritten class ASTState has the same name and package as we would expect for the
generated class, however, it is located in the source path, which is passed to the generators
via -hcp argument. In this case, a class ASTStateTOP is generated instead, which
contains the identically generated code, but is abstract and has obviously a di�erent name.
This class is not explicitly used in the framework, but may mainly serves as superclass for
ASTState. The developer has the following options:

� The handwritten class extends the generated class (as shown and recommended).

� The handwritten class is a copy/pasted version of the original class with speci�c
modi�cation, but does not extend the TOP class. Not recommended!

� The handwritten class is completely written afresh and ignores the generated class.
In this case the generated class is not used at all, but the handwritten class needs
to provide at least the same interface, i.e., the same methods, as the generated class
but may provide additional methods and individual implementations.

If MontiCore detects a handwritten class (here ASTState), it creates all other classes in
the usual form, except if these classes are replaced by handwritten classes as well. The
TOP mechanism is applicable to every generated class.

Please note that the generation process is now sensitive to the existing set of classes.
This means: when adding new handwritten classes or removing a handwritten class, a
re-generation might be necessary. In the worst case, a cleanup and re-generation or an
improvement of the generation script (gradle, maven or make) should help. Furthermore,
when con�guring the classpath yourself, it is useful to always include handcoded classes
before generated classes in the Java classpath.

Please also note that the handwritten class may not be of a di�erent kind than the generated
TOP class. In particular, if the generated class is instantiatable, then the handwritten class
must be instantiatable too. Either both are abstract respectively an interface, or none of
them is.

When the constructor for the handcoded class remains the same, then the generated builder
can be reused directly. This is typically the case when no new attributes are added or all
added attributes have default values to start with. If the constructor of a handcoded class
has, however, changed, the same TOP mechanism can be applied to the builder. Figure
14.7 demonstrates how a class and its builder are replaced using the TOP mechanism.

282

14.3. Adaptation of Generated Code using the TOP Mechanism

Tip 14.6: How to Add Handwritten Code

When handwritten classes shall be added, the following steps may help:

� Create (empty) class ASTState in a directory dir.

� Don't forget to put the new �le under version control.

� If not yet done, add dir to the handcoded path via the -hcp argument.

� Execute the MontiCore generator.

� Now, let ASTState extend ASTStateTOP.

� Adapt ASTState at will to implement changed and additional functionality
reusing signatures from ASTStateTOP.

� Do not forget to initialize additional attributes.

� Rerun the generator.

This introduces a handcoded version of the class and thus allows versioning and
modi�cation.

Prof. Dr. B. Rumpe

Lehrstuhl für

Software Engineering

RWTH Aachen

Page 4

Handwritten Code And Builder

ASTStateTOP

«gen»

delivers

Tool-CD

ASTStateBuilderTOP

+ ASTState build()

(

«gen»

ASTStateBuilder

+ ASTState build()

+ setNewAttribute(A a)

(

«hc»

«gen»

AutomataMill

+ ASTStateBuilder stateBuilder()

ASTStateBuilder _stateBuilder()

delivers

ASTState

A newAttribute

+ newMethod()

(

«hc»

Figure 14.7: How a given class and its builder can be replaced by handwritten versions

This problem with the constructor is the reason, why many, and especially the AST-TOP-
classes provide an empty constructor and the corresponding builders use this constructor
together with the respective setters for the attributes to build the objects. It is up to
the responsible developer to not misuse empty constructors without completing the object
afterwards. When you want to provide a di�erent version of a TOP mechanism to your own
developers, you might use a single constructor that takes exactly the builder as argument.

As a big advantage, the TOP mechanism can also be used, when the generated classes
are embedded in an inheritance hierarchy. Each class in an inheritance hierarchy can be
extended individually, while the generator for other classes does not need to take notice at
all. Figure 14.8 demonstrates possible resulting structures.

283

14. Integrating Handwritten Code
Prof. Dr. B. Rumpe

Lehrstuhl für

Software Engineering

RWTH Aachen

Page 5

Handling Inheritance

ASTSubStateTOP

«gen»

ASTStateTOP

«gen»

ASTSubState

«hc»

ASTState

«hc»

Tool-CD

Figure 14.8: How a given class and its subclass can be replaced by a handwritten class

In the MontiCore language workbench itself and usually for the MontiCore tools the same
principle is used for all generated classes.

284

Chapter 15

Error Handling, Logging and Reporting

co-authored with Andreas Horst

This chapter serves two purposes: First, it describes general considerations on error han-
dling and second it describes how MontiCore implements these. The �rst part of this
chapter is also useful for writing your own generator.

In addition, this chapter describes, which reports are generated in a MontiCore generation
run and how to con�gure the reports.

Generators in general and language workbenches like MontiCore have to cope with errors on
several levels: (1) the generator itself may issue error messages while analyzing its input
models or generating code and (2) the generated code itself usually must include error
messages, which are then issued when executing the generated code. MontiCore, however,
applies the same rules of de�ning and raising errors both for the generation phase as well
as for the code execution. This is possible because the MontiCore runtime environment is
available for MontiCore itself, all generated tools, and the �nal products. This in particular
includes logging, error messaging, etc. as discussed in this chapter.

15.1 Where to �nd Concrete Help for an Error, Warning, or
other Message

The rest of this chapter are more general considerations on errors, warnings and logs as
well as their con�guration. When you have a concrete error message that you don't know
what to do with, please have a look at:

1 // Explanations to errors and potential help
2 www.monticore.de
3 www.monticore.de/bestpractices

Here you can �nd a more current and up-to-date list of help and suggestions.

15. Error Handling, Logging and Reporting

Tip 15.1: Internal Errors in MontiCore

MontiCore tries hard to avoid internal errors. In case you got one, please send it
to bugreport@monticore.de ideally including the source model, con�guration,
MontiCore-version and other potentially interesting information. It will not be
generally visible, but only used for improvement of MontiCore by its developers.

15.2 Errors, Warnings and Log Messages

In this section the di�erent kinds of error messages are explained. Furthermore, the di�er-
ence between internal errors and errors due to incorrect usage of a generator is elaborated.

15.2.1 Errors

Many forms of errors may occur during model processing and generation. These errors can
have various causes and address di�erent user groups. MontiCore distinguishes at least
two kinds of errors, namely internal errors caused by MontiCore developers and usage
errors caused by the users of the MontiCore tool, i.e., by erroneous input models or wrong
con�gurations.

In addition to errors MontiCore may identify �aws that may be a problem when using the
generated result and issue a warning. Regardless of the di�erent severities it is vital to
appropriately report these situations.

Apart from errors and non critical �aws as described above, sometimes it is also desirable
to report general information about the complex model processing and generation process
to the user.

We identify these two kinds of errors:

Internal error is an error which prevents the tool from performing its tasks and which is
caused by erroneous implementations. As such, if experienced by a user, the user
cannot avoid or �x the error but should report it to the developers.

Usage error is relevant to the user of a tool. It is caused by erroneous input, con�guration
or other behavior of the user and can be handled directly by the user.

Internal errors are caused by implementation faults (e.g., missing initialization of a class
member before �rst access) and ideally discovered and �xed during extensive testing. For
a code generator an internal error should lead to the immediate termination as it is better
to have no result instead of an incomplete and incorrect result. Furthermore, stopping im-
mediately avoids unnecessary waiting times for the user. MontiCore tries to avoid internal
errors, but more importantly avoids erroneous output.

A modeler typically has no implementation insights into the used tool and therefore receives
a friendly apology with the remark "internal error". Stack traces obviously do not help
the users, but can be stored in a log �le that can be sent to the developers. Nowadays

286

15.2. Errors, Warnings and Log Messages

there typically exist several channels of feedback which allow users to provide relevant
information (such as log �les) about a program crash to the developers. They can then
use these additional information for �xing and improving the tool.

Usage errors are, for example, caused by con�guration faults or erroneous input models.
User errors must be reported with concise and user readable error messages. Ideally they
include what caused the problem and a hint on how to �x the error.

As for internal errors, the tool should terminate as quickly as possible allowing the user to
adapt the erroneous input for the next iteration. However, it has proven useful to complete
parsing and context condition checks, in order to allow the user to handle several user errors
at once. In the backend, namely the generation, immediate termination is however useful.
MontiCore has taken some e�ort to be helpful here.

The roles of users and developers blur, when the user of a tool adapts the tool with
additional templates or Java classes. In this case, the user code replaces or adapts internal
code and thus may produce internal errors resulting from erroneous user code.

15.2.2 Warnings and Information

MontiCore provides further levels of escalation, corresponding to the interests and roles of
their users.

Warning does not prevent the successful execution of the tool or generator, but might lead
to unwanted results the user should be aware of.

Information message contains neutral information about the executed process and help
to comprehend what is currently or has already been done by the tool.

Debug message contains detailed internal information about speci�c states of the exe-
cuted process.

Trace message allows to comprehend the execution of a program in very detailed form
and is based on the implementation internals such as method names or even numbers
of lines of codes.

Warnings are reported, because the user may want to react and �x it or explicitly decide
to live with it. Warnings are always on the user level as "internal" warnings are useless,
but it may happen that only the tool developer can interpret the warning.

Information messages typically signal what is currently done by the tool (e.g., the di�erent
execution steps) or what has already been done (e.g. successful parsing of a model, suc-
cessful generation of an artifact). They signal to the user that in fact something is being
done by the tool as opposed to a quiet execution where, when in doubt, it may be unclear
if something is happening at all. Information messages should be selected carefully and
not be too numerous.

Debug and trace messages are targeted at tool developers and potentially also tool adapters,
i.e., users that not only use the tool, but add additional handwritten code. They are
intended to help to debug a program by inspection of the internal states of a program.

287

15. Error Handling, Logging and Reporting

Debug and trace messages provide detailed insight into the executed program (in this
context DSL tools). They allow for instance to inspect concrete arguments passed to
a method and hence can provide hints about what caused an error. The interpretation
of such information of course requires detailed knowledge of the implementation. Hence
debug messages are explicitly aimed at developers and not normal users.

MontiCore in its default mode provides some, but not too verbose information and the
debug messages are switched o� completely. See below how to con�gure both via script as
well as using them from additional Java classes or MontiCore templates.

15.2.3 Form of Errors, Warnings and Log Messages

Summarizing these de�nitions and considerations yields the following types of messages
and their semantics:

error messages denote critical errors during the execution of the application. Typically
this means that the program cannot or could not be executed successfully.

warn messages denote situations which do not hinder the execution of the program but
should be �xed to avoid unwanted behavior.

info messages are used to communicate general information to the user such as the start
or successful termination of a process.

debug messages as opposed to info messages may contain detailed information about
the state of the program. Such detailed information are not required during normal
execution but help to debug the program.

trace messages are typically used for even more detailed information such as the cur-
rently called method or even line of code or the number of iterations. Such detailed
information is mainly used for optimization or complicated debugging.

This list of types of messages can be used in a concise and centralized logging component
which will be presented in Section 15.3.

Good error messages help to solve the problem or at least to communicate it to a potential
expert. Complex, highly adaptable software such as MontiCore, has many kinds of errors
with individual solution strategies. This includes e.g. the many context conditions of a
language. It is useful to simplify communication (for example the chat over telephone) by
attaching unique and simple to �nd identi�ers to an error message. For quick �nding of
information, errors in MontiCore and its DSL tools have an error identi�cation code in the
form of e.g. "0xD0016" or "0xAF21C". They use a familiar representation known from
hex representations with (unfamiliar) �ve digits and upper letters and are thus of form
"0x[0-9A-Z]^5". Advantages of such an identi�er are:

� Easy to communicate and less likely to misunderstand an error communication (e.g.
through the telephone).

� Easy to �nd in the code (usually only these have 5 digits).

288

15.3. The Error and Logging Component

� Easy to check their uniqueness.

� Easy to search for potential solutions in the web.

Too many or detailed warnings and especially informative messages often pollute the out-
put and prevent the user - and potentially also the developer - from seeing the relevant
information (such as errors). It is therefore important to con�gure where to announce
information:

� Console: Console output is the most direct form of information. It is created and
viewed directly during the execution of the tool/generator.

� Log �le: Log �les typically contain more detailed information to prevent pollution of
the direct output in the console. MontiCore by default writes logs to a single log �le
in monticore.date.log.

� Reports: In addition, reports of various kinds contain special information about the
executed process. See Section 15.5 for details.

In interactive systems such as web servers, log messages often contain timestamps for each
message. Administrators and developers use this information to retrospectively analyze
issues. Since generators typically run in batch mode, their logs do not require such infor-
mation. It might at most be valuable to add starting and end time or the total duration
of an execution.

Below we examine the MontiCore error management in order to see how error handling
and logging are implemented, and can be reused for DSL tools.

Please note that the generated code or product also may experience errors. These error
messages address users of the generated code. However, depending on the form of product,
the MontiCore error handling may be completely inappropriate. For instance, code that
runs in embedded systems may have no detailed log �le, while multi-user systems usually
have extensive logs including timestamps, error codes and messages, and so on.

15.3 The Error and Logging Component

MontiCore uses a centralized logging component for issuing error, warning, and other log
messages. This logging component is made available using the static delegator pattern
(see Section 11.1), and thus can be reached globally from everywhere in the code and
templates. This was a deliberate decision, because we expect a uni�ed logging mechanism
to be acceptable for all components of a DSL tool.

Although the logging API is static, there are extensive con�guration mechanisms, as the
static methods basically delegate to a hidden object that can be con�gured as well as
replaced by own implementations. As mentioned above, we use the static delegator design
pattern for this purpose.

The class Log de�nes and constitutes the core API (as shown in Listing 15.2) for the
logging component and acts with its methods as a central delegator for issuing errors,
warnings, and log messages.

289

15. Error Handling, Logging and Reporting

Files1 Repository: MontiCore/se-commons github
2 Directory: se-commons-logging/src/main/java/
3 Files: de.se_rwth.commons.logging.Log.java
4 de.se_rwth.commons.logging.LogStub.java
5 de.se_rwth.commons.logging.Slf4jLog.java

While the Log class uses standard printing (System.out) and also exits the program
in case of an error. The LogStub instead only internally stores the messages, but does
not produce any side e�ects, i.e. prints. LogStub is thus useful for testing (see e.g.
Section 10.3). A third subclass Slf4jLog is a highly con�gurable subclass that is used
by default. See Section 15.4.4 for its con�guration.

Java �RTE� Log1 public class Log {
2 public static void error(String msg)
3 public static void error(String msg, Throwable t)
4

5 public static void warn(String msg)
6 public static void warn(String msg, Throwable t)
7

8 public static void info(String msg, String logName)
9 public static void info(String msg, Throwable t, String logName)
10 public static void debug(String msg, String logName)
11 public static void debug(String msg, Throwable t, String logName)
12 public static void trace(String msg, String logName)
13 public static void trace(String msg, Throwable t, String logName)
14

15 public static void enableFailQuick(boolean enable)
16 public static long getErrorCount()
17 public static boolean isFailQuickEnabled()
18 }

Listing 15.2: Logging API in class Log

Using this central logging component, developers can issue log messages at the respective
severity. For instance, error messages are to be issued using the respective error log
methods shown in Listing 15.2 in lines 2 and 3. Log messages intended for debugging have
to be respectively issued using the debug log methods in ll. 10f. All log methods provide
one parameter for the log message and a second overloaded variant with an additional
parameter for exceptions (e.g., for printing out stack traces).

The di�erent log levels error, warn, info, debug and trace form a hierarchy of
severities where the level error is of highest severity and trace the lowest. A common
approach in logging is to use the log level for controlling the verbosity of logs. The idea is
that trace messages are far more numerous than error messages which only occur when
something went wrong. With this in mind log levels can be seen as threshold �lters for
controlling which messages actually get printed in the output (e.g., console, log �les, etc.).
The desired log level is meant to also include all log messages of levels with higher severity.
For example, most systems by default log with level info which will output messages

290

15.3. The Error and Logging Component

of the levels info, warn, and error in the logs. That is because the levels warn and
error are considered more severe than info. One could hence choose to ignore all log
messages except for error or activate all log messages by using trace as threshold. The
con�guration of which log level to use for controlling the output verbosity is provided by
many di�erent logging frameworks and described in Section 15.4.

As can be seen in Listing 15.2, the methods for issuing log messages of level info, debug,
and trace provide an additional argument logName. This argument is used for another
output control mechanism which allows to control the output for speci�c parts or compo-
nents of a program. These parts or components are speci�ed by the parameter logName.
As an example in MontiCore consider a scenario where one wants to see only the log mes-
sages of the parser or the symbol table. Logging frameworks provide con�guration options
for achieving this using the values of the logName parameter. Using this feature e�ciently
of course requires detailed knowledge of the program code. For the log levels error and
warn this mechanism is considered unimportant as their high severity is global, i.e., it
is not relevant which part of the program issued the error or warning. Detailed informa-
tion about what caused the error or warning is nonetheless to be given in the respective
messages (or even stack traces).

The implementation of the centralized log component also realizes the fail quick paradigm
described in Section 15.2.1. By default, issuing log messages of level error leads to the
immediate termination of the application. This behavior may be controlled with the meth-
ods enableFailQuick and isFailQuickEnabled. The former allows to temporary
deactivate the fail quick mechanism such that error log messages do not automatically
terminate the application. However, the log component keeps track of any issued error
log messages such that if fail quick is re-enabled later on, it terminates the application as
well. This might be useful for example when multiple model artifacts have to be processed
where failure to process one model artifact should not immediately cancel the entire pro-
cess but after all processing is completed. How to use the logging API for such a use case
is shown in Listing 15.3.

Java1 public void processModels() {
2 // disable fail quick
3 Log.enableFailQuick(false);
4 // iterate and process some models, but completely
5 // ...
6

7 // re-enable fail quick
8 Log.enableFailQuick(true);
9 }

Listing 15.3: Example for controlling fail quick

In Listing 15.3 the fail quick mechanism is temporary disabled in line 3 to process a set of
models. In this example errors occurring while one model is processed do not terminate
the whole process. The logging component keeps track of issued error log messages. As
soon as the fail quick mechanism is re-enabled in line 8, it is checked whether any error
messages was issued and if so, the fail quick is applied, which terminates the application.

291

15. Error Handling, Logging and Reporting

15.4 Logging Con�gurations in MontiCore

As described in Section 15.3, logs may contain detailed information. For controlling this
information, MontiCore uses and provides di�erent means which are described in this
section.

Log message can be printed to the console, in much more detailed form to log �les and,
depending on the speci�c purpose, in an aggregated form of so called reports. The log
�les can be di�erent for each DSL tool or even single components of an application and
vary in desired verbosity (see Section 15.3). The logging APIs SLF4J [QOS21b] provides
mechanisms to con�gure the logging output for speci�c requirements. The default imple-
mentation of the centralized log component described in Section 15.3 is based on SLF4J and
its implementation logback [QOS21a]. With this, MontiCore provides three con�guration
mechanisms for the logging component. These three mechanisms are:

� Selection of one of two built-in logback con�gurations (Section 15.4.1).

� Usage of a custom logback con�guration (Section 15.4.2).

� Implementation of a custom log component (Section 15.4.4).

15.4.1 Selecting one of the given Con�gurations

MontiCore ships with two externally usable standard logging con�gurations and four Java
based mechanisms to select a con�guration internally.

The externally selectable con�gurations control output based on the severity. Both print
info, warn, and error messages to the console and into the same log �le. debug
messages are only printed into the log �le. Log �les are created for each execution of
MontiCore individually and stored in the con�gured output directory of MontiCore. An
overview over the characteristics and di�erences of the two default con�gurations is given
below.

MontiCore default logback con�guration for users:

� Console

� Contains info, warn, and error messages

� No logger names (see parameter logName in Section 15.3)

� No stack traces of any logged exceptions

� No timestamps etc.

� Log �le: monticore.yyyy-MM-dd-HHmmss.log

� Contains debug, info, warn, and error messages

� Contains logger names (see parameter logName in Section 15.3)

� Contains stack traces of any logged exceptions

292

15.4. Logging Con�gurations in MontiCore

� Contains timestamps of the log messages

MontiCore default logback con�guration for developers:

� Console

� Contains info, warn, and error messages

� Contains logger names (see parameter logName in Section 15.3)

� Contains stack traces of any logged exceptions

� Contains timestamps of the log messages

� Log �le: monticore.detailed.yyyy-MM-dd-HHmmss.log

� Contains debug, info, warn, and error messages

� Contains logger names (see parameter logName in Section 15.3)

� Contains stack traces of any logged exceptions

� Contains timestamps of the log messages

By default MontiCore uses the con�guration for users. The con�guration for developers
can be selected by using the -d (or -dev) option over command line.

15.4.2 Using a Custom logback Con�guration

An entirely custom logback con�guration can be passed to the execution of MontiCore
using the command line option -cl (or -customLog). Detailed information about the
con�guration of logback is available online [QOS21b, QOS21a].

15.4.3 Initializing the Log within Java

If a Java developer chooses to initialize the log via one of the following init methods (from
within Java), then the above discussed defaults or custom con�gurations with SLF4J are
not e�ective anymore, but a direct implementation is provided:

� LogStub.init() leads to side�ect free log: all output is internally stored. It also
does not terminate upon errors. This is mainly usable for test automation.

� Log.init() leads to a logging component that does not write any �le, suppresses
trace and debug messages, but writes infos, warnings and errors to standard output
(console). It also terminates on error, if fail quick is enabled and the returned error
code is then 1 to distinguish erroneous termination from a correct program end1.

� Log.initDEBUG() is like Log.init(), but writes all messages to the console.

� Log.initWARN() is like Log.init(), but even suppresses info messages and only
writes warnings and errors.

Furthermore, some of the reporting functions are then disabled, because reporting also acts
as subclass of Log.

1This is usable in make, shell or CLI environments

293

15. Error Handling, Logging and Reporting

15.4.4 Providing a Custom Log Implementation

This mechanism allows the highest �exibility and control. In contrast to the �rst two
methods, this mechanism requires to write substantially more Java code.

Log implements the static delegator design pattern described in Section 11.1. As such,
subclasses can be used to implement custom log components.

All public static methods of the Log class (as depicted in Section 15.3) delegate to an
corresponding protected do method. A subclass has to register itself as the new log com-
ponent through the protected static method setLog(Log). LogStub is such a subclass
and can be used as blueprint if desired.

15.5 Reports

Reports di�er from logs in that they need not follow a time line, but usually aggregate
their information and are produced at the end of a processing run.

15.5.1 Where to Find Reports

To understand the MontiCore generator and in particular the generated code, MontiCore
o�ers a possibility to produce a number of reports. Reports provide detailed information
about the execution process and states of the generator. This includes di�erent statistics
as well as detailed reports about occurrences of generator events such as template execu-
tions, �le generations and AST transformations. All generated reports are available in the
reporting output directory:

Files1 reports/ // directory with generated reports

Information contained in reports is usually presented short and dense. Therefore, a short
explanation of the content can be found at each report's end. The purpose of the report
and an overview of the contained information can be found in section 15.5.4.

15.5.2 How to Con�gure Reporting

All reports are enabled when using the default con�guration. When using a user speci�c
con�guration �le, the report generation can be enabled and then is automatically switched
on by adding the following lines:

Groovy1 Reporting.init(outputDirectory, reportDirectory,
2 reportManagerFactory)
3 // ...
4 Reporting.flush(anAST); // finally writes the reports

Listing 15.4: How to enable reporting

294

15.5. Reports

where reportManagerFactory is a prede�ned variable in the MontiCoreScript en-
vironement that Groovy is interpreted in. This variable comes by default with a factory
instantiating class MontiCoreReports, but we could override this by our own class.

If the reporting shall temporarily be switched o� for some activities of the generator, the
methods

Groovy1 Reporting.off();
2 // generator activity without reporting
3 // ...
4 Reporting.on(aName)

Listing 15.5: How to stop and start reporting

can be used between enabling and writing (Reporting.flush()) the reports.

Reports can be adapted e.g. by adding more content. For example, the report
08_Detailed.txt introduced in Section 15.5.4 can be extended by using the follow-
ing method of the Reporting class:

Java1 Reporting.reportToDetailed("Additional info");

Listing 15.6: Additional information reported in 08_Detailed.txt

Each call of this method produces an additional line written to the detailed report.

15.5.3 Identi�ers contained in the Reports

Some reports contain information in temporal order of appearance and thus can be un-
derstood as log �les on certain aspects of the generation process. Other reports aggregate
information during the generation process and are thus only produced at the end. Reports
contain some general references to templates, AST nodes etc.

All AST nodes and other objects, e.g. from symbol tables, are uniquely identi�ed in all
reports. MontiCore uses a semi-readable object identi�er (OID) that re�ects some content
of the AST node (at the time the identi�er is created). The OID does de�nitely not change
over time, once it is computed, even though object attributes may change. Examples for
AST node identi�ers of a CD4A model are:

Reporting1 @Person!CDInterface
2 @PersonImpl!CDClass(5,2)
3 @age!CDAttribute(7,4)
4 @_!Modifier
5 @_!Modifier(!2)
6 @_!Modifier(3,4!2)

Listing 15.7: Exemplaric object identi�ers in reports

295

15. Error Handling, Logging and Reporting

Line 1 shows an identi�er for an AST node with name Person and type CDInterface.
Line 2 contains an AST node of type CDClass and name PersonImpl. Moreover, this
identi�er carries two additional comma separated numbers denoting the line and column
position of the corresponding model element in the input model. If these numbers are
missing, the respective AST node is usually not a direct result of model parsing, but added
to the AST afterwards.

Line 3 contains another example of an identi�er with source position. The last lines 4-6
contain identi�er for AST nodes of type Modifier. All except letters and numbers are
escaped with "_". In line 5, a number !2 is added to indicate that the corresponding
object is not the same as reported in line 4. Line 6 shows this number added when the
source position is present too (which rarely happens).

In general, the representation of AST Nodes within the reports has the structure of one of
the following lines:

Reporting1 @content!type(line,col)
2 @content!type
3 @content!type(!nr)
4 @content!type(line,col!nr)

Listing 15.8: Object identi�ers in reports

type refers to the class of the AST node that it identi�es, content is a small identi�er
that is extracted from the attributes of the object. As seen before, content is dependent
on the kind of node, e.g. if the node has an attribute called name, usually this name is
taken. If the AST node was created as result of parsing, it comes with a source position
that is added in form of (line,col). If there is no source position present, the AST
node was probably created during a transformation process. Finally, if there are several
objects that would have the same identi�er, we distinguish them by an appendix of form
!nr within the brackets. In such a situation the identi�er for the �rst node does not have
an appendix, the second one has the appendix !2, the third one !3 and so on.

Note that AST nodes are always uniquely identi�ed in the whole generation process. How-
ever, an identi�er may not �t to the actual content of an AST node as it's content can
change over time while the identi�er remains stable.

The reports also reference templates, hookpoints, Java classes, Java �les and variables in
the following forms:

Reporting1 NameOfTemplate.ftl // Templates occur with extension
2 NameOfClass // Java classes occur without extension
3 NameOfSourceFile.java // Java source files occur with extension
4 Nonterminal // Nonterminal from grammar and
5 // also stands for Java class ASTNonterminal
6 HP:"NameOfHookPoint" // Hookpoints are prefixed and quoted
7 NameOfVariable

Listing 15.9: Representation of various entities

296

15.5. Reports

Generally, quali�ers (or path names) are omitted for the sake of brevity. Therefore, it helps
not only here to generally use unique names.

15.5.4 List of the Reports

In this section the di�erent reports and their purposes are introduced. A detailed descrip-
tion of the content can be found in the explanation section, which is located at the end of
each reported �le.

01_Summary.txt contains some numbers summarizing the overall generation process.
Examples for information reported here are the number of generated �les, the number
of used templates or the number of called hook points.

02_GeneratedFiles.txt contains the list of all created �les. In addition, the source
of the �le creation is given by the responsible template and ast node.

03_HandwrittenCodeFiles.txt contains all used and unused handwritten source
code �les. Inspecting this report helps the generator user to ensure that necessary
handwritten code �les are taken into account by the generator.

04_Templates.txt contains the list of templates used in the generation process and
how often they were called to open a new �le for generation or how often they were
executed for existing �les. In addition, a list of available but unused templates of the
corresponding project is provided. Both lists are generated for standard templates
provided by the generator as well as for user speci�c templates which are extracted
by examining the template path.

05_HookPoint.txt contains detailed information of all kinds of hook point related
events. This includes both, usual hook points as well as AST speci�c hook
points. Hook points are regarded as AST speci�c if they are registered via the
replaceTemplate method of the GlobalExtensionManagement class.

The information given in this report helps generator users and generator developers
to understand in which order hook points are registered and executed. Moreover
the di�erent possibilities of hook point registrations (before template, after template
etc.) are reported. The execution of a hook point is reported together with additional
information such as the type and content of the hook point.

06_Instantiations.txt contains the list of Java classes, which have been instantiated
from templates during the generation process. In MontiCore Java classes can be
instantiated directly from templates using the instantiatemethod of the template
controller. The reported information about instantiations from templates can help
the generator developer to ensure that the usage of Java classes from templates works
properly.

07_Variables.txt contains the list of global template variables used during the exe-
cution of the generator. Global variables can be read and written from all templates
and Java objects through the GlobalExtensionManagement. For each variable
the number of value changes of the variable is reported. These information help

297

15. Error Handling, Logging and Reporting

generator developers to identify undesired overriding of variable values during the
generation process.

08_Detailed.txt is a �ne grained protocol of all events reported in temporal order
of occurrence. This includes events, which are reported in other reports as well as
instantiations from templates, write operations of global variables, �le generations,
template executions and hookpoint events. Moreover, warnings and errors are re-
ported. The purpose of this report is to comprehend the overall generation process
by analyzing the individual process steps. This facilitates localizing the source of
failures.

09_TemplateTree.txt shows the call hierarchy of the templates as tree structure.
In addition to the involved templates, variable assignments, instantiations of Java
classes via the template controller and hook point executions are reported. Like the
detailed report, this report overviews the overall execution process of the generator,
but it focuses on the template execution. Thus, this report helps especially to reveal
weak spots corresponding to the templates of a generator.

10_NodeTree.txt depicts the AST structure captured after �nishing the generator's
generation step. In addition to the AST nodes and the structure of the whole tree,
it reports how often a node has been used as parameter ast for template execution.
The provided information help identifying mistakes after transformation steps of the
AST and moreover to identify AST nodes which might be unused and potentially
unnecessary.

11_NodeTreeDecorated.txt contains a more detailed version of report
10_NodeTree.txt. The additional information can help the generator de-
veloper to understand which �les are generated based on speci�c AST nodes and
which templates have been executed with speci�c AST nodes as input.

12_TypesOfNodes.txt provides information about the �nal AST in a summarized
manner. The report focuses on the type of AST nodes, how many objects of each
type exist in the AST and how often objects of each type were used as input for a
template. The purpose of this report is to get a better intuition about the di�erent
elements and the magnitude of elements of the di�erent types which are part of the
�nal AST.

14_Transformations.txt contains some information about explicitly de�ned trans-
formations used in the generator process. A transformation event is reported when
a transformation creates or modi�es a speci�c AST node. Generator developers can
use this report to check if the transformations work as supposed.

18_InvolvedFiles.txt describes the models that have been parsed, as well as the
�les that have been used for the tool execution, e.g. templates, and the produced
output �les as well as �les that are in�uencing the generation. All �les are given with
their complete paths, including the jar containers where they had been retrieved.

DataStructure_grammarname.cd contains the classes, associations and attributes
that de�ne AST structure in the form of a class diagram.

298

15.5. Reports

grammarname_AST.od contains the AST structure in the form of an object diagram.
Every AST node represents an object with an unique name and a type. Attributes
of objects include their corresponding name and value.

A graphical representation of the participating templates can be derived from two addi-
tional reports, which are generated in special language formats (GML [Gro21] and Graphviz
text language [Gra17]) for this purpose. Within the graphical representation, relations be-
tween templates used during the execution process of the generator are displayed. More-
over, it is shown which Java objects are instantiated from which template �les and the
directories which contain the Java source �les of the instantiated Java objects and the
template �les. Behind the name of each template and Java source �le a number is dis-
played which indicates the total number of executions for templates and the total number of
instantiations of the Java type de�ned within the Java source �le. Some more information
are shown dependent on the chosen graphical representation as described below:

15_ArtifactGml.gml is generated in the format of the Graphical Modeling Language
(GML) [Gro21] which can be graphically presented by yEd [yWo21] for example. An
excerpt of such a diagram is shown in Figure 15.10

Figure 15.10: Relationship between artifacts (templates and Java, excerpt)

In this graphical representation, template �les are displayed as ellipses, Java source
�les of instantiated Java objects are displayed as diamonds and directories containing
the �les are displayed as boxes (their names are displayed in a dot separated notation.)
In addition to the information described above, the edges between two elements are
labeled with a number. This number indicates how often a template is executed
from the linked template or how often a Java type is instantiated from the linked
template. Moreover, the line width of the link is adapted according to this number.
A graphical template element colored in green represents a template �le which has
generated one or more �les during the generation process.

16_ArtifactGv.gv is generated in the format of the Graphviz text language, which can
be transformed into a graphical representation by Graphviz layout programs [Gra17].
An excerpt of a diagram created by a Graphviz layout program is shown in 15.11.

In this graphical representation, template �les are displayed as ellipses, Java source
�les of instantiated Java objects are displayed as arrows and directories containing the

299

15. Error Handling, Logging and Reporting

Figure 15.11: Relationship between template artifacts (excerpt)

�les are displayed as boxes (their names are displayed in a dot separated notation.) In
addition to the general graphical information, the created �les are shown as squares
each with a snapped corner. A link between a template and a generated �le indicates
that the template is responsible for the �le creation.

In addition to the standard textual and graphical reports there may exist additional, only
internally used reports such as the report 18_InvolvedFiles.txt. For example, the
latter is used in a subsequent generator execution to enable incremental generation.

15.6 For Developers: How to Deal with Errors and Warnings

Exceptions are basically handled with the mechanisms provided by Java. They carry
important technical information such as the stack trace and typically occur when fatal
internal errors happen. It is commonly recommended that exceptions shall not be used to
implement validation failures/results to be regularly coming from user errors. Instead of
eagerly printing out stack traces etc. MontiCore applies these techniques:

1. Relevant information about the occurred exception is stored in an appropriate log.
If the exception signi�es an internal error it is logged with level error using a brief
but informative message together with the stack trace of the exception. The logging
con�guration (see Section 15.3) can ensure that the informative message is logged to
the console while the detailed stack trace is only printed to a log �le. This ensures
that the immediate feedback on the console is not too verbose thus not polluting
relevant messages by unnecessary information.

2. Additional information about the context in which the exception occurred is also
logged, if appropriate. The log levels debug and trace (see Section 15.3) are
suitable for this as they are intended for detailed analysis and not for general feedback
to the user. As above the logging con�guration ensures that these log messages are
printed to a log �le.

3. All further execution is terminated if the system cannot recover in a sensible way
(except when parsing, which only stops at the end of parsing). The logging API (see
Section 15.3) terminates the application if an error message is issued.

The idea is that if an exception cannot be handled in a meaningful way, then the exception
should not be caught. For generators (which usually are embedded in sophisticated build

300

15.6. For Developers: How to Deal with Errors and Warnings

processes) it is better to terminate with an exception than to pretend being successful
and to produce incomplete and incorrect results. The default logging con�guration of
MontiCore as described in Section 15.4 is designed to support the aforementioned steps of
handling exceptions.

301

Chapter 16

MontiCore Use and Con�guration from

CLI or Gradle

co-authored with Nico Jansen

While the previous chapters mainly have been dealing with speci�c parts of MontiCore,
this chapter concentrates on the embedding of a fully automated MontiCore generation
into a larger automatic build process. There are mainly four ways to use MontiCore from
outside and some of them have already been shown in the getting started introduction in
Chapter 2:

Commandline interface (CLI) The CLI of MontiCore allows to call MontiCore from a
shell or a make�le and is therefore well suited for scripting in batch mode.

Gradle Integration The Gradle plugin of MontiCore allows to integrate MontiCore calls
into Gradle build scripts.

Maven integration is used for integration into Maven, but this is regarded as legacy. We
recommend not to use the relatively dumb Maven, but a smart Gradle solution.

MontiCore Framework . MontiCore can also be understood as an adaptable Java frame-
work that provides classes with certain reusable or adaptable methods. The API
provided by the many MontiCore classes is described in the previous chapters.

The CLI is available in two variants: (1) As a jar �le downloaded from a storage site, or (2)
the project is locally available and has been built, thus calling main class MontiCoreCLI
with the respective class path is relevant.

MontiCore itself does not manage incremental building, but when called it (re-)starts the
generation process. It therefore behaves like many other generation tools and compilers,
like e.g. the C++ compiler, but di�erently from Java. The smartness of Java is both
a bene�t for ordinary build processes and a huge problem for build processes that in-
clude generation (potentially in several layers), which is relatively common when using a
MontiCore generated generator.

Maven �ts to ordinary Java projects, but because of the reduced understanding of genera-
tion dependencies, Maven is not helpful for projects with e�cient, smart, and incremental
generation dependencies in the kind of settings that MontiCore needs. MontiCore can be

16. MontiCore Use and Con�guration from CLI or Gradle

shell1 java -jar monticore-cli.jar \
2 -g Automata.mc4 \
3 -mp monticore-rt.jar \
4 -hcp src/main/java \
5 -out target

Listing 16.1: Executing MontiCore via CLI

integrated into Maven, but the repeatedly executed tool chain is slow compared to make
or Gradle. We recommend to use Gradle or for simpler cases batch scripting with the CLI
and therefore concentrate on those two forms in the following.

Furthermore, MontiCore embeds a con�gurable work�ow that describes how the transfor-
mation from the processed grammars to the �nally produced pieces of code and reports is
executed. This work�ow is realized using an exchangeable Groovy script which is detailed
in Section 16.5 and also shows how the standard MontiCore work�ow is realized. As a
�exible con�guration of this work�ow is needed in certain con�gurations, we have added
possibilities to con�gure MontiCore:

Con�guration parameters allow to adapt the processing results of the MontiCore CLI
and the Gradle plugin. They are described in Sections 16.1.2 and Section 16.3.

Exchangeable Groovy script for the main work�ow A custom Groovy script provides
�exibility for adapting the logging and reporting, adding additional hook points,
restricting the grammar for certain purposes, or generating completely di�erent or
additional artifacts. It is discussed in Section 16.5.

Template script adaptation There is also a more speci�c form of adaptation for the gen-
eration process, which is largely based on FreeMarker templates. MontiCore's output
can be con�gured by exchanging or adding templates, e.g., in additional hook points
(cf. Section 13.3).

16.1 MontiCore from Commandline

When called from commandline, MontiCore can be used by executing compact jar-�les.
This is already explained in Section 2.2. The jar �le contains a manifest that points to
the class MontiCoreCLI, which contains the main method that is actually started when
starting MontiCore.

16.1.1 How to Call the CLI

The call shown in Listing 16.1 demonstrates how a downloaded or precompiled jar �le is
included, but is actually equivalent to a direct call of the MontiCoreCLI class.

The jar in l. 1 contains the full MontiCore generator including all needed libraries. Line 2
speci�es the processed grammar (using the -g option). For a search of importable gram-
mars, the model path (-mp) argument is used (l. 3), which in this case consists of the

304

16.1. MontiCore from Commandline

grammars provided by MontiCore. Lines 4� describe where hand coded classes can be
found for the TOP mechanism (-hcp) and the directory, where to generate all the output
�les (-out).

Technical Info 16.2: Obtaining MontiCore Jars via Command Line

The MontiCore jars are stored in a Maven repository to easily obtain them when
using Gradle or make build scripts. There are two most relevant jars:

monticore-cli the generator CLI Tool used to generate code for a given grammar,

monticore-rt the jar containing the compiled runtime and grammar code as well as
the grammar �les of the MontiCore grammar library. These jars are addition-
ally made available for download via the website http://monticore.de:

shell1 wget http://monticore.de/download/monticore-cli.jar
2

3 wget http://monticore.de/download/monticore-rt.jar

16.1.2 Parameters of the CLI

The MontiCore CLI can be adapted in various ways. For that purpose, MontiCore accepts
the following parameters:

-g �lelist the list of input grammars given as ordinary list of arguments. It is possible to
name several grammars (space separated), which are then processed sequentially and
independently (equivalent: -grammar filelist).

-o path Optional output directory for all generated code; defaults to relative directory
out (equivalent: -out path)

-mp pathlist Optional list of directories or �les to be included for import of other model,
i.e., in this case grammars (equivalent: -modelPath pathlist).

-hcp pathlist Optional list of directories to look for handwritten code to integrate
(equivalent: -handcodedPath pathlist). See TOP mechanism in Section 14.3.

-sc file.groovy Optional Groovy script to control the generation work�ow (equiva-
lent: -script file). For further explanation on custom Groovy scripts see Sec-
tion 16.5. This option o�ers great �exibility, but also risks of failure.

-gh1 file.groovy Optional Groovy script that is hooked into the work�ow of the stan-
dard script (cf. Section 16.5) at hook point one, which is called after initialization,
before the actual work�ow begins (equivalent: -groovyHook1 file).

-gh2 file.groovy Optional Groovy script that is hooked into the work�ow of the
standard script (cf. Section 16.5) at hook point two, which is called before the
generation step (equivalent: -groovyHook2 file).

305

http://monticore.de

16. MontiCore Use and Con�guration from CLI or Gradle

-fp pathlist Optional list of directories to look for handwritten templates to integrate
(equivalent: -templatePath pathlist). See Chapter 13 for an explanation for
the use of templates. This option o�ers great �exibility for the generation process,
but also risks of failure.

-ct file.ftl Optional template to con�gure the integration of handwritten templates
(equivalent: -configTemplate file). The �lename may be quali�ed or relative
to the -fp argument.

-d speci�es whether much more detailed MontiCore developer level logging should be used.
Default is MontiCore user level, i.e., product developer level. (equivalent: -dev).
This option selects another prede�ned Log con�guration (cf. Section 15.4).

-cl file.xml change the logback con�guration to a customized �le, e.g., log level, mes-
sage format (equivalent: -customLog file). This option o�ers great �exibility
for logging aspects, but is mainly dedicated for MontiCore developers.

-r path speci�es the directory for printing reports based on the given MontiCore gram-
mars (equivalent: -report path).

-h help: list or parameters (equivalent: -help)

A pathlist is a list of paths that are separated by spaces " ", i.e., in terms of the CLI
these are separated arguments.

When composing grammars, dependent grammars need to be located in the model path
using the -mp option. If the logging shall be adapted, option -cl can be used. For
the con�guration of the generation process (without changing the overall set of generated
�les), option -fp is useful. For a deep control of the generation work�ow, including various
con�guration options, it is possible to use a Groovy script with option -sc. Thus, Groovy
can be used to adapt the generation process.

16.2 Embedding the CLI in a Make�le Build Process

The CLI version is mainly dedicated for being called from a (traditional) shell and is
therefore well-suited for being embedded in a larger build script or a make�le. Arguments
are usually directly added at the commandline. We assume the reader of this section is
familiar with the Unix make facility.

We recall that MontiCore does not internally check, whether an execution is needed, be-
cause the startup phase of such a tool takes too much time. Thus, the decision whether a
regeneration of the code is needed has to be managed by a build tool, e.g., by a makefile.
Make is relatively well suited for this, but needs to know two things to accurately un-
derstand dependencies between build tasks: (a) what are the actual source �les that a
MontiCore call is using, and (b) what are the (dependent) generated target �les.

The output �les (b) can relatively easily be targeted in a makefile, because MontiCore �
like other tools � simply writes all its output into a dedicated target directory. The target
directory, however, itself should not be used as a makefile dependency object, because

306

16.2. Embedding the CLI in a Make�le Build Process

if MontiCore fails, it still produces the targets directory and a part of the �les. Instead
make o�ers a surrogate mechanism, the dummy goals.

On the input side, the situation is more complex, because MontiCore not only uses the
explicitly mentioned input grammar, but on demand also loads a lot of additional �les,
such as imported grammars or symbol tables from other sources. If one of those input
�les changes, a rerun of the generation process is inevitable. A (traditional) make�le
respectively its developer should not be forced to know � and even worse manually adapt
� these dependencies, in particular as they may change over time.

Even more complicated: the MontiCore generator uses the TOP mechanism to include
handwritten code into the generated code (see Section 14.3). This means that the genera-
tion process is sensitive to some handwritten Java classes and therefore needs regeneration,
if these classes are added or removed. Changes of these �les however, do not require a new
generation. Again, a makefile respectively its developer shall not handle these depen-
dencies manually.

On the other hand a general dependency of the generation process to all handwritten classes
would enforce a regeneration virtually every time. To prevent this, MontiCore has added
a report that tells the makefile (and equally also the Gradle infrastructure), which �les
are sensitive and therefore need to be observed.

There are essentially three factors that must lead to a regeneration: (a) a new Java �le has
been de�ned to which the TOP mechanism has to react, the opposite case (b) a Java �le
has been removed from the project which was previously used with the TOP mechanism,
and (c) changes to all other input artifacts, such as used grammars or templates. For
e�cient detection MontiCore generates IncGenCheck.sh which contains a shell script
that quickly detects these changes.

The following snippets are taken from a makefile that can be found in MontiCore's
01.experiments/makeuse. Its excerpts show how a straightforward integration of
generation, compilation, testing and execution can be de�ned within one makefile.

This part shows the initial con�guration needed to de�ne what needs to be done:

make�le1 # Individual Configuration: <<-- adapt this part
2 # M2-model to be processed (the grammar)
3 GRAMMAR=src/main/grammars/Automata.mc4

From the name of the grammar, the whole project structure is being derived using typical
defaults, which is very similar to Gradle. All other elements, e.g. where additional source
�les are located, where the target will be placed, etc. are then derived using defaults. One
advantage of makefiles is that these defaults can easily be overridden. The defaults are:

make�le1 # Configuration B: the generic part
2 # (which needs normally not be touched)
3 # a few things are derived from the grammar name
4 GramNameCap=$(patsubst src/main/grammars/%.mc4,%,$(GRAMMAR))
5 GramName=$(shell echo $(GramNameCap) | tr '[:upper:]' '[:lower:]')

307

16. MontiCore Use and Con�guration from CLI or Gradle

6

7 # path for the generated sources
8 GenSrc=target/$(GramName)
9

10 # name of resulting tool and its main class:
11 Tool=target/$(GramNameCap)Tool.jar
12 ToolClass=$(GramName).$(GramNameCap)Tool
13

14 # M2+M1-input: All handwritten sources (from M1) for the tool
15 SRC=$(wildcard src/main/**/$(GramName)/*java)

After the variable con�guration part, make�les usually de�ne a set of rules that describe
the execution order and dependencies. These are the rules in an Automata project that
depend on the tool being prepared such that it can be executed on di�erent models:

make�le1 # <<-- adapt this part
2 # specific goal: applying the generated tool on a model
3 target/PingPong.result: src/test/resources/example/PingPong.aut \
4 $(Tool) $(MCRTE)
5 java -cp "$(Tool);$(MCRTE)" \
6 $(ToolClass) $< target/symtab/ > $@

Here the tool is executed on PingPong.aut and the results stored in
target/PingPong.result. A makefile can easily generalize this rule for sys-
tematic execution of the tool on all available models.

But before the tool can be applied to automata, it needs to be created. For this the
following four activities are used, each of them fully generic in that sense that no tool
speci�c name, directory, etc. needs to be adapted here at all:

make�le1

2 # Start of generic rule part B (which needs normally not be touched)
3 # Activity 1 (M2): run MontiCore generator for $(GRAMMAR)
4 $(GenSrc).f: $(GRAMMAR) $(MCJAR) $(MCRTE) \
5 $(GenSrc).incGenStamp.f
6 java -jar $(MCJAR) \
7 -g $(GRAMMAR) \
8 -mp $(MCRTE) \
9 -hcp src/main/java \
10 -out target
11 @touch $@

The above rule executes the MontiCore generator.

The MontiCore generator is only called incrementally, i.e. if one of the explicitly mentioned
prerequisites changes. The rule includes $(GenSrc).incGenStamp.f, which acts as a
dummy object. It summarizes all the implicit prerequisite �les, such as grammars, tem-
plates, or sensitive Java �les, that MontiCore needs. If incGenStamp.f is absent or the
check of IncGenCheck.sh determines that one of the implicit input �les has changed,

308

16.2. Embedding the CLI in a Make�le Build Process

incGenStamp.f is updated and MontiCore generation is started. The rule for its inclu-
sion in the makefile is as follows (creating it if absent and executing IncGenCheck.sh
if present:

make�le1 # Check dependencies for $(GRAMMAR)
2 $(GenSrc).incGenStamp.f: $(InitTarget) force
3 @[-e $@] || touch $@
4 @[-e $(GenSrc)/IncGenCheck.sh] \
5 && sh $(GenSrc)/IncGenCheck.sh $@ || true

Again this rule normally needs no change or adaptation.

The included script IncGenCheck.sh contains entries like these:

shell1 [-e A1.java] || (touch $1; echo A1.java removed!; exit 0;)
2 [-e A2.java] && (touch $1; echo A2.java added!; exit 0;)
3

4 md5sum -c <<<"39...fe *G.mc4" \
5 || (touch $1; echo G.mc4 changed!; exit 0;)

Line 1 checks if A1.java is still existing, because it had been used in the TOP mechanism
generation. If it has been removed then the argument �le $1, which is incGenStamp.f,
gets a new timestamp, such that make recognizes that it needs to act. Furthermore, a
message describing the reason for the regeneration is issued and the script terminates. The
other way round, line 2 checks if A2.java has newly been added and then reacts. Line 4
shows the dependency to another artifact, here a grammar, where the content is relevant.

The second activity is compiling the AutomataTool from generated classes and source
�les located in src/main/java/automata:

make�le1 # Activity 2 (M2): compile the tool
2 $(GenSrc)-classes.f: $(GenSrc).f $(SRC) $(MCRTE)
3 @mkdir -p $(GenSrc)-classes/
4 javac -cp $(MCRTE) \
5 -d $(GenSrc)-classes/ \
6 -sourcepath "target/;src/main/java/" \
7 src/main/java/$(GramName)/$(GramNameCap)Tool.java
8 @touch $@

This rule also normally needs no change or adaptation.

Building a jar �le, like AutomataTool.jar:

make�le1 # Activity 3 (M2): build the tool jar
2 $(Tool): $(GenSrc)-classes.f
3 @echo "[MINFO]. 3: Create tool jar:" $<
4 jar cfe $(Tool) $(GramName).$(GramNameCap)Tool \
5 -C $(GenSrc)-classes .

309

16. MontiCore Use and Con�guration from CLI or Gradle

Compiling the JUnit tests, which are all located in src/test/java/automata:

make�le1 TESTSRC=$(wildcard src/test/**/$(GramName)/*java)
2

3 # Activity 4 (M2): compile the tests
4 # (which was on purpose not integrated in tool compilation)
5 $(GenSrc)-testclasses.f: $(Tool) $(SRC) $(MCRTE) $(JUNIT)
6 @echo "[MINFO]. 4: Compile tests in" $(GenSrc)-testclasses
7 @mkdir -p $(GenSrc)-testclasses/
8 javac -cp "$(Tool);$(MCRTE);$(JUNIT)" \
9 -d $(GenSrc)-testclasses/ \
10 -sourcepath "target/;src/test/java/" \
11 $(TESTSRC)
12 @touch $@

And executing the tests (if desired):

make�le1 # Activity 5 (M1): execute the tests
2 $(GenSrc)-tests.f: $(GenSrc)-testclasses.f $(JUNIT) $(HAMCREST)
3 @echo "[MINFO]. 5: Run tests in" $(GenSrc)-testclasses
4 @java -cp \
5 "$(GenSrc)-testclasses;$(Tool);$(MCRTE);$(JUNIT);$(HAMCREST)" \
6 org.junit.runner.JUnitCore \
7 $(TESTCLASSES)
8 @touch $@

The sensitivity of the MontiCore generator using the TOP mechanism has a number of
advantages, but also enforces that the build management is smart enough to cope with it
e�ectively. Thoughtlessly repeating each generation step every time is typical for Maven,
but in the long run it's quite tedious. Make and Gradle do a much better job, because
they listen to MontiCore, which tells them when to redo the generation.

In total, the above makefile construction covers each form of incrementality needed
and is e�cient in its execution. It is especially possibly to add additional dependencies,
further MontiCore tool generations or series of tool applications using advanced make rules.
Furthermore, if the tool application also uses and generates multiple �les, the tool itself
can use the same mechanism allowing large incremental tool chains (actually, only partially
ordered "tool nets").

16.3 MontiCore Used via Gradle Plugin

Gradle is a general purpose build tool that utilizes Groovy to de�ne build scripts against an
underlying API of methods and properties. Using Gradle a build is modeled as a directed
acyclic graph of tasks. Each task is a unit of work. Thus, de�ning a build includes de�ning a
number of tasks and wiring them together. Based on the task graph, Gradle determines the
order in which the tasks need to be executed. Besides de�ning tasks and their relationships,

310

16.3. MontiCore Used via Gradle Plugin

Gradle supports managing dependencies via Maven- and Ivy-compatible repositories and
the �le system.

Tasks are the unit of work in a Gradle build script. A task consists of actions, inputs,
and outputs where actions are the work the task takes care of, inputs are values, �les, or
directories the actions operate on and outputs are directories and �les that the actions
create or modify. Inputs, actions, and outputs are optional. However, the inputs and
outputs of a tasks need to be de�ned to utilize Gradle incremental execution feature because
Gradle uses these to determine whether a task needs to be executed if triggered or whether
it is already up to date. Wiring tasks can be either done by de�ning an explicit dependsOn
relation or by using an output of one task as an input of another task. Tasks can be as
simple as printing some text to the console or more complex including own properties and
methods. In the latter case typically a custom task type is de�ned and instances of this
task are used within the build process. Custom task types and instances of them can be
integrated in a build script by using plugins. For MontiCore we developed a custom task
type called MCTask, which is provided by the MontiCore Gradle plugin.

Prof. Dr. B. Rumpe

Lehrstuhl für

Software Engineering

RWTH Aachen

Page 2

Gradle Tasks

� Tasks can be defined ad-hoc:

� Or as instances of provided task types:

task helloWorld {

doLast {

println 'Hello world!'

}

}

task copyFiles(type: Copy) {

from "src"

into "dest"

}

https://docs.gradle.org/current/dsl/org.gradle.api.Task.html

Gradle

Gradle

task name
doLast adds the enclosed code
to the task as its last step

task prints Hello
world!

defines a
new task

defined in
Copy task of type Copy

Figure 16.3: Di�erent ways to de�ne tasks

Figure 16.3 demonstrates both cases. In the upper part a new task is de�ned ad-hoc
without a special type, while in the lower part an instance of the Copy task type is
created and con�gured. For further background information regarding Gradle, the online
documentation can be considered.

16.3.1 De�ning a MontiCore Task

The MontiCore plugin can be integrated in a build script as shown in Listing 16.4. In
case the project version does not match the desired MontiCore version use the desired
version instead of $version. The plugin o�ers the MCTask task type that executes
MontiCore, an incCheck closure, and creates a con�guration named grammar, which

311

16. MontiCore Use and Con�guration from CLI or Gradle

will be explained later in this section. The goal of the MCTask is to execute MontiCore,
i.e. to process a given grammar and produce the corresponding source code for it.

Gradle1 plugins {
2 id "monticore" version "$version" // MontiCore Plugin
3 }

Listing 16.4: Integrating the MontiCore plugin in a build script

Similar to the CLI jar, the MCTask has a couple of con�guration options. Two of the con-
�guration options are mandatory while all others are optional as explained in the following.
The mandatory parameters are the grammar parameter as well as the output directory
(outputDir). The creation of a new MCTask instance is depicted in Listing 16.5. The
instance is called generate and is of type MCTask (cf. l. 1). The task is con�gured to
process the HierAutomata grammar (cf. l. 2). The variable projectDir is prede�ned
in Gradle build scripts while grammarDir and outDir are custom variables. The gram-
mar parameter expects a grammar �le while the outputDir expects a directory. The
grammar �le serves as an input for the MCTask while the output directory and the �les
created by the task (and put into the output directory) are the tasks outputs. Based on
this input and output Gradle determines whether the task needs to be executed or is up
to date if it is triggered.

Gradle1 task generate (type: MCTask) {
2 grammar = file "$projectDir/$grammarDir/HierAutomata.mc4"
3 outputDir = file outDir
4 def uptoDate = incCheck("HierAutomata.mc4")
5 outputs.upToDateWhen { uptoDate }
6 }

Listing 16.5: Creating a task to process the grammar HierAutomata

However, due to the TOP mechanism, the grammar �le is not the only �le that needs to
be considered for the incremental execution. Hand-coded �les added to extend generated
implementations via the TOP mechanism as well as �les removed that previously extended
generated classes via the TOP mechanism require a task execution as well. However, only
their existence/absence but not their changes must result in a task execution. Thus, it is
not su�cient to declare this �les as task inputs as changes would trigger a task execution.
To solve this, MontiCore generates a �le called IncGenGradleCheck.txt that contains
information about the hand-coded �les that were considered during the generation process
and is used by the incCheck closure to determine whether a task execution is necessary.
This �le lists hand-coded �les that were present as well as those that were checked for
existence but were absent. This additional check can be used as shown in l. 4. Because of
this, the outputs are marked as not being up to date in case a task execution is necessary
due to the TOP mechanism.

Furthermore, the processed grammar typically is based on other grammars, e.g., the
MCBasics base grammar. There are two cases to consider: inheriting from local gram-
mars, i.e. grammars located in the same project, and inheriting from grammars provided

312

16.3. MontiCore Used via Gradle Plugin

via dependencies. For local grammars, the MCTask provides the modelPath parameter
(similar to the -mp parameter of the CLI jar), which can be used with a comma separated
list of strings of paths. By default, the model path is set to src/main/grammars if the
path is present in the current project. However, the model path can be con�gured explicitly
as well. An example on how to set the model path explicitly is shown in Listing 16.6. For
grammars provided via dependencies the grammar con�guration is added. Dependencies
added to this con�guration as demonstrated in Listing 16.9 are considered by the MCTask
as well. If these dependencies change a new generation is triggered as well.

Gradle1 task generate (type: MCTask) {
2 // grammar and outputDir configured as before
3 modelPath "$projectDir/grammars", "$projectDir/grammars2"
4 }

Listing 16.6: Con�guring the model path

Further parameters are

handcodedPath "path1", "path2" Optional list of directories for detecting hand-
written code that needs to be integrated (cf. TOP mechanism in Section 14.3). This
default value is the directory corresponding to src/main/java if the directory is
present in the current project.

script "file.groovy" Optional Groovy script to control the generation work�ow.
For further explanation on custom Groovy scripts see Section 16.5. This op-
tion o�ers great �exibility, but also risks of failure. By default the script
monticore_standard.groovy that is shipped with MontiCore is used.

groovyHook1 "file.groovy" Optional Groovy script that is hooked into the work-
�ow of the standard script (cf. Section 16.5) at hook point one, which is called after
initialization, before the actual work�ow begins.

groovyHook2 "file.groovy" Optional Groovy script that is hooked into the work-
�ow of the standard script (cf. Section 16.5) at hook point two, which is called before
the generation step.

templatePath "path1", "path2" Optional list of directories for detecting hand-
written templates to integrate. See Chapter 13 for an explanation for the use of tem-
plates. This option o�ers great �exibility for the generation process, but also risks of
failure. This default value is the directory corresponding to src/main/resources
if the directory is present in the current project.

configTemplate "file.ftl" Optional template to con�gure the integration of hand-
written templates. Thus, it can only be used in conjunction with a valid
templatePath.

dev speci�es whether much more detailed MontiCore developer level logging should be
used. The default is the MontiCore user level, i.e. product developer level. This
option selects another prede�ned Log con�guration.

313

16. MontiCore Use and Con�guration from CLI or Gradle

customLog changes the logback con�guration to a customized �le, e.g. log level and
message format. This option o�ers great �exibility for logging aspects, but is mainly
dedicated for MontiCore developers.

help help: list or parameters

For handocedPath and templatePath again String lists are used. Paths can be added
as described above. The parameters dev and help are booleans and are false by default.

16.3.2 Compilation and Packaging

For compilation and packaging Gradle's Java Library Plugin that is depicted in Listing 16.7
can be used.

Gradle1 plugins {
2 id 'java-library'
3 }

Listing 16.7: Using the Java Library plugin

When using this plugin, typical tasks for Java projects are available such as compileJava
or jar. The build task can be used to compile, test and package the project. However,
by default the provided tasks are not aware of the generated code and the MCTasks. Thus,
the generated sources need to be added to the main source set as shown in Listing 16.8 in
l. 1� and the compile task must be linked to the MCTasks (cf. l. 4�). For creating an uber
or fat jar, e.g. to create CLI tools, the Gradle's shadow plugin can be used.

Gradle1 sourceSets {
2 main.java.srcDirs += [outDir]
3 }
4 compileJava {
5 dependsOn project.collect { it.tasks.withType(MCTask) }
6 }

Listing 16.8: Integrating the MontiCore plugin in a build script

16.3.3 De�ning external Dependencies

After generating code from a grammar, the code needs to be compiled. To compile the
generated code, the MontiCore runtime and typically the generated code of the included
grammars are needed. Therefore, dependencies need to be added to the build script as
shown in Listing 16.9.

In Gradle, con�gurations are used for dependency resolution. Con�gurations can be added
manually or integrated using plugins. The Java plugin, for example, o�ers con�gurations
for compilation (implementation) and testing (testImplementation). The Monti-
Core runtime as well as the base grammar library are used for compilation in Listing 16.9.

314

16.3. MontiCore Used via Gradle Plugin

Gradle1 dependencies {
2 implementation "de.monticore:monticore-runtime:$mcversion"
3 implementation "de.monticore:monticore-grammar:$mcversion"
4 grammar "de.monticore:monticore-grammar:$mcversion:grammars"
5 }

Listing 16.9: Adding MontiCore dependencies

The grammar con�guration used in Listing 16.9 is added by the MontiCore plugin. This
con�guration is used to add external grammars to the MCTask. In this example, the Mon-
tiCore base grammars are added. While the generated and compiled code is provided by
the "normal" jar, grammars are provided by jars with the classi�er grammars. Thus, this
jar of the base grammars is used for the grammar con�guration.

Gradle1 repositories {
2 maven {
3 url "https://nexus.se.rwth-aachen.de/content/groups/public"
4 }
5 }

Listing 16.10: Repository declaration in build.gradle

Gradle1 pluginManagement {
2 repositories {
3 maven {
4 url "https://nexus.se.rwth-aachen.de/content/groups/public"
5 }
6 }
7 }

Listing 16.11: Repository declaration in settings.gradle

Finally, the declared dependencies must be resolvable by Gradle. This holds for the depen-
dencies as well as the MontiCore plugin. Therefore, a repository information must be added
to the build.gradle �le for project dependencies and to the settings.gradle �le for
the plugin. Listing 16.10 demonstrates the repository declaration for the build.gradle
while Listing 16.11 demonstrates it for the settings.gradle �le.

16.3.4 Example Build Script

Listing 16.12 serves as an example build �le for de�ning the build process of
MontiCore-based projects. It is also available in the git repository located here:
monticore-test/example.

The script is a combination of the above discussed aspects and con�gures the following:

315

16. MontiCore Use and Con�guration from CLI or Gradle

build.gradle1 plugins {
2 id 'java-library'
3 id 'monticore' version '7.0.0'// MontiCore Plugin
4 }
5

6 group = "my.project"
7 version = '1.0.0-SNAPSHOT'
8

9 buildDir = file("$projectDir/target")
10 def mcversion = '7.0.0'
11 // or alternatively use a snapshot, e.g. ’7.0.0-SNAPSHOT’
12 def grammarName = 'Automata'
13 def outDir = "$buildDir/generated-sources/"
14

15

16 dependencies {
17 implementation "de.monticore:monticore-runtime:$mcversion"
18 implementation "de.monticore:monticore-grammar:$mcversion"
19 grammar "de.monticore:monticore-grammar:$mcversion:grammars"
20 testImplementation "junit:junit:4.13.1"
21 }
22

23 repositories {
24 maven {
25 url "https://nexus.se.rwth-aachen.de/content/groups/public"
26 }
27 }
28

29 sourceSets {
30 main.java.srcDirs += [outDir]
31 }
32

33 task generate (type: MCTask) {
34 grammar = file "src/main/grammars/${grammarName}.mc4"
35 outputDir = file outDir
36 outputs.upToDateWhen { incCheck("${grammarName}.mc4") }
37 }
38

39 compileJava {
40 dependsOn project.collect { it.tasks.withType(MCTask) }
41 }

Listing 16.12: Example build.gradle

� In ll. 1� the Java and MontiCore plugins are integrated as described in Section 16.3.1
and 16.3.2.

In ll. 6� the group and version used to deploy the project are con�gured. The name
of the project is derived from the folder name (or can be explicitly de�ned within
the settings.gradle).

316

16.4. MontiCore in Maven

� In ll. 9� several variables are initialized. The introduced local variables mcversion,
outDir and grammarName are only for convenience and are used to store values
that are used more than once.

� buildDir is a variable prede�ned by Gradle. It speci�es where all generated
output shall be located. The default is directory build, but in this example it
is con�gured to be $projectDir/target using the prede�ned projectDir
variable.

� As MontiCore's version is used several times within the dependencies block the
local variable mcversion is introduced here.

� The local variable outDir is introduced as this information is used in the
MCTask con�guration for the output directory for MontiCore as well as to add
this folder to the source set to include the generated sources in the compilation
process.

� The local variable grammarName holds the name of the grammar and is used
for the input grammar and the incCheck �le that contains additional depen-
dencies of the last execution.

� In ll. 16� dependencies to MontiCore and JUnit used for generation, compilation,
and testing are de�ned as explained in Section 16.3.3.

� The repository for all relevant sources is declared in ll. 23� as explained in Sec-
tion 16.3.3.

� The output directory is added to the main source set in l. 29�. This has the e�ect
that it is included in the compilation as explained in Section 16.3.2.

� The MCTask instance is created in ll. 33�. It processes the grammar Automata,
produces the result in outDir and clari�es with incCheck, when an update is
needed. The latter also includes the incremental re-generation, when a dependent
artifact such as a template or a handwritten Java class for the TOP mechanism is
modi�ed. For a more detailed explanation please consider reading Section 16.3.1

� Finally, the compilation is linked to all MCTasks in ll. 39�.

This build �le is capable of executing MontiCore, compiling and testing the generated code
as well as packaging the resulting class �les in a jar �le. It can be extended accordingly
to several independent generation processes based on independent (or not so independent)
grammar components and potentially other generation activities in the usual Gradle styles.

16.4 MontiCore in Maven

As explained at the beginning of this chapter, we recommend for your own e�ectiveness
that you do not use Maven for a generation build chain, but only for downloading external
sources from other projects. We assume, that Gradle or a similar tooling infrastructure
will displace Maven in the long run. However, if you currently have to use it, MontiCore
provides a Maven plugin that o�ers to con�gure the same parameters like in Gradle or the
make�le CLI.

317

16. MontiCore Use and Con�guration from CLI or Gradle

16.5 MontiCore Work�ow Con�guration with Groovy

Internally the MontiCore generator is controlled by a Groovy script which manages the
high-level work�ow. Groovy is an interpreted language [KLK+15] but looks very similar
to Java.

The use of Groovy as con�guration script has the big advantage that the behavior of
MontiCore can be adapted to speci�c needs without any recompiling. The MontiCore
tool can thus be used completely out of the box but still be adapted and extended rather
�exibly. One major use of this �exibility is extending the generation, for example, by adding
additional templates to the output process using the hooks discussed in Chapter 14.

The same approach cannot only be used for the language workbench MontiCore itself but
also for derived tools that need �exible con�guration as well. However, there is always a
trade-o�: Groovy-based con�guration is probably individual to the dedicated tool, while
in larger build scripts, it is useful to shovel certain kinds of con�gurations between several
tools, such as verbosity or source and model paths. On the other hand, we might even use
individual Groovy-con�gurations for each speci�c model if desired.

In MontiCore, the Groovy script is executed using the base class MontiCoreScript,
which provides a set of available methods (cf. Listing 16.14). MontiCore pro-
vides a prede�ned Groovy script that can be used to execute the generator:
monticore_standard.groovy. The script con�gures the generation process, as ex-
plained later in this chapter, and it is the default con�guration for MontiCore if not cus-
tomized individually. As described in Chapter 2, the user can choose between using the
prede�ned Groovy script provided by MontiCore as well as develop a custom Groovy script.
These scripts may use Java methods and variables as well as imported classes explained
below. Groovy scripts are passed to the generator using the -script or -s parameter
described in Chapter 2.

Groovy is used for the realization of a �exible top-level control work�ow in order to provide
a high degree of �exibility to cope with Javas customization and �exibility de�ciencies:
A Java-coded control work�ow cannot be changed without recompilation. Even worse,
recompilation requires not only the source code of the control work�ow but also the entire
original build environment (tools and dependencies). This is not optimal for e�cient on-
site customization, e.g., by a tool user (here, language developers using MontiCore). The
Groovy integration chosen here is much more �exible and requires only little infrastructure.

MontiCore implements a generation process consisting of the following nine actions, where
M2-M9 are repeated for each processed grammar in a loop:

M1 Basic setup and initialization (logging, global scope, reporting)

M2 Load and parse the input grammar

M3 Derive the symbol table for the grammar

M4 Check the grammar context conditions

M5 Translate Grammar-AST to CD-AST (including symbol table)

318

16.5. MontiCore Work�ow Con�guration with Groovy

M6 Generate parser using ANTLR

M7 Decorate CDs with classes and methods

M8 Generate AST classes, symbol table, visitor, and context condition infrastructure

M9 Write reports to �les

Listing 16.13 depicts the actual implementation of the MontiCore control work�ow in
Groovy. This listing shows the Groovy script to generate the standard classes, as described
in this book.

The �rst step, M1, initializes MontiCore. It initializes logging, creates the global scope,
and enables reporting. Steps M2 to M4 belong to the frontend, which processes the input
and checks the correctness of the processed grammar. Usually, the input grammar imports
further grammars that have to be loaded via the symbol table (M3). When the frontend is
�nished, the backend starts to produce code and reports beginning with step M5. In M5,
the grammar AST is translated to a class diagram AST, which will be used in subsequent
generation steps and is written to a �le as part of the reports created by MontiCore.
Similarly, MontiCore creates corresponding class diagrams for the symbol management
infrastructure. In M6, an input �le for the ANTLR parser generator is created. Then the
ANTLR parser generator is executed, which generates the desired language parser. Next,
the class diagrams are enriched with additional classes and methods in M7 for the AST
class generation as preparation for M8. Finally, in M8, the class diagrams are transformed
into executable Java artifacts. This includes generating classes for the AST, symbol table,
visitor, and context condition infrastructure. In the end, in M9, all reports are written
into �les.

The work�ow is rather straight forward (see points M1 to M9 above). Simplicity in the
controlling scripts is favored here. Thus, adaptation of the control work�ow can be achieved
by substituting the control script through a handwritten script. The handwritten script
can reuse the various prede�ned functions provided by the MontiCore library because these
functions are designed in particular for being used by control work�ow scripts.

The individual steps performed in the control work�ow, as depicted in Listing 16.13, are
part of the MontiCore component library and are described in Section 16.5.2.

16.5.1 The Standard Groovy Generation Script

Listing 16.13 depicts the Groovy script monticore_standard.groovy that is used by
the MontiCore generator to generate default classes. It generates the complete model pro-
cessing infrastructure such as lexer, parser, AST classes, context conditions, visitors, and
symbol table infrastructure. It is the default script used for MontiCore. This includes run-
ning the generator via CLI or a build script, such as Gradle, make, or Maven. Customized
scripts can be passed as an argument using the parameters -s or -script. For minor
adjustments to the work�ow without changing the standard groovy script itself, MontiCore
additionally o�ers prede�ned hook points at appropriate positions. Therefore, the script
o�ers one hook point after initialization (l. 19), before the actual work�ow begins. The

319

16. MontiCore Use and Con�guration from CLI or Gradle

scripts can be �exibly injected using the designated parameters of the CLI (e.g., -gh1,
-gh2) or the analogous variables of the Gradle script.

Groovy1

2 // M1: Basic setup and initialization
3 // M1.1: Logging
4 Log.info("--------------------------------", LOG_ID)
5 Log.info("MontiCore", LOG_ID)
6 Log.info(" - eating your models since 2005", LOG_ID)
7 Log.info("--------------------------------", LOG_ID)
8 Log.debug("Grammar argument : "
9 + _configuration.getGrammarsAsStrings(), LOG_ID)
10 Log.debug("Grammar files : " + grammars, LOG_ID)
11 Log.debug("Modelpath : " + modelPath, LOG_ID)
12 Log.debug("Output dir : " + out, LOG_ID)
13 Log.debug("Report dir : " + report, LOG_ID)
14 Log.debug("Handcoded argument : "
15 + _configuration.getHandcodedPathAsStrings(), LOG_ID)
16 Log.debug("Handcoded files : " + handcodedPath, LOG_ID)
17

18 // groovy script hook point
19 hook(gh1, glex, grammars)
20

21 // M1.2: Build Global Scope
22 mcScope = createMCGlobalScope(modelPath)
23

24 // M1.3: Initialize reporting (output)
25 Reporting.init(out.getAbsolutePath(),
26 report.getAbsolutePath(), reportManagerFactory)
27

28 while (grammarIterator.hasNext()) {
29 input = grammarIterator.next()
30

31 // M2: Parse grammar
32 astGrammar = parseGrammar(input)
33

34 if (astGrammar.isPresent()) {
35 astGrammar = astGrammar.get()
36

37 // start reporting on that grammar
38 grammarName = Names.getQualifiedName(
39 astGrammar.getPackageList(), astGrammar.getName())
40 Reporting.on(grammarName)
41 Reporting.reportModelStart(astGrammar, grammarName, "")
42 Reporting.reportParseInputFile(input, grammarName)
43

44 // M3: Populate symbol table
45 astGrammar = createSymbolsFromAST(mcScope, astGrammar)
46

47 // M4: Execute context conditions
48 runGrammarCoCos(astGrammar, mcScope)

320

16.5. MontiCore Work�ow Con�guration with Groovy

49

50 // M5: Transform grammar AST into a class diagram and report it
51 cd = deriveCD(astGrammar, glex, mcScope)
52

53 reportCD(cd, report)
54

55 // M6: Generate parser and wrapper
56 generateParser(glex, cd, astGrammar, mcScope, handcodedPath,
57 templatePath, out)
58

59 // M7: Decorate class diagrams and report it
60 decoratedCD = decorateCD(glex, mcScope, cd, handcodedPath)
61

62 // groovy script hook point
63 hook(gh2, glex, astGrammar, decoratedCD, cd)
64

65 // generator template configuration with -ct hook point
66 configureGenerator(glex, decoratedCD, templatePath)
67

68 // M8 Generate ast classes, symbol table, visitor,
69 // and context conditions
70 generateFromCD(glex, cd, decoratedCD, out, handcodedPath,

templatePath)
71

72 // M9: Write reports to files
73 // M9.1: Inform about successful completion for grammar
74 Log.info("Grammar " + astGrammar.getName() +
75 " processed successfully!", LOG_ID)
76

77 // M9.2: Flush reporting
78 Reporting.reportModelEnd(astGrammar.getName(), "")
79 Reporting.flush(astGrammar)
80 }
81 }

Listing 16.13: Groovy script used to generate the standard result

Please note that almost everything is con�gured and executed through this script, but the
Log has already been initialized before, to allow earliest outputs with Log.init(). If an
alternate Log mechanism should be used, it is possible to re-initialize it within this script
(cf. Section 15.4).

16.5.2 MontiCore Base Class for Groovy Scripts

Listing 16.14 depicts the method signatures that are provided by the base class
MontiCoreScript shipped with MontiCore and can be used within the Groovy script.
The Groovy scripts provided by MontiCore rely on this base class. Furthermore, custom
Groovy scripts can use this base class to de�ne a custom generation process. But be-
sides that, within a Groovy script, via the typical import mechanism, variable and method
declarations known from Java can be used to implement a custom Groovy script. In the

321

16. MontiCore Use and Con�guration from CLI or Gradle

following subsections, methods of the base class, prede�ned variable, and pre-imported
classes are brie�y described.

Java MontiCoreScript1

2 IGrammarFamilyGlobalScope createMCGlobalScope(
3 ModelPath modelPath)
4 Optional<ASTMCGrammar> parseGrammar(Path grammar)
5 List<ASTMCGrammar> parseGrammars(IterablePath grammarPath)
6 generateParser(GlobalExtensionManagement glex,
7 ASTCDCompilationUnit astClassDiagram, ASTMCGrammar grammar,
8 GrammarFamilyGlobalScope symbolTable,
9 IterablePath handcodedPath, IterablePath templatePath,
10 File outputDirectory)
11 generateParser(GlobalExtensionManagement glex,
12 ASTMCGrammar grammar,
13 GrammarFamilyGlobalScope symbolTable,
14 IterablePath handcodedPath, IterablePath templatePath,
15 File outputDirectory, boolean embeddedJavaCode,
16 Languages lang)
17 ASTMCGrammar createSymbolsFromAST(
18 IGrammarFamilyGlobalScope globalScope,
19 ASTMCGrammar ast)
20 ASTCDCompilationUnit createSymbolsFromAST(
21 ICD4AnalysisGlobalScope globalScope,
22 ASTCDCompilationUnit ast)
23 runGrammarCoCos(ASTMCGrammar ast,
24 IGrammar_WithConceptsGlobalScope scope)
25 ASTCDCompilationUnit deriveCD(ASTMCGrammar astGrammar,
26 GlobalExtensionManagement glex,
27 ICD4AnalysisGlobalScope cdScope)
28 reportCD(ASTCDCompilationUnit astCd, File outputDirectory)
29 hook(Optional<String> file, Object... args)
30 configureGenerator(GlobalExtensionManagement glex,
31 ASTCDCompilationUnit cd,
32 IterablePath templatePath)
33 decorateCD(GlobalExtensionManagement glex,
34 ICD4AnalysisScope cdScope, ASTCDCompilationUnit cd,
35 IterablePath handCodedPath)
36 generateFromCD(GlobalExtensionManagement glex,
37 ASTCDCompilationUnit baseCD,
38 ASTCDCompilationUnit decoratedCD, File outputDirectory,
39 IterablePath handcodedPath, IterablePath templatePath)
40 decorateEmfCD(GlobalExtensionManagement glex,
41 ICD4AnalysisScope cdScope, ASTCDCompilationUnit cd,
42 IterablePath handCodedPath)
43 generateEmfFromCD(GlobalExtensionManagement glex,
44 ASTCDCompilationUnit baseCD, ASTCDCompilationUnit cd,
45 File outputDirectory, IterablePath handcodedPath,
46 IterablePath templatePath)

Listing 16.14: Methods available in the Groovy scripts

322

16.5. MontiCore Work�ow Con�guration with Groovy

16.5.3 Methods Available within Groovy Scripts

The provided Groovy script uses several methods that are prede�ned by the
MontiCoreScript base class. Moreover, to enable individual adaptions for custom
scripts, MontiCore o�ers additional methods ready for con�guration. For instance, Mon-
tiCore is able to generate AST classes that are compatible with the Eclipse Modeling
Framework (EMF) [SBPM08]. In this section, these methods are brie�y explained. There-
fore, the expected arguments, as well as the realized functionality, and, if applicable, the
returned value are described.

createMCGlobalScope(...) creates a unique global scope based on a model path
received as input parameter. The global scope contains symbols and subscopes of
the parsed grammar AST and the consecutively created class diagrams. It is used to
e�ectively resolve corresponding symbols, e.g., imported grammars.

parseGrammar(...) parses the grammar received as input parameter and creates the
corresponding AST. Returns the created AST.

parseGrammars(...) is similar to parseGrammar(...) but processes all grammars
in the speci�ed path.

createSymbolsFromAST(...) creates the symbols and scopes for the symbol table
of the given grammar and attaches them to the AST elements. Returns the AST
including its symbol table.

runGrammarCoCos(...) executes the context conditions for grammars to ensure well-
formedness of the processed grammar. If the grammar violates any context condition,
an appropriate message is displayed and the generation process aborted.

deriveCD(...) translates the grammar AST to a class diagram AST for further pro-
cessing. Returns the created class diagram AST, which serves as input for the code
generation.

generateParser(...) generates the parser and lexer for the processed grammar us-
ing ANTLR. Therefore, a g4 �le is created and passed to ANTLR to create the
corresponding parser and lexer.

reportCD(...) writes the given class diagram to a �le located in the speci�ed output
directory for reporting purposes. Can be used to report a base class diagram as well
as a decorated one.

hook(...) executes an additional groovy script for the speci�ed hook point. This hook
points can be de�ned using e.g. -gh1 or -gh2 parameters. The executed sub-
script receives an array of customizable arguments, enabling the sub-script to perform
further operations on objects available during the standard work�ow.

configureGenerator(...) calls a speci�ed FreeMarker template, e.g. given as -ct
parameter, before the actual generation starts and thus allows further con�guring of
the generation process.

decorateCD(...) enriches the class diagram AST with further methods for the gen-
erated AST and symbol table classes for the processed grammar. Furthermore, the

323

16. MontiCore Use and Con�guration from CLI or Gradle

method derives additional classes for the visitor and context condition infrastructure.
These classes are generated by the generate(...) method.

generateFromCD(...) generates the AST classes, symbol and scope classes, the visitor
interfaces and classes, and classes to de�ne and check context conditions for the
language de�ned by the processed grammar.

decorateEmfCD(...) is similar to decorateCD(...) but creates methods for EMF
compatibility as well.

generateEmfFromCD(...) is similar to generateFromCD(...), but creates classes
and methods for EMF compatibility as well.

16.5.4 Variables Available within Groovy Scripts

The provided Groovy script uses several variables that are prede�ned by the MontiCore
base class. In this section, those variables are brie�y explained. Therefore, their types and
purposes are described.

IterablePath grammars corresponds to the grammars parameter used to create the
grammarIterator.

Iterator<Path> grammarIterator used to process grammars sequentially.

ModelPath modelPath created from the model path parameter and used to load gram-
mars such as imported grammars, if needed.

IterablePath handcodedPath created from the path parameter describing where
handcoded classes are and used for the handwritten code integration mechanism.

File out is the output directory.

IterablePath templatePath created from the path parameter for FreeMarker tem-
plates and used to �nd handwritten templates.

Optional<String> gh1 optional path to a custom groovy script for the �rst prede�ned
work�ow hook point.

Optional<String> gh2 optional path to a custom groovy script for the second prede-
�ned work�ow hook point.

String LOG_ID is the name of the logger which is "MAIN" by default. Can be overrid-
den in custom Groovy scripts.

GlobalExtensionManagement glex is used for the template attachment and tem-
plate hook point mechanism.

MontiCoreReports reportManagerFactory initializes and provides the set of re-
ports desired for MontiCore to the reporting framework.

324

16.5. MontiCore Work�ow Con�guration with Groovy

16.5.5 Available preimported Classes within Groovy Scripts

To further ease the implementation of (custom) Groovy scripts, several classes provided
by MontiCore are imported by default. In this section, these classes are brie�y explained.

Log o�ers methods to write to the log �les. Includes methods for log warnings, informa-
tions and errors.

Reporting o�ers methods to write reports.

Names o�ers methods for name handling such as creating lists from quali�ed names and
vice versa.

InputOutputFilesReporter o�ers methods to track which �les are read, written, or
considered (e.g., for the handwritten code integration mechanism) during a genera-
tion run.

325

Chapter 17

Example MontiCore Grammars

MontiCore provides a number of component grammars organized in library projects. These
can be found in appropriate github projects under the MontiCore group structure. Their
reuse supports language engineering because typically these languages have been tested
and come with lots of reusable extra functionalities.

One major group of reusable and extensible component grammars are the literal, expres-
sion, type and statement grammars explained in the following Chapters 18 and 19. They
and many other grammars build on MCBasics explained in Section 17.1.

Furthermore, this chapter shortly describes some additional grammars that the Monti-
Core core project provides. This and the following chapters therefore serve two purposes:
First, they explain some of the available grammars and nonterminals for potential reuse
and extension. Second, they also demonstrate how to write reusable, and hopefully also
well engineered grammars. For that purpose, the chapters discuss the nonterminals and
their arrangements in productions as well as some design decisions and best practices for
grammar de�nition.

Tip 17.1: Grammar Components Explained in this Chapter

The grammars discussed below can be found in the MontiCore repository under:

Files1 Repository: MontiCore/monticore github
2 Directory: monticore-grammar/src/main/grammars/
3 Files: de.monticore.MCBasics.mc4
4 de.monticore.Cardinality.mc4
5 de.monticore.Completeness.mc4
6 de.monticore.UMLStereotype.mc4
7 de.monticore.UMLModifier.mc4
8 de.monticore.MCCommon.mc4
9 Directory: monticore-grammar/src/main/examples/
10 Files: de.monticore.MCNumbers.mc4
11 de.monticore.MCHexNumbers.mc4
12 de.monticore.StringLiterals.mc4

17. Example MontiCore Grammars

17.1 Component Grammar MCBasics.mc4

Lexicals are basic elements of a language, such as names, numbers, math operators, whites-
paces, and comments. Several of these tokens do not even show up in the AST.

The header de�nes the package and that the MCBasics grammar is a component grammar
that depends on no other grammar.

MCG MCBasics1 package de.monticore;
2

3 component grammar MCBasics {

Names have a special meaning. They are used as symbol references that can either point
to a symbol de�ned elsewhere or introduce a new symbol. Nonterminal Name is therefore
relevant in grammars. If a token does not explicitly de�ne a di�erent type, its Java type
automatically is String.

MCG MCBasics1 token Name =
2 ('a'..'z' | 'A'..'Z' | '_' | '$')
3 ('a'..'z' | 'A'..'Z' | '_' | '0'..'9' | '$')*;

NEWLINE accepts all three variants of line breaks. Whitespaces are captured with WS and
the Java code after it leads to an ignoring of that token. So white spaces do not show up
in the AST.

MCG MCBasics1 fragment token NEWLINE =
2 ('\r' '\n' | '\r' | '\n'): ;
3

4 token WS =
5 (' ' | '\t' | '\r' | '\n') : ->skip;

Comments are de�ned in Java style either as single line ("//") or are enclosed in "/*"
and "*/", but are not nested. Comments are also not stored as token but are attached to
the currently processed token. This is ensured by the enclosed Java code (not completely
shown here):

MCG MCBasics1 token SL_COMMENT =
2 "//" (~('\n' |'\r'))* : ->skip
3 {storeComment();};
4

5 token ML_COMMENT =
6 "/*" .*? "*/" : -> skip
7 {storeComment();};

The semantic predicate storeComment() is handcoded by the MontiCore developers. It
manages to attach the comment to the nearby AST node, such that it can be retrieved if

328

17.2. Component Grammar StringLiterals.mc4

needed. It is generally a good practice to factor out methods to check certain properties
because larger pieces of Java are less e�cient to develop and test within a grammar.

17.2 Component Grammar StringLiterals.mc4

There are two important literals to manage strings: the CharLiteral and the
StringLiteral. Both are de�ned in such a way, that they embody the typical lit-
erals of a programming language like Java. In particular, both nonterminals embody the
typical escape sequences and character encodings that Java uses. It may therefore be that
a totally di�erent kind of language cannot directly reuse these literals.

The StringLiterals grammar basically contains three blocks: (1) The two tokens,
CharToken and StringToken are de�ned to identify the core literals. (2) Two atomic
AST nonterminals, called CharLiteral and StringLiteral, are de�ned that contains
the literal and are meant to be used in other grammars. (3) Each AST class resulting
from these nonterminals is extended by a basic method getValue that allows to retrieve
the decoded value. For that purpose, the code uses an additional class from the RTE,
called MCLiteralsDecoder that provides numerous methods decodings strings to the
respective values.

StringLiterals build on MCBasics:

MCG StringLiterals1

2 component grammar StringLiterals extends de.monticore.MCBasics {

The following block of token precisely de�nes characters including all possible escape se-
quences. Both, characters and strings are parsed with their delimiters, but only the con-
tents is stored. Note, however, that the escape sequences are not expanded, but remain
as parsed. This form of storage is common, because repeated stripping of a string on each
reuse is somewhat ine�cient, but escapes potentially should remain for later processing.

MCG StringLiterals1 CharLiteral =
2 source:CharToken;
3

4 astrule CharLiteral =
5 method public char getValue() {
6 return
7 de.monticore.literals.MCLiteralsDecoder.decodeChar(getSource());
8 }
9 ;
10

11 token CharToken
12 = '\'' (SingleCharacter|EscapeSequence) '\''
13 : {setText(getText().substring(1, getText().length() - 1));};
14

15 fragment token HexDigit
16 = '0'..'9' | 'a'..'f' | 'A'..'F' ;

329

17. Example MontiCore Grammars

17

18 fragment token OctalDigit
19 = '0'..'7' ;
20

21 fragment token SingleCharacter
22 = ~ ('\'');
23

24 fragment token EscapeSequence
25 = '\\' ('b' | 't' | 'n' | 'f' | 'r' | '"' | '\'' | '\\')
26 | OctalEscape | UnicodeEscape;
27

28 fragment token OctalEscape
29 = '\\' OctalDigit
30 | '\\' OctalDigit OctalDigit
31 | '\\' ZeroToThree OctalDigit OctalDigit;
32

33 fragment token UnicodeEscape
34 = '\\' 'u' HexDigit HexDigit HexDigit HexDigit;
35

36 fragment token ZeroToThree
37 = '0'..'3' ;

While the token CharToken could be used directly, it is convenient to embed the pure
string in an AST object that provides additional functionality and that can be targeted
by the visitors. It is therefore a matter of taste, whether the token CharToken is used
directly or the nonterminal CharLiteral that embeds the token.

This grammar also shows that smaller Java functions can relatively easily be added to the
generated AST classes, but it is generally not recommended to write much functionality
in this form. Instead the handcoded extension mechanism described in Chapter 14 should
be used.

The de�nition of CharToken relies on a complex structure of token fragments, because
the escapes need to be precisely de�ned to ensure that only correct characters are actually
parsed. For this purpose the grammar uses a number of fragments that cannot be used
as direct token, but merely as shortcuts within a concrete token de�nition. However, they
can be reused in other, importing grammars for de�ning more tokens.

Strings are de�ned using a similar structure to characters:

MCG StringLiterals1 StringLiteral =
2 source:StringToken;
3

4 astrule StringLiteral =
5 content:String
6 method public String getValue() {
7 if(content == null) {
8 content =
9 MCLiteralsDecoder.decodeString(getSource());
10 }
11 return content;

330

17.3. Component Grammars for Numbers

12 };
13

14 token StringToken
15 = '"' (StringCharacters)? '"'
16 : {setText(getText().substring(1, getText().length() - 1));};
17

18 fragment token StringCharacters
19 = (StringCharacter)+;
20

21 fragment token StringCharacter
22 = ~ ('"' | '\\') | EscapeSequence;

One di�erence to a single character is that both, the decoded string and the original parsed
string are both (redundantly) stored to prevent repeated calculation. On the other hand if
the AST object is modi�ed, then both attributes, source and content need to be kept
in synchronization.

Please note that Strings do not allow arbitrary form of escapes, e.g. "\a " is forbidden.
Furthermore, it is important that a string is parsed in detail, because escape sequences
may contain a string delimiter ", without actually terminating the string.

17.3 Component Grammars for Numbers

Numbers can be positive decimals only, or also come with a negative sign. In many
programming language they also can be provided as hexadecimals, octals or binary numbers
and they could be integers or longs.

The following two grammars demonstrate, how to de�ne numbers and extend the way how
numbers are encoded in a subgrammar. The following grammar introduces an interface
Number that is meant for a subsumption of di�erent potential encodings. The interface
comes with an extension of three methods, for either getting the direct source that has
been parsed or the decoded integer with getValueInt respectively long with getValue.
Please note that the methods are attached to the interface and need to be overwritten in
all implementing nonterminals.

17.3.1 Component Grammar MCNumbers.mc4

Grammar MCNumbers provides two nonterminals for positive decimals and integers:

MCG MCNumbers1

2 component grammar MCNumbers extends de.monticore.MCBasics {
3

4 interface Number;
5

6 astrule Number =
7 method public String getSource()

331

17. Example MontiCore Grammars

8 { throw new UnsupportedOperationException(
9 "0xFF230 Method not implemented"); }
10 method public int getValueInt()
11 { throw new UnsupportedOperationException(
12 "0xFF231 Method not implemented"); }
13 method public long getValue()
14 { throw new UnsupportedOperationException(
15 "0xFF232 Method not implemented"); }
16 ;

The interface methods getSource(), getValueInt(), and getValue() (cf. ll. 6)
have been given default implementations, which in this case basically means throwing an
exception, because the actual implementation can only be provided in the implementing
classes. However, the signature is common to all known terminals implementing interface
Number (cf. l. 4).

One nonterminal implementing this interface parses exactly the Decimals and thus pro-
duces only positive numbers (≥ 0):

MCG MCNumbers1 Decimal implements Number =
2 source:DecimalToken;
3

4 astrule Decimal =
5 method public int getValueInt() {
6 return Integer.parseInt(getSource());
7 }
8 method public long getValue() {
9 return Long.parseLong(getSource());
10 }
11 ;
12

13 token DecimalToken
14 = '0' | (NonZeroDigit Digit*);
15

16 fragment token Digit = '0'..'9' ;
17

18 fragment token NonZeroDigit = '1'..'9' ;

Again, Decimal is a nonterminal that is built on the token DecimalToken which would
only provide a string and could not be reached by visitors, neither implement the signature
desired by the Number interface. Please note, that only two methods are implemented
directly, while the third method getSource is generated because we called the token
source in the right inside of the Decimal production.

Please note that we deliberately decided, that 00 is not parsed as a single decimal and
that separating dots, spaces or underscores to group large numbers are also prohibited.
However, there is no prevention against large number over�ows.

The following part of the grammar introduces integers, which optionally have a minus sign:

332

17.3. Component Grammars for Numbers

MCG MCNumbers1 Integer implements Number =
2 (negative:["-"])? decimalpart:DecimalToken;
3

4 astrule Integer =
5 method public int getValueInt() {
6 int a = Integer.parseInt(getDecimalpart());
7 return negative ? -a : a;
8 }
9 method public long getValue() {
10 long a = Long.parseLong(getDecimalpart());
11 return negative ? -a : a;
12 }
13 method public String getSource() {
14 String s = getDecimalpart();
15 return (negative ? "-" +s : s);
16 }
17 ;

Please note that the literals with a pre�xed negation consist of two token and thus allow
spaces in between. The reason for this separation is that otherwise the in�x operator "-"
would not be lexically recognized anymore when followed by a number. On the other hand
this means that method getSource has to be implemented explicitly and the containing
attribute gets a di�erent name (decimalpart).

17.3.2 Component Grammar MCHexNumbers.mc4

While the MCNumbers grammar can be used directly, it also allows to extend the forms
of how to describe numbers. This is shown in the following grammar by introducing
hexadecimal numbers:

MCG MCHexNumbers1 component grammar MCHexNumbers extends
2 MCNumbers, de.monticore.MCBasics {
3

4 Hexadecimal implements Number =
5 source:HexadecimalToken;
6

7 astrule Hexadecimal =
8 method public int getValueInt() {
9 return Integer.parseInt(getSource().substring(2),16);
10 }
11 method public long getValue() {
12 return Long.parseLong(getSource().substring(2),16);
13 }
14 ;
15

16 token HexadecimalToken
17 = '0' ('x' | 'X') HexDigit HexDigit*;
18

333

17. Example MontiCore Grammars

19 fragment token HexDigit
20 = '0'..'9' | 'a'..'f' | 'A'..'F' ;

The principle is again the same: a new nonterminal Hexadecimal implements the given
interface Number and is based on an appropriate token de�nition, that describes encodings
of hexadecimal numbers.

The language developer may decide, whether only decimal encodings or in addition
hexadecimals encodings are allowed for numbers, simply by extending MCNumbers or
MCHexNumbers. Depending on which grammar is extended, the nonterminal Number
provides di�erent language elements being parsed, but the further reuse is basically har-
monized through providing a common signature with a method like getValue. Please
note that if only hexadecimals should be allowed, then the nonterminal Hexadecimal
can also be used directly.

The following part of the grammar also allows negative hexadecimals:

MCG MCHexNumbers1 HexInteger implements Number =
2 (negative:["-"])? hexadecimalpart:HexadecimalToken;
3

4 astrule HexInteger =
5 method public int getValueInt() {
6 int a = Integer.parseInt(getHexadecimalpart().substring(2),16);
7 return negative ? -a : a;
8 }
9 method public long getValue() {
10 long a = Long.parseLong(getHexadecimalpart().substring(2),16);
11 return negative ? -a : a;
12 }
13 method public String getSource() {
14 String s = getHexadecimalpart();
15 return (negative ? "-" +s : s);
16 }
17 ;

17.4 Component Grammars for UML Languages

In modeling languages, such as the UML, it is quite common that additional information
needs to be attached, that is o�cially not part of the modeling language. This may include
information about the representation on screen, about the mapping to computational or
physical devices, the necessary level of security, as well as meta information about the de-
veloper, the time of development, test coverage, etc. For that purpose UML has introduced
the concept of stereotype.

In the grammars discussed in this section, we de�ne a textual variant of stereotypes, mod-
i�ers and also the possibility to de�ne cardinalities in a form as they are used e.g. in
associations. All of these nonterminals are extended with functions available on the AST.
E.g. stereotypes allow to set and retrieve their values.

334

17.4. Component Grammars for UML Languages

17.4.1 Component Grammar UMLStereotype.mc4

An example for a stereotype is <<singleton>>. On the lexical level, scanning a composed
token like ">>" can be di�cult, because as explained in Section 4.3, the scan does not
use backtracking or other predicting mechanisms to understand, whether ">>" shall be
parsed as a single token for the stereotype or as two separate tokens, for example occurring
in "List<List<String>>". Line 4 in the following listing does introduce two such
combined tokens. This is why the grammar also adds the parser directive splittoken
to split this token in Line 8. This reduces parser execution speed and therefore, we do not
apply that for "<<" immediately, but recommend to add the appropriate directive, when
it becomes necessary in a subgrammar.

The parser directive splittoken has the same e�ect as if we would parse two separate
"<" and use the noSpace predicate to glue two tokens together.

MCG UMLStereotype1 package de.monticore;
2 component grammar UMLStereotype extends MCCommonLiterals {
3 Stereotype =
4 "<<" values:(StereoValue || ",")+ ">>" ;
5

6 // Due to possible scanner clashes with "List<List<String>>"
7 // we split the token:
8 splittoken ">>";
9

10 StereoValue =
11 Name& ("=" text:StringLiteral)?;
12

13 astrule Stereotype =
14 method public boolean contains(String name) {...}
15 method public boolean contains(String name, String value) {...}
16 method public String getValue(String name) {...}
17

18 astrule StereoValue =
19 content:String
20 method public String getValue() {...}
21 }

Method getValue in class ASTStereoValue uses a cache to store the value, when
decoded the �rst time. This redundancy needs caution, because if the value is changed in
the AST, the cached content is outdated.

17.4.2 Component Grammar Cardinality.mc4

A cardinality is for example written in form [3..17]. Boolean �ag many indicates an
unconstrained cardinality ("*"). The various pieces of Java code directly calculate the
upper and the lower bound storing them as integer values in the additional attributes
de�ned using the astrule statement.

335

17. Example MontiCore Grammars

MCG Cardinality1 package de.monticore;
2 component grammar Cardinality
3 extends de.monticore.MCBasics,
4 MCCommonLiterals
5 {
6 Cardinality =
7 "["
8 (many:["*"] {_builder.setLowerBound(0);
9 _builder.setUpperBound(0);}
10 | lowerBoundLit:NatLiteral
11 { _builder.setLowerBound(
12 _builder.getLowerBoundLit().getValue());
13 _builder.setUpperBound(_builder.getLowerBound()); }
14 (".." (
15 upperBoundLit:NatLiteral
16 ({_builder.setUpperBound(
17 _builder.getUpperBoundLit().getValue());})
18 |
19 noUpperLimit:["*"] {_builder.setUpperBound(0);}))?
20) "]";
21

22 astrule Cardinality =
23 lowerBound:int
24 upperBound:int;
25 }

If the upper limit is absent, then attribute upperBound is 0. It is better to use the �ags
generated for many and noUpperLimit to determine absence of the upper bound.

Cardinality is an example, where some extra code is directly added to the parser in form
of semantic predicates that actually adapt the AST. The code is executed directly when
parsing and is used to calculate some additional attributes de�ned using the astrule
statement. Alternatively, it would have been possible to embed that code in some extra
methods, e.g. like the getValue() methods used in the MCNumbers grammar. Here the
code is still manageable directly within the grammar. If the code becomes more complex,
we recommend to outsource this code into external Java classes, e.g. external, reusable
helpers or methods added through the TOP mechanism explained in Chapter 14.

17.4.3 Component Grammar UMLModi�er.mc4

Programming as well as modeling languages usually provide a set of modi�ers that can
be applied to its entities, such as classes, methods or attributes. The following nonter-
minal Modifier presents a standard set of these modi�ers and allows a purely keyword
representation, but also a shorthand alternative used in modeling languages.

MCG UMLModi�er1 package de.monticore;
2 component grammar UMLModifier extends UMLStereotype {
3 Modifier =

336

17.4. Component Grammars for UML Languages

4 Stereotype?
5 (["public"] | [public:"+"]
6 | ["private"] | [private:"-"]
7 | ["protected"] | [protected:"#"]
8 | ["final"]
9 | ["abstract"]
10 | ["local"]
11 | ["derived"] | [derived:"/"]
12 | ["readonly"] | [readonly:"?"]
13 | ["static"]
14)*;
15 }

Please note, that it was deliberately decided through the design of the production that
after parsing it cannot be distinguished anymore, whether the keyword protected or the
iconic shorthand # led to the Boolean attribute in the AST to become true. Furthermore, it
cannot be distinguished, how often a keyword was applied, and in which order the keywords
were used. This leads to a more e�cient storage and management.

If any of this information is still necessary, for example for a precise pretty printing, or the
order is semantically relevant (which is neither in Java nor UML the case), then a di�erent
de�nition for nonterminal Modifier needs to be used.

It would also be possible to de�ne an interface, e.g. SingleModifier, and then realize
each modi�er as a nonterminal implementing the interface. This would have the advantages
that a visitor could act on a modi�er directly and that the list of modi�ers are extensible
in subgrammars, but also the disadvantage that more classes would be generated.

17.4.4 Component Grammar Completeness.mc4

The UML and especially UML/P de�ned in [Rum16, Rum17] make explicit use of the
possibility to de�ne models or part of models as complete or incomplete. The following
textual representation allows to di�erentiate between two compartments, for example the
list of attributes and the list of methods in classes.

MCG Completeness1 package de.monticore;
2 component grammar Completeness {
3 Completeness =
4 // separate brackets to avoid lexer-symbol clashes
5 {noSpace(2,3)}? "(" [complete:"c"] ")" // "(c)"
6 | {noSpace(2,3)}? "(" [incomplete:"..."] ")" // "(...)"
7 | [incomplete:"(...,...)"]
8 | {noSpace(2,3,4,5)}? "(" [complete:"c"] "," "c" ")" // "(c,c)"
9 | [rightComplete:"(...,c)"]
10 | [leftComplete:"(c,...)"];
11

12 // to allow use of "c" e.g. as variable:
13 nokeyword "c";
14 }

337

17. Example MontiCore Grammars

As white spaces, in general, should not be included, it is in this case necessary to glue the
tokens together using the noSpace method to avoid a clash with similar symbols from
other languages. Line 8 completely deconstructs the token, while in Line 6 only a partial
split (leaving the "..." together) is used. In both cases the directive splittoken was
not used because it always completely splits the tokens and it does not apply to tokens with
characters included. As an advantage, it allows to apply the same name e.g. incomplete
to several alternatives: the AST has only four alternatives to be dealt with.

The grammar directive nokeyword (l. 13) is needed to avoid the use of "c" as variable,
e.g. in foo(c) or bar(c,c), with de�nitions in lines 5 and 8. The grammar abstains
from deconstructing in lines 10 and 13, because it is unlikely that these de�nitions will
clash with other grammars.

17.4.5 Component Grammar MCCommon.mc4

The above grammars are de�ned individually, but are often used together. It therefore
makes sense to compose the grammars in a new grammar. MCCommon.mc4 realizes this.

MCG MCCommon1 package de.monticore;
2 component grammar MCCommon
3 extends Cardinality,
4 Completeness,
5 UMLModifier,
6 UMLStereotype {
7 }

The grammar only consists of a header that includes the four subgrammars. The body can
deliberately be left empty because it neither has to extend the imported productions nor
has to connect external or interface nonterminals with implementations. This phenomenon
of an antibody is a relatively common when composing grammars.

338

Chapter 18

Expression and Type Language

Components

Expressions, literals, and their types, and procedural statements are essential and quite
common in many kinds of languages. Historical developments of languages have shown that
DSLs dedicated for a single use, e.g. as report preparation language1 are often extended
over time by various additional language constructs to be capable of handling further tasks.
Therefore, to simplify the development of DSLs, the availability of a variety of language
components for these typical language constructs, such as expressions, literals, types, and
statements, is helpful.

The grammars provided in this chapter and the following Chapter 19 build a zoo of se-
lectable and composable languages, which are based on the grammar MCBasics.mc4
de�ned in Section 17.1.

Tip 18.1: Expressions, Literals, Symbols and Types Grammar Components

The grammars discussed in this chapter can be found in the MontiCore repository
under:

Files1 Repository: MontiCore/monticore github
2 Directory: monticore-grammar/src/main/grammars/
3 Packages: de.monticore.expressions
4 de.monticore.literals
5 de.monticore.symbols
6 de.monticore.types

The hierarchy is visualized in Figure 18.2 in the form of a language component feature
diagram (LCD) exhibiting the extension dependencies and in particular the resulting vari-
ability. In total 1140 con�gurations are possible2. Subsequent �gures will highlight parts
in more detail. Each of the grammar hierarchies has a root, such as

� ExpressionsBasis for expressions,

1in German "Allgemeiner Berichts Aufbereitungs Prozessor", short: "ABAP" (trademark applies)
21140 include useless con�gurations, such as the empty con�guration or where

JavaClassExpressions cannot �ll their external nonterminals adequately.

18. Expression and Type Language Components
Prof. Dr. B. Rumpe

Lehrstuhl für

Software Engineering

RWTH Aachen

Page 1

grammarHierarchy

LFD

MCLiterals

Basis

MCCommon

Literals

MCJava

Literals

Expression

Basis

Assignment

Exp.
Common

Exp.
SetExp.

JavaClass

Exp.

BitExp.

Basic

Symbols

OO

Symbols

MCBasics

MCBasic

Types

MCCollection

Types

MCSimple

GenericTypes

MCFull

GenericTypes

requires these

or similar NT

Figure 18.2: Component grammar hierarchy of Chapter 18

� MCCommonLiterals for literals,

� BasicSymbols for symbol structures, and

� MCBasicTypes for types.

Each of these core grammars introduces a central nonterminal that acts as an extensible
interface in all subsequent grammars. As described in Chapter 7 the selection of the appro-
priate variant of this nonterminal is simply de�ned by extending the selected grammars.

18.1 Literals as Basis for Expressions

The literals grammar collection introduces all useful forms of basic literals like strings,
characters, numbers, and Booleans. They o�er a wide range of di�erent number def-
initions like int, double, float constants in signed and unsigned variants. While
MCLiteralsBasis only introduces the respective interface nonterminal Literal, the
grammar MCCommonLiterals should be su�cient for most of the applications since these
already cover the typical literals. The grammar MCJavaLiterals provides additional
comfortable versions for numbers, for example, "1_000" and octal, binary and hexadeci-
mal representations. Figure 18.3 gives an overview of the three prede�ned literal grammars.

Prof. Dr. B. Rumpe

Lehrstuhl für

Software Engineering

RWTH Aachen

Page 2

LiteralsHierarchy

LFD

MCLiterals

Basis

MCCommon

Literals

MCJava

Literals

Literal language examples:

MCCommonLit 3 -3 2.17 -4 true false

'c' '\03AE' 3L 2.17d 2.17f

0xAF "string" "str\b\n\\"

"str\uAF01\u0001\377" null

MCJavaLiterals 999_999 0x3F2A 0b0001_0101

0567 1.2e-7F

Figure 18.3: Grammars de�ning Literal

340

18.1. Literals as Basis for Expressions

When using the prede�ned literals in a language it is advised to use the nonterminals
that wrap the literals instead of the raw tokens as the AST classes of these nontermi-
nals o�er helpful methods like getValue. The nonterminals, such as Literal itself
provide an AST implementation and its subclasses provide content extractors, in form of
getValue() functions.

18.1.1 MCLiteralsBasis

As mentioned before, MCLiteralsBasis is the basic grammar for the literals group. It
only contains one interface called Literal, which is implemented by all other literals.

MCG MCLiteralsBasis1 component grammar MCLiteralsBasis {
2 interface Literal;
3 }

The principle used here is very similar to the de�nition of interfaces and object-oriented pro-
gramming: This grammar and especially its only contained interface nonterminal Literal
act as generally known abstract de�nitions. This allows each kind of grammar to

1. extend the available realizations of the nonterminal Literal by interface implemen-
tation, or

2. reuse available realizations, by including the nonterminal Literal in the productions.

Most importantly, the including grammars do not need to know anything about the ex-
tensions. A complete decoupling of both sides is achieved, which even allows to extend a
language through additional forms of literals after the importing grammars (i.e. language
components) have been de�ned. For example SI-units, date literals, and other speci�c
forms can easily be added.

Tip 18.4: Decoupling through Grammars with a single Interface Nonterminal

Literals as well as Expressions show how to decouple grammars for inde-
pendent development and extension.

This is achieved by de�ning an abstract grammar component with only a single
interface nonterminal that can both be (1) extended and (2) used in production
bodies of otherwise independent grammars.

18.1.2 MCCommonLiterals

The grammar MCCommonLiterals contains all typically used literals, but admittedly
uses a Java-style, e.g. for characters, strings, Booleans, or numbers.

341

18. Expression and Type Language Components

Many of the de�ned tokens and their wrapping nonterminals are straightforward, however,
it is worth mentioning that the scanner exhibits di�culties to distinguish the binary sub-
straction "-" from the unary minus before number literals. Therefore, negative numbers
are parsed as two tokens and combined in the wrapping nonterminal.

MCCommonLiterals provides a number of grouping for literals, such as

SignedLiteral , which is another interface for all literals, independent of the more
general Literal,

NumericLiteral for positive numbers only, and

SignedNumericLiteral for all numbers.

MCG MCCommonLiterals1 component grammar MCCommonLiterals
2 extends de.monticore.MCBasics,
3 MCLiteralsBasis {
4 interface SignedLiteral;
5 interface NumericLiteral extends Literal <100>;
6 interface SignedNumericLiteral extends SignedLiteral <100>;

The number <100> provides a parsing priority, which is especially important for the order
of the alternatives in the generated parsing method. The numbers are chosen freely and
with gaps in order to have expansion possibilities also in between. The number <1>
guarantees that this is the last alternative.

String and character (Char) use the standard encoding mechanism, which is typical for
many languages, including Java. They allow encoding of typical form (e.g. "\n ") , octal
and unicode escapes (e.g. "\u 07AF").

MCG MCCommonLiterals1 NullLiteral implements Literal, SignedLiteral =
2 "null";
3 BooleanLiteral implements Literal, SignedLiteral =
4 source:["true" | "false"];
5

6 CharLiteral implements Literal, SignedLiteral =
7 source:Char;
8 StringLiteral implements Literal, SignedLiteral =
9 source:String;
10

11 // Character literals with an extraction of the Character
12 token Char
13 = '\'' (SingleCharacter|EscapeSequence) '\''
14 : {setText(getText().substring(1, getText().length() - 1));};
15 fragment token SingleCharacter
16 = ~ ('\'');
17

18 // String literals with an extraction of the String content
19 token String
20 = '"' (StringCharacters)? '"'
21 : {setText(getText().substring(1, getText().length() - 1));};

342

18.1. Literals as Basis for Expressions

22 fragment token StringCharacters
23 = (StringCharacter)+;
24 fragment token StringCharacter
25 = ~ ('"' | '\\') | EscapeSequence;
26

27 // Escape sequences for Character and String Literals
28 fragment token EscapeSequence
29 = '\\' ('b' | 't' | 'n' | 'f' | 'r' | '"' | '\'' | '\\')
30 | OctalEscape | UnicodeEscape;
31 fragment token OctalEscape
32 = '\\' OctalDigit | '\\' OctalDigit OctalDigit
33 | '\\' ZeroToThree OctalDigit OctalDigit;
34 fragment token UnicodeEscape
35 = '\\' 'u' HexDigit HexDigit HexDigit HexDigit;

All four literals above provide a source that contains their content as string. For con-
venience, the grammar adds getValue() functions for all forms of literals with content.
Here are two of them.

MCG MCCommonLiterals1 astrule CharLiteral =
2 method public char getValue() {
3 return de.monticore.literals.MCLiteralsDecoder.decodeChar(
4 getSource());
5 }
6 ;
7 astrule StringLiteral =
8 method public String getValue() {
9 return de.monticore.literals.MCLiteralsDecoder.decodeString(
10 getSource());
11 }
12 ;

Tip 18.5: Core Convenience Functions like getValue()

A certain form of functionality can be added to the AST nodes using the astrule
construct.
getValue() is added for all literals (that contain a real value), but indepen-

dently, because the resulting type di�ers on the literal kinds. This is the reason, why
the getValue() signature cannot be added to the top level nonterminal Literal
directly.

Again, we do not use Java within the method de�nitions excessively, but delegate
to an ordinary Java function.

Various forms of numbers exist. Signed forms need to be parsed as two tokens. The seman-
tic predicate {noSpace(2)} ensures that between these two nonterminals, no whitespace
occurs. The same approach is applied to a following marker of the kind of numbers, such
as "L".

343

18. Expression and Type Language Components

MCG MCCommonLiterals1 NatLiteral implements NumericLiteral<1> =
2 Digits;
3

4 SignedNatLiteral implements SignedNumericLiteral<1> =
5 {noSpace(2)}? (negative:["-"]) Digits |
6 Digits;
7

8 BasicLongLiteral implements NumericLiteral<1> =
9 { cmpToken(2,"l","L") && noSpace(2) }? Digits key("l" | "L");
10

11 SignedBasicLongLiteral implements SignedNumericLiteral<1> =
12 { cmpToken(3,"l","L") && noSpace(2,3) }?
13 negative:["-"] Digits key("l" | "L")
14 |
15 { cmpToken(2,"l","L") && noSpace(2) }?
16 Digits key("l" | "L");

Tip 18.6: Literals composed of Several Tokens

Because of the limited capability of the scanner, sometimes it is better to parse
a literal as several tokens, as for SignedNatLiteral.
noSpace(n) ensures the absence of whitespace between two tokens and

cmpToken(n,...) allows to initially refute an alternative (enforcing the parser
to take a di�erent one), which would not happen if only the key(.) statement was
refuted. Section 4.2 describes these semantic predicates.

Because composed literals do not contain a source attribute anymore, the access to the
contents is mimicked by providing an appropriate method, that acts like a get-function:

MCG MCCommonLiterals1 astrule SignedNatLiteral =
2 method public String getSource() {
3 return (negative?"-":"") + getDigits();
4 }
5 method public int getValue() {
6 return de.monticore.literals.MCLiteralsDecoder.decodeNat(
7 getSource());
8 }
9 ;

Similarly �oats and doubles are de�ned:

MCG MCCommonLiterals1

2 BasicFloatLiteral implements NumericLiteral<1> = ...
3 SignedBasicFloatLiteral implements SignedNumericLiteral<1> = ...
4 BasicDoubleLiteral implements NumericLiteral<1> = ...
5 SignedBasicDoubleLiteral implements SignedNumericLiteral<1> = ...

344

18.1. Literals as Basis for Expressions

The above literals need a variety of tokens, which themselves are de�ned using fragments:

MCG MCCommonLiterals1 token Digits
2 = Digit+;
3 fragment token Digit
4 = '0'..'9';
5 fragment token ZeroToThree
6 = '0'..'3' ;
7 fragment token HexDigit
8 = '0'..'9' | 'a'..'f' | 'A'..'F' ;
9 fragment token OctalDigit
10 = '0'..'7' ;

18.1.3 MCJavaLiterals

MCJavaLiterals extends MCCommonLiterals and de�nes additional Java-speci�c
numbers with four new literal nonterminals:

MCG MCJavaLiterals1

2 component grammar MCJavaLiterals extends MCCommonLiterals {
3 IntLiteral implements NumericLiteral <100> =
4 source:Num_Int ;
5 LongLiteral implements NumericLiteral <99> =
6 source:Num_Long ;
7 FloatLiteral implements NumericLiteral <100> =
8 source:Num_Float ;
9 DoubleLiteral implements NumericLiteral <100> =
10 source:Num_Double ;

IntLiteral implements only NumericLiteral and not SignedNumericLiteral
because MCJavaLiterals treats -1_000 as two individual tokens and also allows spaces
in between for example - 1_000.

The appropriate tokens consist of a larger number of token fragments (not shown in detail):

MCG MCJavaLiterals1 token Num_Int
2 = DecimalIntegerLiteral | HexIntegerLiteral
3 | OctalIntegerLiteral | BinaryIntegerLiteral;
4 token Num_Long
5 = DecimalIntegerLiteral IntegerTypeSuffix
6 | HexIntegerLiteral IntegerTypeSuffix
7 | OctalIntegerLiteral IntegerTypeSuffix
8 | BinaryIntegerLiteral IntegerTypeSuffix;
9 token Num_Float
10 = DecimalFloatingPointLiteral | HexadecimalFloatingPointLiteral;
11 token Num_Double
12 = DecimalDoublePointLiteral | HexadecimalDoublePointLiteral;

345

18. Expression and Type Language Components

However, it can be observed that the extension of literals even a�ects some of the al-
ready de�ned tokens from the inherited grammar. For example Digits now also includes
underscores in the middle, allowing numbers like 1_000:

MCG MCJavaLiterals1 @Override
2 fragment token Digits
3 = Digit (DigitOrUnderscore* Digit)?;
4 fragment token DigitOrUnderscore
5 = Digit | '_';

The AST nodes for the new literals again provide getValue() and getSource() meth-
ods. The following list summarizes additional features in the Java numbers in comparison
to MCCommonLiterals:

� underscores within the numbers for better readability,

� a leading 0 before a number identi�es it as an octal number, e.g. 016 in octal
corresponds to 14 in decimal,

� a leading 0x or 0X before a number identi�es it as a hexadecimal number, e.g. 0X9F,

� a leading 0b or 0Bidenti�es it as a binary number, e.g. 0b10110 equals 22.

18.2 Expressions in various Variants

The expression de�nition grammars are split in a top level ExpressionsBasis and a
number of implementing component grammars, each focusing on a certain aspect. Fig-
ure 18.7 shows their extension structure as well as some operators provided by the respec-
tive grammars.

Prof. Dr. B. Rumpe

Lehrstuhl für

Software Engineering

RWTH Aachen

Page 3

ExpressionHierarchy

LFD
Grammar Operators

CommonExp / % + - <= >= == > < !=

~. !. .?.:.

&& || ~.

AssignExp ++ -- = += -= *= /= &=

|= ^= >>= >>>= <<= %=

BitExp & | ^ << >> <<< >>>

JavaClass this .[.] (.). super

.instanceof.

Expression

Basis

Assignment

Exp.

Common

Exp.

JavaClass

Exp.

BitExp.

Figure 18.7: Grammars de�ning Expression

ExpressionsBasis provides the core nonterminal Expression, but also o�ers the
core elements that are typically helpful.

CommonExpressions provides the standard form of expressions, including numeric op-
erators, logical operators, etc. as common in programming languages. Again these
are inspired by Java and may di�er from certain other kinds of languages.

346

18.2. Expressions in various Variants

AssignmentExpressions groups all operations with side e�ects so that they can easily
be omitted for pure functional or logic languages.

BitExpressions provides operators for manipulating numbers, which are then inter-
preted as bit �elds.

JavaClassExpressions de�nes Java speci�c class expressions like super, this, type
casts, etc. This grammar should only be included, when a mapping to Java is in-
tended and the full power of Java should be available in the modeling language.

We discuss certain design decisions for the Expression grammar hierarchy, but omit a
complete description here.

It is a good design principle to de�ne component grammars as independent as possible. Ide-
ally, the extension hierarchy as shown in Figure 18.7 should be �at. However, in the case of
JavaClassExpressions some of the elements of grammar CommonExpressions are
used, which stacks up the dependencies slightly. Furthermore, expressions are dependent
on the literals, i.e. the ExpressionsBasis grammar includes the MCLiteralsBasis
grammar, but no deeper dependencies exist.

The Expression and Literal hierarchies have also split their duties with respects to
de�ning tokens: With the exception of implicit tokens, such as in�x operators, all literal
tokens have already been de�ned and can all be just imported.

18.2.1 ExpressionsBasis

Like MCLiteralsBasis, a core interface nonterminal, here Expression, is de�ned in
the following listing. Furthermore, the embedding of literals is de�ned and the very typical
argument syntax is provided:

MCG ExpressionsBasis1 component grammar ExpressionsBasis
2 extends MCBasics, MCLiteralsBasis {
3 interface Expression;
4

5 NameExpression implements Expression <350>
6 = Name;
7

8 LiteralExpression implements Expression <340>
9 = Literal;
10

11 Arguments
12 = "(" (Expression || ",")* ")";
13 }

In production NameExpression nonterminal Name does not refer to a speci�c kind of
symbol, because in general many di�erent kinds of symbols are possible. Actually, when
in a concrete language only one kind of symbol is possible, this speci�c production can be
overridden and a reference, like Name@Attribute added.

347

18. Expression and Type Language Components

Expression productions all have a priority to ensure correct parsing of pre�x, in�x and
post�x operations. A more detailed explanation of priorities can be found in Section 4.2.8.

18.2.2 CommonExpressions

CommonExpressions contains the typical expressions, such as various arithmetic expres-
sions, method respectively function calls, brackets and the functional if-then-else (.?.:.).

The excerpt below also shows the nonterminal FieldAccessExpression (l. 10). It
allows to select �elds (attributes).

An extra nonterminal InfixExpression (l. 3) serves as a common interface for all in�x
operations, that always implement a left and a right hand side as well as the operator
in form of a string. This common interface nonterminal can for example be used in visitors
to uniquely handle all in�x operations within one method. On the contrary, if individual
handling is needed, then the visitor methods may directly apply on the implementing AST
nodes, such as MultExpression. This allows us to prevent a lengthy switch statement
that handles all the operators. Even more important extensibility with additional in�x
operations is only guaranteed by use of the generated visitors.

The priority <180> on MultExpression vs. <170> on PlusExpression (ll. 14)
ensures that a+b*c is parsed as a+(b*c). If priorities are equal, then a left associative
parsing is used: d-e+f is equal to (d-e)+f. We choose the numbers 180 and 170 with a
gap in between because if a new operator shall be between both, it can be added with e.g.
175 without renumbering and thus touching the given ones. The priority <180> needs to
be added directly after Expression because the priority is de�ned with respects to the
Expression hierarchy.

MCG CommonExpressions1 component grammar CommonExpressions
2 extends ExpressionsBasis {
3 interface InfixExpression =
4 left:Expression operator:"" right:Expression;
5

6 CallExpression implements Expression <240> =
7 Expression Arguments;
8 astrule CallExpression = Name;
9

10 FieldAccessExpression implements Expression <290> =
11 Expression "." Name;
12

13 // some of many infix expressions:
14 MultExpression implements Expression <180>, InfixExpression =
15 left:Expression operator:"*" right:Expression;
16 PlusExpression implements Expression <170>, InfixExpression =
17 left:Expression operator:"+" right:Expression;
18 MinusExpression implements Expression <170>, InfixExpression =
19 left:Expression operator:"-" right:Expression;
20 }

348

18.2. Expressions in various Variants

Most interesting is the CallExpression (ll. 6). This expression is meant for method
calls, like foo(a,b), but method names may be quali�ed, such as x.y.foo(a,b), �eld
access, like x.y.foo looks similar, and even mixed forms, where x.y is a �eld access are
possible. These expressions are intrinsically ambiguous. Therefore, call expression is at �rst
parsed like a normal expression with arguments and after parsing the AST is rearranged
to form a call expression. A corresponding transformation is implemented in form of the
visitor NameToCallExpressionVisitor. After a model is parsed the visitor traverses
the AST once and adapts it accordingly. An error is issued, if the expression was ill-formed.

18.2.3 BitExpressions

BitExpressions de�nes the expressions for bit manipulations on numbers. This part is
again identical to Java.

However, the grammar contains a peculiarity that has already been discussed in Sec-
tion 4.1.1: Token ">" can be combined in the following piece "List<List<String>>".
Parsing will fail, if ">>" is de�ned as token too. The grammar directive splittoken
helps here:

MCG BitExpressions1 component grammar BitExpressions
2 extends ExpressionsBasis {
3

4 splittoken ">>", ">>>";
5

6 RightShiftExpression implements Expression <160>, ShiftExpression =
7 left:Expression
8 shiftOp:">>"
9 right:Expression;
10 LogicalRightShiftExpression implements Expression <160>,
11 ShiftExpression =
12 left:Expression
13 shiftOp:">>>"
14 right:Expression;
15 }

Tip 18.8: Decomposing Tokens with splittoken

splittoken can be used to ensure correct parsing of accidentally subsequent
individual tokens, e.g. ">>" in "List<List<String>>".
splittoken can be added in extending grammars and should not be added

without need, because it slows down parsing (and complicates error messages).

18.2.4 AssignmentExpressions

The grammar AssignmentExpressions contains all known assignments, such as = ,
+=, as well as the pre�x and post�x increment and increment operations ++ and --.

349

18. Expression and Type Language Components

AssignmentExpressions encapsulates all expressions that deal with side e�ects and
are not useful in pure logic or description languages, such as the OCL.

18.2.5 JavaClassExpressions

The grammar JavaClassExpressions adds typical Java-specialties to the expression
language. Among them are this and super, type casts, object creation with new,
instanceof and array expressions. These constructs de�ne Java-speci�c expressions
and should only be used when a mapping to Java is intended.

The following excerpt shows some typical de�nitions. Although it is an expression gram-
mar, in several places it needs to make explicit use of types, which are de�ned in the type
hierarchy. To decouple the grammars and leave open which types are actually available,
this grammar uses another mechanism of decoupling, namely external nonterminals. Three
external nonterminals are introduced:

ExtType may be a type expression, e.g. List<Person>, Set<A> or only a simple type
like int,

ExtReturnType is similar to ExtType, but in Java also includes the void pseudotype.

ExtTypeArgument is used to specify the type in a generic invocation, such as the content
of the brackets in <? extends Person>.

These external nonterminals are to be �lled by appropriate nonterminal de�nitions for
example from the type hierarchy.

MCG JavaClassExpressions1 component grammar JavaClassExpressions
2 extends CommonExpressions {
3 // Types
4 external ExtType;
5 // Types including a void return type
6 external ExtReturnType;
7 // Type arguments
8 external ExtTypeArgument;
9

10 ThisExpression implements Expression <280> =
11 Expression "." "this";
12

13 // casting expression uses a type
14 TypeCastExpression implements Expression <230> =
15 "(" ExtType ")" Expression;
16

17 // access of class object uses a type
18 ClassExpression implements Expression <360> =
19 ExtReturnType "." "class";
20

21 // generic invocation may specify type arguments
22 PrimaryGenericInvocationExpression implements Expression <370> =
23 "<"(ExtTypeArgument||",")+">" GenericInvocationSuffix;

350

18.2. Expressions in various Variants

24

25 // instance of needs a type as argument
26 InstanceofExpression implements Expression <140> =
27 Expression "instanceof" ExtType;
28 }

Tip 18.9: Decoupling of Grammars with External Nonterminals

External nonterminals, like ExtType, can be used to decouple a grammar, by
creating a hole that needs to be �lled when composing the grammars.

External nonterminals give more �exibility because each hole can have its in-
dividual name and be �lled independently, even if some external nonterminals are
�lled with the same content.

The MontiCore grammar itself relies on JavaClassExpressions and �lls the external
nonterminals in a straightforward form using the type infrastructure together with the
MCBasicTypes via import of JavaLight:

MCG Grammar_WithConcepts1 grammar Grammar_WithConcepts extends
2 de.monticore.expressions.JavaClassExpressions,
3 de.monticore.JavaLight, ...
4 {
5 ExtType = MCType;
6 ExtReturnType = MCReturnType;
7 ExtTypeArgument = "<" (MCTypeArgument || ",")+ ">"*;
8 // Empty TypeParameters
9 ExtTypeParameters = ;
10 }

When using JavaClassExpressions together with generic types, an additional context
conditions disallowing the creation of a generic expression on a ClassExpression should
be added. An expression like A<String>.class is also not allowed in Java. The class
NoClassExpressionForGenerics provides the context condition implementation.

Tip 18.10: Handle di�erent Forms of Expressions via Context Conditions

It is possible that a language uses expressions in several places. If di�erent forms
of expressions are to be permitted at these places, then it is advisable to regulate
this via speci�cly applicable context conditions.

Context conditions allow speci�c messages to be issued that are comprehensible
to the user, especially if expression elements are used at positions where they are
not permitted.

351

18. Expression and Type Language Components

18.3 Symbols

Symbols have names. Whenever a new name is introduced, a symbol is created and can
be used wherever it is visible. Expressions use for example variable names and function
calls of di�erent forms because variables may also be parameters or attributes. MontiCore
therefore decouples the introduction of symbols from their use.

Prof. Dr. B. Rumpe

Lehrstuhl für

Software Engineering

RWTH Aachen

Page 4

SymbolsHierarchy

FDBasic

Symbols

OO

Symbols

Figure 18.11: Component grammar de�ning symbols

The following two grammars (as shown in Figure 18.11) introduce typical symbols for
expression languages. We found it helpful to provide two layers:

BasicSymbols introduces the core version of several symbols, usable in many forms of
languages, and

OOSymbols re�nes these symbols towards object-oriented languages, such as Java. This
re�nement is basically an extension with additional properties (symbol attributes)
that OO languages typically have.

These two grammars do not provide any concrete syntax and in�uence the abstract syntax
only on the symbol and scope level. For this they introduce only interface nonterminals
that are also symbols and sometimes contain their own scopes. These grammars are meant
for reuse and sharing of common symbols. Extending grammars may reuse these symbols
directly or build additional extending kinds of symbols with additional attributes.

Tip 18.12: Sharing Common Symbols

BasicSymbols shows a possibility to share simple infrastructure among di�er-
ent languages, that otherwise do not know from each other.

This typical mechanism of decoupling can be applied to AST nodes as well as for
symbol nodes.
BasicSymbols or its a re�ned version OOSymbols may serve as well reusable

core sets of symbols, but typically additional kinds of symbols, for example
StateSymbols in automata, ActionSymbols in connectivity diagrams, etc. are
needed and should not be coupled tightly to the provided symbols (i.e. as �xed
subclasses) because there are many forms of mappings possible.

18.3.1 BasicSymbols

A diagram usually has a name. If the diagram name is used as a type as well, such as in
Java or MontiArc, then a more specialized version might be useful. For the standard case

352

18.3. Symbols

it seems however su�cient to simply use the resulting DiagramSymbol for references to
other diagrams.

We found it convenient to manage diagram symbols as simple symbols without any scope
containing capabilities because the artifact scope already manages the set of symbols in
an artifact (again: that changes when the diagram name becomes a type as e.g. in Java).

Formally we need to distinguish between the name of the diagram and the name of the
containing artifact. Please note that import statements formally do not target the dia-
gram name, but the artifact name and location. However, the convention that the diagram
and the artifact have the same name is useful and simpli�es symbol lookup.

MCG BasicSymbols1

2 component grammar BasicSymbols extends de.monticore.MCBasics {
3

4 interface symbol Diagram = Name;
5

6 interface scope symbol Type = Name ;
7 symbolrule Type =
8 superTypes: de.monticore.types.check.SymTypeExpression* ;
9

10 interface symbol TypeVar extends Type = Name;
11

12 interface symbol Variable = Name ;
13 symbolrule Variable =
14 type: de.monticore.types.check.SymTypeExpression
15 isReadOnly: boolean ;
16

17 interface scope symbol Function = Name ;
18 symbolrule Function =
19 returnType: de.monticore.types.check.SymTypeExpression ;
20 }

The TypeSymbol is meant to represent the essence of a type. It may be extended to
refer to possible supertypes, which are added through a symbolrule directive. The
TypeSymbol is meant to potentially contain variables (record elements, �elds, attributes,
etc.) or associated functions (respectively OO methods) and is therefore not only a symbol,
but also has a scope associated to manage those future extensions.

The MontiCore RTE provides the class SymTypeExpression, which is essentially a
composite structure describing a complete type expression, such as Map<int,Set<T>>
(cf. Section 18.6). SymTypeExpression di�ers from TypeSymbol because the latter
only contains a type symbol, i.e. Map, but not concrete arguments.

A TypeVarSymbol is used as an unbounded argument in generic types, for example type
variable T in Map<Integer,T>. Type variable have a similar duty as normal variables,
however, they carry types that need to be instantiated upon use. Type variables only
occur when de�ning new generic type classes or additional functionality (methods) that is
generic in some of the type arguments.

353

18. Expression and Type Language Components

VariableSymbol describes relevant information about variables, which includes the type
and potential read-only access to the variable. This is a common abstraction for local
variables in methods and functions, parameters, attributes, but also the read-only ports in
architectural descriptions, such as in SysML or MontiArc.

A function is de�ned by its signature. FunctionSymbol stores such signatures in form
of an explicitly added return type using again symbolrule, and a list of parameters. The
parameters are stored as variable symbols in the associated scope.

18.3.2 OOSymbols

The grammar OOSymbols extends the grammar BasicSymbols because it mainly adds
re�nements of the previously de�ned symbols. These re�nements are dedicated to store ad-
ditional information, that is especially typical for object-oriented languages and especially
Java-based languages, such as visibility, static accessibility, or the distinction between class
and interface.

Subclassing has an interesting advantage: Assume model B only knows BasicSymbol
kinds, but model A only de�nes symbols of OOSymbol kinds. B can simply ignore the
extra attributes when importing symbols of A, which is directly implementable in B's
symbol loading facilities without the languages of A and B introducing dependencies.

MCG OOSymbols1 component grammar OOSymbols extends BasicSymbols {
2

3 interface scope symbol OOType extends Type = Name ;
4 symbolrule OOType =
5 isClass: boolean
6 isInterface: boolean
7 isEnum: boolean
8 isAbstract: boolean
9 isPrivate: boolean
10 isProtected: boolean
11 isPublic: boolean
12 isStatic: boolean
13 isFinal: boolean ;
14

15 interface symbol Field extends Variable = Name ;
16 symbolrule Field =
17 isPrivate: boolean
18 isProtected: boolean
19 isPublic: boolean
20 isStatic:boolean
21 isFinal: boolean ;
22

23 interface symbol Method extends Function = Name;
24 symbolrule Method =
25 isConstructor: boolean
26 isMethod: boolean
27 isPrivate: boolean

354

18.4. Types: From Simple To Generic

28 isProtected: boolean
29 isPublic: boolean
30 isStatic: boolean
31 isFinal: boolean
32 isElliptic: boolean ;
33 }

Using so many booleans is simple and e�cient from the developers point of view, but
of course wastes some memory. More compact solutions are possible. Most boolean
attributes are self explained, so we mention only that isElliptic is true when the
method allows to repeat the last argument.

18.4 Types: From Simple To Generic

Types are an important concept for many languages. Types introduce a controlled form
of redundancy that is very helpful for e�cient quality assurance because certain kinds
of errors are detected by the compiler instead of extensive run-time tests to detect those.
Furthermore, in modern languages types are also used as a constructive mechanism to select
the appropriate functions to call. This includes overloading of functions, but in particular
dynamic lookup in object-oriented languages needs a notion of types and extensibility on
these types.

This is the reason why MontiCore provides a set of grammars representing commonly used
types like primitive, generic, and array types. These type grammars extend each other
mainly in four layers as shown in Figure 18.13. However, array types were extracted and
only extend the basis types to �exibly choose whether to include arrays. Figure 18.13 also
contains a number of examples of types that can be expressed.

Prof. Dr. B. Rumpe

Lehrstuhl für

Software Engineering

RWTH Aachen

Page 5

TypesHierarchy

FDLanguage examples:

MCBasicTypes boolean byte short int

long char float double

void Person a.b.Person

package a.b;

import a.b.Foo.*;

MCCollectionTypes

List<.> Set<.>

Optional<.> Map<.,.>

MCSimpleGenericTypes

Foo<.> a.b.Bar<.,..,.>

MCFullGenericTypes

Foo<? extends .>

Foo<? super .>

MCArrayTypes

Person[]

MCBasic

Types

MCCollection

Types

MCSimple

GenericTypes

MCFull

GenericTypes

MCArray

Types

Figure 18.13: Overview over the types grammar hierarchy

� As usual, there is a top level MCBasicTypes grammar that introduces the core
nonterminal MCType. MCBasicTypes also introduces primitive types and related
commonly used elements.

355

18. Expression and Type Language Components

� The grammar MCCollectionTypes provides exactly the four named generic types.
The reason for these four types is that in the early stages of development, generic
typing is not useful since generic types are usually added during implementation and
therefore not yet relevant in the analysis phase. For example in class diagrams that
capture requirements generic types should be avoided. On the other hand associations
provide exactly these four generic types as realization techniques.

� The grammar MCSimpleGenericTypes provides the possibility to use arbitrary
generics and introduce your own additional generics, however, does not allow to
constrain the argument types in any form.

� The grammar MCFullGenericTypes provides the full type infrastructure that for
example Java realizes. The typing system will be complicated and we honestly advise
to avoid this kind of typing infrastructure in your own language.

� The grammar MCArrayTypes provides the syntax to express array type expressions.
Arrays are orthogonal to the generic extensions and thus can be combined with any
of the above variants.

The grammars shown in Figure 18.13 are explained in the following subsections in detail.

18.4.1 MCBasicTypes

As already mentioned, MCBasicTypes contains the basic interface MCType. It is the
top level interface for all kinds of types except void, which is added in MCReturnType.
MCType is the extension point for all other forms of types.

MCPrimitiveType represents all primitive types supported by Java. MCObjectType
is introduced to contain names of freely de�ned types, like Person. It is also an exten-
sion point for generic types and, therefore, introduced as interface, even though only one
implementation, namely MCQualifiedType, exists here.

MCG MCBasicTypes1

2 component grammar MCBasicTypes extends de.monticore.MCBasics {
3

4 interface MCType;
5

6 MCPrimitiveType implements MCType =
7 primitive: ["boolean" | "byte" | "short" | "int"
8 | "long" | "char" |"float" | "double"];
9

10 interface MCObjectType extends MCType;
11

12 MCQualifiedType implements MCObjectType = MCQualifiedName;
13

14 MCReturnType = MCVoidType | MCType;
15 MCVoidType = "void";
16 }

356

18.4. Types: From Simple To Generic

The grammar also de�nes the additional reusable nonterminals MCQualifiedName,
MCPackageDeclaration, and MCImportStatement, commonly used in many arti-
facts as shown in this excerpt:

MCG MCBasicTypes1

2 component grammar MCBasicTypes extends de.monticore.MCBasics {
3

4 MCQualifiedName =
5 parts:(Name || ".")+;
6

7 MCPackageDeclaration = "package" MCQualifiedName& ";";
8

9 MCImportStatement =
10 "import" MCQualifiedName ("." Star:["*"])? ";" ;
11 }

18.4.2 MCCollectionTypes

Grammar MCCollectionTypes introduces the interface nonterminals
MCGenericType, which extends MCObjectType, and MCTypeArgument, which
is later extended for the general generic types. This grammar allows exactly the four pre-
de�ned generic types, e.g. usable as List<Integer>, Set<Integer>, Map<String,
socnet.Person>, and Optional<ASTAutomaton>.

This grammar hardcodes the names of generic types using the key(.) statement for
temporary keywords that can be used as normal names in other contexts.

In this grammar MCTypeArgument allows only primitive and quali�ed types, which dis-
ables nesting of generic types and thus disallows e.g. List<List<int». Only the next
grammar MCSimpleGenericTypes will allow this.

MCG MCCollectionTypes1 component grammar MCCollectionTypes
2 extends MCBasicTypes {
3 interface MCGenericType extends MCObjectType;
4

5 MCListType implements MCGenericType <200> =
6 key("List") "<" MCTypeArgument ">";
7 MCOptionalType implements MCGenericType <200> =
8 key("Optional") "<" MCTypeArgument ">";
9 MCMapType implements MCGenericType <200> =
10 key("Map") "<" key:MCTypeArgument "," value:MCTypeArgument ">";
11 MCSetType implements MCGenericType <200> =
12 key("Set") "<" MCTypeArgument ">";
13

14 interface MCTypeArgument;
15 MCBasicTypeArgument implements MCTypeArgument <200> =
16 MCQualifiedType;
17 MCPrimitiveTypeArgument implements MCTypeArgument <190> =

357

18. Expression and Type Language Components

18 MCPrimitiveType;
19 }

The next grammar MCSimpleGenericTypes will also overload the nonterminal
MCGenericType with a more generalized processing of generic types. However,
by clever choice of the priorities it is ensured that types, which are parsable by
MCCollectionTypes, are still parsed as such. For example, List<Integer> is still
parsed as a ListType when using the MCSimpleGenericTypes even though parsing it
as the nonterminal MCBasicGenericType would be possible.

18.4.3 MCSimpleGenericTypes

Simple generics are nesteable type expressions, such as List<Foo<int» with arbitrary
generic types, but without possibilities to constrain the argument types (i.e. no <?
super Foo>).

For this generalization only two adaptations have to be made: (1) MCBasicGenericType
extends MCGenericType and overrides the already existing four special forms of generic
types (List, etc.) into the more general form. (2) MCCustomTypeArgument extends
the possible type arguments two arbitrary types, therefore allowing nested composition of
type expressions.

MCG MCSimpleGenericTypes1 component grammar MCSimpleGenericTypes
2 extends MCCollectionTypes {
3

4 MCBasicGenericType implements MCGenericType <20> =
5 (Name || ".")+ "<" (MCTypeArgument || ",")* ">";
6

7 MCCustomTypeArgument implements MCTypeArgument <20> = MCType;
8 }

18.4.4 MCFullGenericTypes

The grammar MCFullGenericTypes covers Java types completely. The nonterminal
MCWildcardTypeArgument represents a wildcard type as a type argument that is con-
strained by an upper- or a lower bound. MCMultipleGenericType extends the typing
also for inner generic types, which are allowed in Java as well.

MCG MCFullGenericTypes1 component grammar MCFullGenericTypes
2 extends MCSimpleGenericTypes {
3

4 MCWildcardTypeArgument implements MCTypeArgument =
5 "?" (("extends" upperBound:MCType)
6 | ("super" lowerBound:MCType))?;
7

358

18.5. Using Base Grammars

8 MCMultipleGenericType implements MCGenericType, MCType =
9 MCBasicGenericType // complex Outer Type qualification
10 "." (MCInnerType || ".")+ ;
11

12 MCInnerType = Name ("<" (MCTypeArgument || ",")+ ">")?;
13 }

18.4.5 MCArrayTypes

The grammar MCArrayTypes introduces arrays. Since arrays are rarely used in modeling
languages, they have been placed separately in their own grammar. This allows language
designers to integrate arrays if required, but they are not forced to do so.

The nonterminal production MCArrayType adds the possibility to model array types,
which are generally de�ned using [], possibly repeatedly. Therefore, the dimension of the
array type is incremented upon each parse step, instead of storing the parse tree. For this,
a dimension attribute is added to the AST node of nonterminal MCArrayType using
the astrule directive.

MCG MCArrayTypes1 component grammar MCArrayTypes
2 extends MCBasicTypes {
3

4 MCArrayType implements MCType =
5 MCType
6 ("[" "]" {_builder.setDimensions(_builder.getDimensions()+1);})+;
7

8 // counter dimensions counts the array depth
9 astrule MCArrayType =
10 dimensions:int;
11 }

18.5 Using Base Grammars

This section demonstrates how to use these previously explained base grammars in a lan-
guage. In general, the new language just extends the needed grammars.

Listing 18.15 shows an example grammar called MyBasicLanguage that provides some
syntax and integrates expressions, types, and statements in its basic forms. The grammar
is marked as a component and is thus meant for reuse. Therefore it only uses the most basic
grammars for expressions, types, and statements: ExpressionsBasis, MCBasicTypes,
and MCStatementsBasis. This allows the grammar to determine where expressions,
statements and types are used without having to specify which form is used.

After de�ning the grammar MyBasicLanguage, now speci�c extensions of this basic
grammar can be created with di�erent type, expression, literal, and statement alternatives.

359

18. Expression and Type Language Components

Tip 18.14: Choosing Grammars to Extend

When choosing the grammars to extend it is advisable to consider which gram-
mars are extended transitively and which need to be extended directly. It is not
necessary to extend transitively reachable grammars directly, however, in case non-
terminals of a grammar are locally used in the grammar under development it is
advised to extend the grammar explicitly.

For example, if the grammars MCCommonStatements and MCBasicTypes
are extended, it is su�cient to extend MCCommonStatements because then the
MCBasicTypes is already extended transitively.

However, in case nonterminals of MCBasicTypes are used in the grammar di-
rectly, MCBasicTypes can be extended explicitly in addition. Extending a gram-
mar multiple times by extending it directly and transitively does not create errors
but can make the dependency graph more complex than needed.

Another advice when choosing the grammars to extend is to choose only those
grammars that are currently needed. For example, if a language uses types, there
are �ve grammars to choose from. However, if the language does not need a certain
form of types yet, it is advised to choose the most basic grammar as more complex
grammars can easily be integrated via language extension. This is especially useful
if the language is meant for extension and the choice of the used types should be
delayed. The other way around, i.e. restricting the language, is more complex but
also possible. If a larger grammar was chosen than actually needed then not allowed
nonterminals can be forbidden by context condition.

MCG1 component grammar MyBasicLanguage extends ExpressionsBasis,
2 MCBasicTypes,
3 MCStatementsBasis {
4 MyLanguage = "myLang" "{" (MyDefinition | Expression)* "}";
5 MyDefinition = MCType Name "=" MCStatement;
6 }

Listing 18.15: Grammar MyBasicLanguage, showing the usage of the base grammars

Listing 18.16 shows an example of a grammar extending MyBasicLanguage which only
uses simple variants of types, expression, literals, and statements.

If the provided forms of e.g. types and literals are not su�cient, then of course further
forms can be added locally or by separate grammars. The newly de�ned nonterminals
just need to implement the prede�ned interface of the grammar. For example, if a new
type is needed, the MCType interface can be implemented. In some cases e.g. when
adding expression forms a priority also should be de�ned for the new production. For
more information about priorities in MontiCore grammars check out Subsection 4.2.8.

Since the base grammars are mostly orientated on Java, the chosen example extend these
base grammars with additional de�nitions similar to Kotlin. Kotlin is a programming
language based on Java, but containing some additional features. For this purpose a new
grammar was created that extends the MCCollectionTypes with a special type for

360

18.6. Type Checking in MontiCore Languages

MCG1 package mc.basegrammars;
2

3 grammar SimpleLanguage extends MyBasicLanguage,
4 CommonExpressions,
5 MCCollectionTypes,
6 MCCommonStatements,
7 MCCommonLiterals {
8 }

Listing 18.16: Grammar MySimpleBaseLanguage.mc4, containing simple base gram-
mar alternatives

arrays as shown in Listing 18.17. The priority <200> is important and is based on the
priorities of the other generic types in MCCollectionTypes.

MCG1 grammar KotlinCommonGenericTypes extends MCCollectionTypes {
2

3 MCArrayGenericType implements MCGenericType <200> =
4 key("Array") "<" MCTypeArgument ">";
5

6 }

Listing 18.17: The grammar KotlinCommonGenericTypes.mc4

18.6 Type Checking in MontiCore Languages

As explained before, types are useful to detect typing errors at compile time. Type checking
is thus only a special, but sophisticated form of context condition checking.

Types, such as boolean, Person, List<int>, are well known for values calculated in
expressions, stored in variables and transported in parameters. They can also be extended
to other kinds of modelling elements, such as pins, ports, or channels, where values (or
objects) play a role. Type systems may be extended to functions, encoding the function
signature and allowing higher-order-functions using other functions as parameters, etc.

It is also possible that entirely di�erent kinds of type systems are developed for a lan-
guage. For example, an action language may encode types of actions, including a notion
of subtyping that realizes a re�nement for the actions. It is also an option to realize a
sophisticated structure of stereotypes for the UML that act as a kind of meta-type system
for classes in a class diagram.

In the following, we only concentrate on the relatively familiar type system for expressions,
which builds on the previously discussed expression grammars.

MontiCore expressions and therefore also the type system described below o�er an exten-
sible and modular infrastructure. To achieve this, MontiCore o�ers an individual, com-
posable type check for each of the expression grammars and also allows several variants of

361

18. Expression and Type Language Components

type systems. These appropriate type check parts can then be selected analogously to the
grammars and combined to a composed type check.

A type checking infrastructure consists of the following elements:

� A representation of the type system is discussed in Section 18.6.1. It is used for
storage of type information in the symbol table.

� A type check algorithm. Given a model element, e.g. an expression, and a type, it
decides whether the runtime evaluation of the element will deliver a value �tting to
the desired type (i.e. whether the evaluation is type safe, see Section 18.6.2).

� A type inference algorithm. Given a model element, the algorithm calculates the
minimal type that an evaluation we will always deliver (see Section 18.6.2).

In the following, we are going to roughly describe how to use the existing type checking
infrastructure (Section 18.6.2) and also gives some hints how to extend it (Section 18.6.3).

18.6.1 Types in a Symbol Table: SymTypes

MontiCore uses the RTE class SymTypeExpression and its subclasses for its internal
representation of types. This is a compact, composite structure as shown in Figure 18.18.

Prof. Dr. B. Rumpe

Lehrstuhl für

Software Engineering

RWTH Aachen

Page 1

SymTypeExpression CD

CD
SymTypeExpression «rte»

SymTypeOfObject

SymTypeArray

SymTypeOfConstant

SymTypeOfNull

SymTypeOfGenerics

SymTypeOfVariable

SymTypeOfWildCard

SymTypeOfVoid

1 1

*

Figure 18.18: The SymTypeEypression class hierarchy

The central class is the abstract class SymTypeExpression that acts as a composite.
The composite is the optimal structure to e�ciently represent complex types, such as
generics, arrays, etc. We generally speak of type expressions because the structure of these
types is built in a similar way as ordinary expressions. However, type expressions and
normal expressions are not to be confused. The same holds for type variables and normal
variables.

SymTypeEypression is the top composite class representing all forms of type expres-
sions.

SymTypeConstant represents primitive types like int and long.

362

18.6. Type Checking in MontiCore Languages

SymTypeOfObject models standard classes like Person or Student, which do not have
generics in their signature.

SymTypeArray represents arrays over any other type, i.e. e.g. int[][] or Person[].

SymTypeOfGenerics is to describe generic types, such as List<...>,
Map<...,...>. The generic type may have several arguments, which are
themselves types. In its most general form, the typed arguments may themselves be
constrained (i.e. there must be of a speci�c subtype or supertype).

SymTypeVariable models a type variable, which is not to be confused with an ordinary
variable. In a type expression, like Person<T>, the T acts as type variable, which
can be instantiated upon use of the generic type Person.

SymTypeOfWildCard allows to model type expressions of forms like List<?
extends Person>.

SymTypeVoid represents the special "type" void that is, for example, used in Java to
represent the absence of a return type.

SymTypeOfNull models the type of the special value null (or nil).

The above classes allow to represent a variety of types, known from Java or also from the
UML. If needed, they can be extended, e.g., to cover additional typing information, such
as SI-Units, like km/h.

The SymTypeExpression class hierarchy is independent from any AST and symbol
infrastructures. We have deliberately chosen this form of realization to allow di�erent
concrete syntactic shapes for the de�nition of these types, but share the same algorithmic
realization of the type check. Therefore, this type check cannot only be applied to Java,
but also to C++ like or other kinds of languages. Furthermore, the stored symbol tables
are better decoupled because they do not enforce sharing of foreign AST classes. It may
even be that there is no concrete syntax to represent certain types, although these are
highly relevant for type checking, e.g. there is often no Null type.

In practical languages, we recommend to not fully explore the possible type system infras-
tructure, but to restrict to a practically useful subset only. For example full generics are
only rarely necessary in modeling languages. A relatively small reduction of typing express-
ability greatly produces the complexity of type checks, both from the view of development,
but also from runtime execution times.

The representation of type expressions above is primarily used with the symbol table in-
frastructure where, for example, VariableSymbols are typed using these types. Because
symbols of various kinds are dedicated to be usable in foreign models, symbols and their
types are also stored in the symbol table artifacts. For this purpose, the RTE provides the
SymTypeExpressionDeSer and a set of additional classes to store and load the above
type structures. MontiCore handles this relatively automatic.

18.6.2 Using Type Checks: the Type Check API

The provided type checks for the expression languages mentioned above concentrate on
literals and expressions, but also incorporate the possibility to de�ne concrete types in the

363

18. Expression and Type Language Components

language. This is also re�ected in the central TypeCheck class of MontiCore as shown in
Listing 18.19. This class shows the core type checking methods.

Java1

2 public class TypeCheck {
3 // derive a symtype from the AST node representing it
4 public SymTypeExpression symTypeFromAST(ASTMCType ast)
5 public SymTypeExpression symTypeFromAST(ASTMCVoidType ast)
6 public SymTypeExpression symTypeFromAST(ASTMCReturnType ast)
7 public SymTypeExpression symTypeFromAST(ASTMCQualifiedName ast)
8

9 // derive the most precise possible symtype of an expression
10 public SymTypeExpression typeOf(ASTExpression expr)
11

12 // derive the symtype of a literal
13 public SymTypeExpression typeOf(ASTLiteral lit)
14

15 // is right type assignment compatible to left type
16 // e.g. right is a subtype or a specialized numeric type
17 public static boolean compatible(SymTypeExpression left,
18 SymTypeExpression right)
19

20 // is the result of an expression compatible to a needed type
21 public boolean isOfTypeForAssign(SymTypeExpression type,
22 ASTExpression exp)
23

24 // some convenience
25 public static boolean isBoolean(SymTypeExpression type)
26 public static boolean isInt(SymTypeExpression type)
27 public static boolean isDouble(SymTypeExpression type)
28 public static boolean isFloat(SymTypeExpression type)
29 public static boolean isLong(SymTypeExpression type)
30 public static boolean isChar(SymTypeExpression type)
31 public static boolean isShort(SymTypeExpression type)
32 public static boolean isByte(SymTypeExpression type)
33 public static boolean isVoid(SymTypeExpression type)
34 public static boolean isString(SymTypeExpression type)
35 }

Listing 18.19: Methods of the TypeCheck class

symTypeFromAST: The �rst group of methods symTypeFromAST converts a type, which
is explicitly de�ned in the AST of a model into a SymTypeExpression, which is
then used for the type check and is therefore a preparatory function.

The symTypeFromAST methods are able to convert the concrete types de�ned in
the typing grammars shown in Section 18.4 to SymTypeExpressions. If other
concrete representations of types are desired, these functions can be easily replaced
or extended.

typeOf methods derive the SymTypeExpression from an Expression AST. These

364

18.6. Type Checking in MontiCore Languages

methods embody the actual type inference algorithm that is needed to infer the type
of an Expression.

This method is recursive over the examined Expression and assumes that the
symbol table is already in place so that the types of all symbols in the expressions
(i.e. variables, functions, enums, etc.) can be obtained.

compatible takes two type expressions and checks if the right type is a subtype of the
left type, so that in all places where the left type is expected the right type is usable.
For example, int and int, int and long as well as Person and Student are
compatible assuming the class Student extends the class Person.

isOfTypeForAssign: The method call isOfTypeForAssign(type,exp) checks
whether the ASTExpression exp will always result in a value that is of a type
that is compatible to the type given as the SymTypeExpression type.

This is the actual type check for expressions.

The function isOfTypeForAssign mainly combines the type derivation with typeOf
for the expression and the compatibility check using compatible.

18.6.3 How the Type Check is Con�guered

The TypeCheck class is con�gured by two special classes to which it delegates the required
computations (cf. Figure 18.20).

Prof. Dr. B. Rumpe

Lehrstuhl für

Software Engineering

RWTH Aachen

Page 2

TypeCheck CD

CD

TypeCheck

«interface»

IDerive

«interface»

ISynthesize

Used to synthesize
SymTypeExpression from type
usages e.g. ASTMCType Used to calculate type of

expressions and literals

1 1

init()

getTraverser()

getResult()

init()

getTraverser()

getResult()

returns MCBasicTypes
traverser

initializes traverser using
provided synthesizers

returns an Optional of a SymTypeExpression,
empty if failed to synthesize/calculate

returns ExpressionsBasis
traverser

initializes traverser using
provided derive classes

«rte»

Figure 18.20: Overview over the TypeCheck class and Interfaces

ISynthesize is the common interface that is used to synthesize a SymTypeExpression
from a MCType.

IDerive contains the type inference algorithm to calculate a SymTypeExpression
from an Expression AST. Both interfaces have an init, a getTraverser and a
getResult method.

The general approach of the type inference algorithm in IDerive is to use recursive descent
with the visitor pattern to calculate the actual type of an Expression AST. The traverser

365

18. Expression and Type Language Components

in that visitor pattern is stateful and therefore the init method resets the traverser each
time, before it is used. When initialized, the Traverser queried via the getTraverser
method is executed. Finally, the result can then be retrieved via the getResult method.

The class ISynthesize acts similar, but maps an MCType AST to a
SymTypeExpression and thus uses a an MCBasicTypesTraverser.

As described before, the TypeCheck has the same modular structure as the Expression
and as the MCType grammars (cf. Section 18.2 and 18.4). In detail, both mechanism are
realized by a composed visitor pattern, where individual visitors deal with the respective
nonterminals of one individual grammar component.

As a consequence, the MontiCore RTE provides a set of implementations for each of the
two interfaces allowing to select and compose the appropriate algorithm.

The standard form to create a TypeCheck for a language is to reuse the available imple-
mentations of the lists below. If the language contains new forms of syntactic constructs
for expressions, then additional a class that handles the new language constructs need to
be written and added.

ISynthesize: Mapping AST Types to SymTypeExpression

The class ISynthesize consists of a visitor for calculating types. While traversing the
AST of a type, it creates the relevant SymTypeExpression.

The following classes are available for the mapping, where the name of each class describes
for which kind of types it is applicable:

� SynthesizeSymTypeFrom

Each synthesizer handles exactly all nonterminals from the respective grammar. This is
why a composition of the ISynthesize objects into a combined visitor as shown below
is needed.

When a di�erent concrete syntax for types is used or the type expressions are extended by
new syntactic constructs, then a new subclass must be de�ned.

IDerive: Type Inference for Expressions and Literals

The IDerive implementations also use a recursive visitor pattern to calculate types for
expressions and literals. Of course, developers can create and integrate own classes for
extensions or implementations for the synthesis or calculation of types.

Again, many classes are available, each containing a part of the type inference algorithm,
where the name of the class describes, for which forms of expressions it is applicable:

� DeriveSymTypeOf

366

18.6. Type Checking in MontiCore Languages

Example Application of a Type Inference

Listing 18.21 shows an example language MyLang, which allows simple variable de�ni-
tions. For this purpose, the language combines the provided languages MCBasicTypes,
MCArrayTypes, MCCommonLiterals, and CommonExpressions.

MCG1 grammar MyLang extends MCBasicTypes, MCArrayTypes,
2 MCCommonLiterals,
3 CommonExpressions {
4 MyVar = type:MCType var:Name "=" exp:Expression;
5 }

Listing 18.21: Example language MyLang

For the type check of the language, the two classes SynthesizeFromMyLang and
DeriveFromMyLang are created as explained below (cf. Figure 18.22).

Prof. Dr. B. Rumpe

Lehrstuhl für

Software Engineering

RWTH Aachen

Page 3

TypeCheck CD2

CDUsed to synthesize
SymTypeExpression from
type usages e.g. ASTMCType Used to calculate

type of expressions
and literals

TypeCheck

1 1

«interface»

IDerive

«interface»

ISynthesize

SynthesizeSymType

FromMCBasicTypes

SynthesizeSymType

FromMCArrayTypes

SynthesizeFromMyLang DeriveFromMyLang

1

1

DeriveSymTypeOf

MCCommonLiterals

DeriveSymTypeOf

CommonExpressions

1

1

DeriveSymTypeOf

Literals

DeriveSymTypeOf

Expression

1

1

«hc» «hc»

MyLangTraverser MyLangTraverser

1 1

Figure 18.22: TypeCheck con�guration for MyLang

As shown, the class SynthesizeFromMyLang combines the classes

� SynthesizeSymTypeFromMCBasicTypes and

� SynthesizeSymTypeFromMCArrayTypes

to synthesize SymTypeExpression from types of types grammars.

DeriveFromMyLang, on the other hand, combines the provided classes

� DeriveSymTypeOfExpression,

� DeriveSymTypeOfCommonExpressions,

� DeriveSymTypeOfLiterals and

� DeriveSymTypeOfMCCommonLiterals

367

18. Expression and Type Language Components

to calculate the types of expressions and literals. Even though only two imported grammars
are explicitly mentioned in the MyLang grammar above, it is necessary to include explicitly
all transitively imported grammars as well.

Java SynthesizeFromMyLang1

2 public class SynthesizeFromMyLang implements ISynthesize {
3 protected MyLangTraverser traverser;
4 protected TypeCheckResult typeCheckResult;
5

6 @Override
7 public void init() {
8 // use new result wrapper and traverser
9 traverser = MyLangMill.traverser();
10 typeCheckResult = new TypeCheckResult();
11

12 // add Synthesize for MCBasicTypes
13 SynthesizeSymTypeFromMCBasicTypes bt =
14 new SynthesizeSymTypeFromMCBasicTypes();
15 bt.setTypeCheckResult(typeCheckResult);
16 traverser.add4MCBasicTypes(bt);
17 traverser.setMCBasicTypesHandler(bt);
18

19 // add Synthesize for MCArrayTypes
20 SynthesizeSymTypeFromMCArrayTypes at =
21 new SynthesizeSymTypeFromMCArrayTypes();
22 at.setTypeCheckResult(typeCheckResult);
23 traverser.add4MCArrayTypes(at);
24 traverser.setMCArrayTypesHandler(at);
25 }
26 }

Listing 18.23: init() method of SynthesizeFromMyLang

The implementation of the init method of the SynthesizeFromMyLang class can be
seen in Listing 18.23. As described before, it �lls a traverser with visitors. To do this, it
retrieves the traverser from the mill. Then, for the two types grammars, instances of the
provided synthesize classes are added to the traverser. The class TypeCheckResult is
also provided by MontiCore and serves as a container for the calculated result of the synthe-
size classes. The implementation of the init method of the class DeriveFromMyLang is
analogous, whereby the provided classes for the involved expression and literals grammars
are added to the traverser.

The implementations of the getters getResult and getTraverser can be seen in List-
ing 18.24.

The two classes are then used as a TypeCheck con�guration. Listing 18.25 shows vari-
ous uses of the TypeCheck to check and calculate types using the example language in
Listing 18.21.

In line 2, the model is de�ned as a string and the AST is built through parsing. Here, the
boolean variable x is assigned to the result of Expression 3 > 4.

368

18.6. Type Checking in MontiCore Languages

Java SynthesizeFromMyLang1

2 @Override
3 public Optional<SymTypeExpression> getResult() {
4 if(typeCheckResult.isPresentCurrentResult()){
5 return Optional.of(typeCheckResult.getCurrentResult());
6 }
7 return Optional.empty();
8 }
9

10 @Override
11 public MCBasicTypesTraverser getTraverser() {
12 return traverser;
13 }

Listing 18.24: Methods of the TypeCheck class

Java MyLangTest1

2 Optional<ASTMyVar> varOpt = parser.parse_String("boolean x = 3 > 4");
3

4 TypeCheck tc = new TypeCheck(new SynthesizeFromMyLang(),
5 new DeriveFromMyLang());
6

7 ASTMyVar var = varOpt.get();
8 ASTMCType type = var.getType();
9 ASTExpression exp = var.getExp();
10

11 // synthesize SymTypeExpression from type
12 SymTypeExpression symType1 = tc.symTypeFromAST(type);
13

14 // calculate SymTypeExpression for exp
15 SymTypeExpression symType2 = tc.typeOf(exp);
16

17 // check whether the type is boolean
18 assertTrue(TypeCheck.isBoolean(symType1));
19 assertTrue(TypeCheck.isBoolean(symType2));
20

21 // check whether both types are compatible
22 assertTrue(TypeCheck.compatible(symType1,symType2));
23

24 // check whether the expression is of assignable type
25 assertTrue(tc.isOfTypeForAssign(symType1,exp));

Listing 18.25: Usage of TypeCheck methods demonstrated in a JUnit test

The TypeCheck is created in l. 4 and during the creation con�gured with the two hand-
crafted classes.

In l. 12�, the type of the variable (x) and then the type of the expression are determined.

Then in l. 18f, it is checked whether the two SymTypeExpressions are indeed of type

369

18. Expression and Type Language Components

boolean. This is a demonstration that the calls of l. 12� work correctly.

In l. 22, the compatibility of the SymTypeExpression is checked with the help of the
method compatible of the class TypeCheck. This test demonstrates the use of the
compatibility check.

Finally, in l. 25, the assignability of the expression to the variable is checked. This test
�nally demonstrates the use of the assignability check, which is essentially only a combi-
nation of typeOf and compatible.

The short version would actually be (1) derive the symType1 of the variable x and the
exp and call isOfTypeForAssign as shown in l. 25.

370

Chapter 19

Statement Language Components

Procedural statements are often needed in domain speci�c languages. Statements are
executable, which means that their inclusion normally goes more towards an executable
DSL that shall be mapped to a normal programming language. This chapter demonstrates
on in total ten grammars how to de�ne statements, and especially how to allow language
developers to select an appropriate subset.

While all statement grammars are in the spirit of Java and their composition in grammar
MCFullJavaStatements provides the complete set of Java statements, several of these
grammars provide only rather general statements that can easily be translated into other
general purpose programming languages.

Tip 19.1: Statement Grammar Components

The grammars discussed in this chapter can be found in the MontiCore repository
under:

Files1 Repository: MontiCore/monticore github
2 Directory: monticore-grammar/src/main/grammars/
3 Packages: de.monticore.statements

Rather generic and well suited even for mappings to other target languages are:

1 Grammars: MCCommonStatements.mc4
2 MCVarDeclarationStatements.mc4
3 MCReturnStatements.mc4

Statements build on ExpressionsBasis and thus on MCBasics, because we al-
low any expression to be understood as statement as well, even though that
is only useful for expressions with side e�ects and method calls. Component
grammar MCVarDeclarationStatements and therefore also its descendants, like
MCCommonStatements, furthermore includes MCBasicTypes and OOSymbols. The
import structure is visualized in Figure 19.2, also exhibiting the extension dependencies
to foreign grammars. Again, root interface nonterminals for statements are introduced in
MCStatementsBasis. While the extension structure is mainly a tree, MontiCore also of-
fers MCFullJavaStatements, a composing grammar that unites all others. Figure 19.3
shows some examples.

19. Statement Language Components
Prof. Dr. B. Rumpe

Lehrstuhl für

Software Engineering

RWTH Aachen

Page 1

StatementStructure

LFD

MCStatements

Basis

MCAssert

Stm.

MCVarDec.

Stm.

MCReturn

Stm.

MCLow

LevelStm.

MCFullJava

Statements

Expression

Basis
OO

Symbols

MCBasics
MCBasic

Types

MCCommon

Stm.
MCArray

Stm.

MCSynchro

nizedStm.

MCException

Stm

Figure 19.2: Component grammar structure hierarchy of Chapter 19

Prof. Dr. B. Rumpe

Lehrstuhl für

Software Engineering

RWTH Aachen

Page 2

StatementExamples

Statement examples:

Person p[] = { foo(3+7), p2, ...}

if (.) then . else .

for (i = .; .; .) {.}

while (.) .

do . while (.)

switch (.) { case .: .; default: .}

return .

assert . : .

try {.} catch (.) {.} finally {.}

throw .

break .

continue .

label: .

private static final native ...

Figure 19.3: Some statement examples

19.1 MCStatementsBasis

The basic grammar MCStatementsBasis already introduces the main interface
MCStatement accompanied by a more general MCBlockStatement that is expected
to be used only within blocks with scopes, such as {...} and allows additionally to de�ne
local variables, like int a = 7.

Interface nonterminal MCModifier allows adding various modi�er variants, e.g., public,
final when needed.

MCG MCStatementsBasis1 component grammar MCStatementsBasis {
2 interface MCBlockStatement;
3

4 interface MCStatement extends MCBlockStatement;
5

372

19.2. MCVarDeclarationStatements

6 interface MCModifier;
7 }

Tip 19.4: Extensible list of Enum Values

Interface nonterminal MCModifier is the starter for an extensible list of modi-
�ers.

If they were de�ned as an enumeration, the number of possible elements would
have been �xed. Advantage of the interface approach are extensible modi�ers, but
these generally need to be handled by (extensible) visitors instead of a �xed switch
statement.

19.2 MCVarDeclarationStatements

Grammar MCVarDeclarationStatements concentrates on the de�nition of local vari-
ables as speci�c statements. Local variables are typed using MCType and can be initialized
with concrete values. Arrays are not part of this grammar, but an extension of it called
MCArrayStatements, which will be explained later in this chapter (cf. Section 19.3). In
case arrays are needed, this grammar needs to be used, which only makes sense if arrays
are available in the type hierarchy.

MCG MCVarDeclarationStatements1 component grammar MCVarDeclarationStatements
2 extends MCStatementsBasis,
3 MCBasicTypes,
4 ExpressionsBasis,
5 OOSymbols {
6 LocalVariableDeclarationStatement implements MCBlockStatement
7 = LocalVariableDeclaration ";" ;
8

9 LocalVariableDeclaration
10 = MCModifier* MCType (VariableDeclarator || ",")+ ;
11

12 VariableDeclarator
13 = Declarator ("=" VariableInit)? ;
14

15 interface Declarator extends Field
16 = Name;
17

18 DeclaratorId implements Declarator
19 = Name;
20

21 interface VariableInit;
22

23 SimpleInit implements VariableInit
24 = Expression;
25 }

373

19. Statement Language Components

LocalVariableDeclaration was factored out as an independent nonterminal to en-
able variable declarations without trailing ";" in other parts of a model.

19.3 MCArrayStatements

MCArrayStatements introduces the possibility to declare arrays with
ArrayDeclaratorId and to initialize them with ArrayInit. The latter ex-
tends the variable initialization options provided by MCVarDeclarationStatements.
Like in Java, ArrayDeclaratorId allows binding the array information not only to the
type but also to the variable.

MCG MCArrayStatements1 component grammar MCArrayStatements
2 extends MCVarDeclarationStatements {
3 ArrayDeclaratorId implements Declarator
4 = Name (dim:"[" "]")+ ;
5

6 ArrayInit implements VariableInit
7 = "{" (VariableInit || ",")* (",")? "}" ;
8 }

19.4 MCCommonStatements

As explained, the grammar MCCommonStatements introduces Java's common control
statements and imports variable declarations. It thus builds a complete procedural lan-
guage that can, for example, be used as an action language, e.g., as the body of transitions
in executable statemachines.

MCJavaBlock realizes block statements and can directly be included if statements shall be
enclosed in {...}. MCJavaBlock is designed to open up a new scope, allowing to de�ne
local variables that are visible in that scope only (non_exporting). Furthermore, a local
variable is only accessible after it has been introduced (ordered). This is standard in
programming language method bodies, including Java, and therefore should be well known
to programmers.

The ExpressionStatement allows using any form of available expression as a statement,
including for example method calls.

MCG MCCommonStatements1 component grammar MCCommonStatements
2 extends MCVarDeclarationStatements {
3

4 scope(non_exporting ordered) MCJavaBlock implements MCStatement
5 = "{" MCBlockStatement* "}" ;
6

7 JavaModifier implements MCModifier =
8 Modifier:["private" | "public" | "protected" | "static"

374

19.4. MCCommonStatements

9 | "transient" | "final" | "abstract" | "native"
10 | "threadsafe" | "synchronized" | "const" | "volatile"
11 | "strictfp"] ;
12

13 IfStatement implements MCStatement
14 = "if" "(" condition:Expression ")"
15 thenStatement:MCStatement
16 ("else" elseStatement:MCStatement)? ;
17

18 EmptyStatement implements MCStatement
19 = ";" ;
20 ExpressionStatement implements MCStatement
21 = Expression ";" ;
22 }

ForStatement embodies a relatively complex structure, including the two possibilities
to de�ne its own local variables, which also enforces that a non_exporting ordered
scope is opened. Besides traditional loop variables, for can also iterate over lists.

Compared to the ForStatement structure, the WhileStatement and
DoWhileStatement are relatively harmless.

MCG MCCommonStatements1 component grammar MCCommonStatements
2 extends MCVarDeclarationStatements {
3 scope (non_exporting ordered) ForStatement implements MCStatement
4 = "for" "(" ForControl ")" MCStatement ;
5 interface ForControl ;
6 CommonForControl implements ForControl
7 = ForInit? ";" condition:Expression? ";" (Expression || ",")* ;
8 ForInit
9 = ForInitByExpressions | LocalVariableDeclaration ;
10 ForInitByExpressions
11 = (Expression || ",")+ ;
12 EnhancedForControl implements ForControl
13 = FormalParameter ":" Expression;
14 FormalParameter
15 = JavaModifier* MCType DeclaratorId;
16

17 WhileStatement implements MCStatement
18 = "while" "(" condition:Expression ")" MCStatement ;
19 DoWhileStatement implements MCStatement
20 = "do" MCStatement "while" "(" condition:Expression ")" ";" ;
21 }

The next part of the grammar deals with the also relatively complex switch statement.
It contains a SwitchBlockStatementGroup where both, labels and statements, need
to be present and catches incomplete empty labels with an explicit SwitchLabel* at the
end. With the BreakStatement, the loop and switch statements can be interrupted.

375

19. Statement Language Components

MCG MCCommonStatements1 component grammar MCCommonStatements
2 extends MCVarDeclarationStatements {
3 SwitchStatement implements MCStatement
4 = "switch" "(" Expression ")"
5 "{" SwitchBlockStatementGroup* SwitchLabel* "}" ;
6

7 SwitchBlockStatementGroup
8 = SwitchLabel+ MCBlockStatement+ ;
9

10 interface SwitchLabel ;
11 ConstantExpressionSwitchLabel implements SwitchLabel
12 = "case" constant:Expression ":" ;
13 EnumConstantSwitchLabel implements SwitchLabel
14 = "case" enumConstant:Name ":" ;
15 DefaultSwitchLabel implements SwitchLabel
16 = "default" ":" ;
17 BreakStatement implements MCStatement
18 = "break" ";" ;
19 }

Tip 19.5: Use MCCommonStatements in Action-oriented languages

MCCommonStatements contains all relevant typical statements that a general-
purpose programming language needs to have, but avoids internal return statements,
exceptions, low-level statements, asserts, or synchronizing statements.

19.5 MCReturnStatements

Grammar MCReturnStatements adds the return with or without return expression
and therefore is also based on ExpressionsBasis.

MCG MCReturnStatements1 component grammar MCReturnStatements
2 extends MCStatementsBasis,
3 ExpressionsBasis {
4 ReturnStatement implements MCStatement
5 = "return" Expression? ";" ;
6 }

19.6 MCAssertStatements

MCAssertStatements realizes Java's assert statement.

376

19.7. MCSynchronizedStatements

MCG MCAssertStatements1 component grammar MCAssertStatements
2 extends MCStatementsBasis,
3 ExpressionsBasis {
4 AssertStatement implements MCStatement
5 = "assert" assertion:Expression (":" message:Expression)? ";" ;
6 }

Tip 19.6: Assert Statements with extended Forms of Expressions

In a speci�cation oriented modeling language, assert statements are not meant
for e�cient execution but for e�ective writing of invariants and constraints by the
developers.

Therefore, it might be useful to extend the assert mechanism massively, for ex-
ample, by OCL and other kinds of logic or data structure querying expressions.

Please note that importing other forms of expressions has the "side e�ect" that
these additional expressions are then available everywhere. This can be prohibited
by issuing context conditions like "This expression element is not allowed in XY
expressions", which explain errors much better than if the context-free grammar
would include di�erent forms of expressions. Users tend to mix kinds of expressions
up and will experience the resulting errors relatively often.

19.7 MCSynchronizedStatements

MCSynchronizedStatements realizes Java's synchronization statement.

MCG MCSynchronizedStatements1 component grammar MCSynchronizedStatements
2 extends MCCommonStatements {
3 SynchronizedStatement implements MCStatement
4 = "synchronized" "(" Expression ")" MCJavaBlock ;
5 }

19.8 MCExceptionStatements

MCExceptionStatements realizes Java's try-catch and the exception throw state-
ment. The three di�erent variants of the TryStatement di�er in the optionality of their
elements, which are, in this case, encoded in the context-free grammar but might also have
been encoded in extra context conditions.

MCG MCExceptionStatements1 component grammar MCExceptionStatements
2 extends MCCommonStatements {
3 TryStatement1 implements MCStatement

377

19. Statement Language Components

4 = "try"
5 core:MCJavaBlock
6 CatchClause+
7 ("finally" finally:MCJavaBlock)? ;
8 TryStatement2 implements MCStatement
9 = "try"
10 core:MCJavaBlock
11 CatchClause*
12 ("finally" finally:MCJavaBlock) ;
13 TryStatement3 implements MCStatement
14 = "try" "(" (TryLocalVariableDeclaration || ";")+ ";"? ")"
15 core:MCJavaBlock
16 CatchClause*
17 ("finally" finally:MCJavaBlock)? ;
18

19 TryLocalVariableDeclaration
20 = JavaModifier* MCType DeclaratorId "=" Expression ;
21

22 CatchClause
23 = "catch" "(" JavaModifier* CatchTypeList Name ")" MCJavaBlock ;
24 CatchTypeList
25 = (MCQualifiedName || "|")+ ;
26

27 ThrowStatement implements MCStatement
28 = "throw" Expression ";" ;
29 }

19.9 MCLowLevelStatements

MCLowLevelStatements introduces labeled break and continue. In a modern pro-
gramming style, these statements should rarely be used. Therefore, MontiCore separates
them into an extra grammar.

Labels are handled as LabelSymbols, that only contain their name.

MCG MCLowLevelStatements1 component grammar MCLowLevelStatements
2 extends MCStatementsBasis,
3 de.monticore.MCBasics {
4 LabelledBreakStatement implements MCStatement
5 = "break" label:Name@Label? ";" ;
6

7 ContinueStatement implements MCStatement
8 = "continue" label:Name@Label? ";" ;
9

10 symbol Label implements MCStatement
11 = Name ":" MCStatement ;
12 }

378

19.10. MCFullJavaStatements

19.10 MCFullJavaStatements

Grammar MCFullJavaStatements combines all previously described language compo-
nents providing the full range of Java statements. It still does not �x types and expressions,
which need to be added separately.

MCG MCFullJavaStatements1 component grammar MCFullJavaStatements extends
2 MCAssertStatements,
3 MCExceptionStatements,
4 MCLowLevelStatements,
5 MCReturnStatements,
6 MCSynchronizedStatements,
7 MCArrayStatements {
8

9 }

Tip 19.7: Composition only Grammars

For reusable library components, it is good to apply the separation of concerns
principle, where each grammar focuses on one speci�c aspect and if desired, a fully
integrating language, like MCFullJavaStatements, allows to directly import the
full set of language components.

Such a compositional grammar typically only consists of a set of extends, some-
times external nonterminals are bound and the axiom needs to be clari�ed in non-
component grammars.

379

Chapter 20

The JavaLight Language

co-authored with Marita Breuer

The JavaLight language de�nes a larger subset of the Java programming language. The
grammar, the hand-written symbol table extensions, and a pretty printer are part of the
MontiCore project. The language introduces Java method declarations, constructor dec-
larations, interface method declarations, attributes, and annotations. The JavaLight
language neither de�nes classes nor interfaces. Its purpose is to be easily reusable and
extensible for the creation of more complex languages such as the complete Java program-
ming language or software modeling languages. The JavaLight language is also used in
the MontiCore grammar language for specifying ast rules and symbol rules.

In the following, Section 20.1 overviews the extension hierarchy of the JavaLight gram-
mar. Afterwards, Section 20.2 describes the nonterminals introduced by the grammar.

20.1 Sublanguage Hierarchy of JavaLight

The feature diagram in Figure 20.1 depicts the hierarchy of the JavaLight sublan-
guages. The JavaLight grammar extends the grammars JavaClassExpressions,
AssignmentExpressions, and MCCommonStatements. The grammar
JavaClassExpressions de�nes Java-speci�c class expressions containing this,
super, new, and instanceof. The grammar MCCommonStatements introduces
statements for specifying the control �ow via loops (while, for, do-while) and
switches (switch-case). The grammar AssignmentExpressions de�nes expressions
for assignments (e.g., a = b + 4 and i++).

The grammar JavaClassExpressions extends the grammar CommonExpressions.
With this, it embeds common expressions such as arithmetic expressions (e.g., (a + 5) /
6), comparisons (e.g., a > b + 7), and boolean expressions (e.g., a && !c). The gram-
mar MCCommonStatements extends the grammar MCVarDeclarationStatements,
which introduces statements for variable declarations (e.g., private int i = 4;).

The grammars CommonExpressions, AssignmentExpressions, and
MCVarDeclarationStatements extend the grammar ExpressionsBasis. This
enables using expressions containing names and literals as well as to specify argument lists.

20. The JavaLight Language
Prof. Dr. B. Rumpe

Lehrstuhl für

Software Engineering

RWTH Aachen

Page 13

JavaLightHierarchy

JavaLight

LFD

JavaClass

Expressions

Assignment

Expressions

MCCommon

Statements

Common

Expressions

ExpressionsBasis OOSymbols MCBasicTypes
MCStatements

Basis

BasicSymbolsMCLiteralsBasis

MCBasics

MCVarDeclaration

Statements

Figure 20.1: A language feature diagram depicting the languages included in the
JavaLight language

The grammar ExpressionsBasis extends the grammar MCLiteralsBasis. The
grammar MCLiteralsBasis solely introduces the Literal interface for introducing
various forms of literals.

The grammar MCVarDeclarationStatements additionally extends the gram-
mars MCBasicTypes, MCStatementsBasis, and OOSymbols. The grammar
MCBasicTypes de�nes quali�ed names (e.g., a.b.c), package declarations (e.g.,
package a.b;), import statements (e.g., import a.b;), the extensible MCType and
MCObjectType interfaces for types, primitive types (e.g., int, double), quali�ed types
for objects (e.g., a.b.C), and return types (void and other MCTypes). The gram-
mar MCStatementsBasis introduces the reusable common interfaces MCStatement,
MCBlockStatement, and MCModifier for statements and modi�ers. The OOSymbols
grammar de�nes the symbol classes OOType, Field, and Method for object-oriented
types. It extends the grammar BasicSymbols. The BasicSymbols grammar intro-
duces the symbol classes Diagram, Type, TypeVar, Variable, and Function. With
this, the grammars OOSymbols and BasicSymbols nearly de�ne all required symbol
kinds for the JavaLight language (JavaLight solely introduces one more symbol kind
extending the kind Method as described below).

The grammars ExpressionsBasis and BasicSymbols extend the grammar
MCBasics. The MCBasics grammar introduces tokens for white space and comment
handling as well as the Name nonterminal. The nonterminal Name is required for expres-
sions containing names and all symbols.

20.2 Nonterminals of JavaLight

The following �rst describes the nonterminals for methods, constructors, and attributes.
Afterwards, the nonterminals for Java annotations are presented. Finally, this section

382

20.2. Nonterminals of JavaLight

introduces the nonterminals introduced for Java array initialization.

20.2.1 Methods, Constructors, and Attributes

MCG JavaLight1 external ExtTypeParameters;
2 interface ClassBodyDeclaration;
3 interface InterfaceBodyDeclaration;

Listing 20.2: External and interfaces introduced by the JavaLight grammar for comfort-
able reuse of type parameters and class and interface elements

The JavaLight grammar introduces the external ExtTypeParameters and the in-
terfaces ClassBodyDeclaration and InterfaceBodyDeclaration as extension
points (cf. Listing 20.2). The external nonterminal ExtTypeParameters is an exten-
sion point for the speci�c kinds of type parameters (e.g., generic types) to be embedded.
The interface ClassBodyDeclaration is an extension point for elements that can be de-
�ned in the bodies of classes. Analogously, the interface InterfaceBodyDeclaration
is an extension point for elements that can be de�ned in the bodies of interface nontermi-
nals. Although the JavaLight grammar neither de�nes Java classes nor Java interfaces,
it introduces the interface nonterminals as extension points for comfortable reuse of the
nonterminals implementing these interface nonterminals. Providing interfaces for these
elements supports developers in embedding specialized language elements at the speci�c
positions where the interfaces are used. The required language elements that should be
embedded may vary between di�erent use cases.

MCG JavaLight1 interface scope (shadowing non_exporting ordered)
2 symbol JavaMethod extends Method = Name;
3

4 symbolrule JavaMethod =
5 exceptions: de.monticore.types.check.SymTypeExpression*
6 annotations: de.monticore.types.check.SymTypeExpression*
7 isAbstract: boolean
8 isSynchronized: boolean
9 isNative:boolean
10 isStrictfp: boolean;

Listing 20.3: The JavaMethod symbol

The grammar de�nes the symbol kind JavaMethod (cf. Listing 20.3). The symbol class
JavaMethod (l. 1f) extends the symbol class Method. The Method symbol class is
de�ned in the grammar OOSymbols and represents methods of objects. Thereby, it inherits
all its attributes. The symbol rule in ll. 4-10 adds all Java-speci�c attributes needed to
describe modi�ers for methods and also all exceptions the method can raise as well as
annotations the method can have. Java methods open a shadowing scope and do not
export the symbols de�ned in their scopes. The symbols are ordered.

383

20. The JavaLight Language

MCG JavaLight1 Throws
2 = (MCQualifiedName || ",")+;
3

4 LastFormalParameter
5 = JavaModifier* MCType "..." DeclaratorId;
6

7 FormalParameterListing
8 = (FormalParameter || ",")+ ("," LastFormalParameter)?
9 | LastFormalParameter;
10

11 FormalParameters
12 = "(" FormalParameterListing? ")";

Listing 20.4: Nonterminals de�ned in the JavaLight grammar that are used by the non-
terminals for methods and annotations

The de�nitions of the nonterminals Throws, LastFormalParameter,
FormalParameterListing, and FormalParameters are depicted in Listing 20.4.
These nonterminals are used by the nonterminals for methods and annotations. The
Throws nonterminal can be reused where declarations for possible throws of exceptions are
needed. The parameter-productions can be reused where the speci�cation of parameters
is necessary. The nonterminal FormalParameter is already introduced in the grammar
MCCommonStatements. The right-hand side of the Throws production consists of a
comma-separated list of quali�ed names (ll. 1-2). We recall that a FormalParameter
consists of an arbitrary number of JavaModifiers, followed by an MCType and an
DeclaratorId. Analogously, a LastFormalParameter consists of an arbitrary num-
ber of JavaModifiers, followed by an MCType, three dots (...), and a DeclaratorId
(ll. 4-4). A FormalParameterListing either consists of a comma-separated list of
at least one FormalParameter, optionally followed by a LastFormalParameter
or solely consists of a LastFormalParameter (ll. 7-9). The right-hand side of the
FormalParameters production consists of an opening round bracket, optionally
followed by a FormalParameterListing, which is required to be followed by a
closing round bracket (ll. 11-12). For example, a valid word that can be produced
by the FormalParameters production using the FormalParameterListing and
LastFormalParameter productions is (final int x, Object... objects).

MCG JavaLight1 MethodDeclaration implements JavaMethod,
2 ClassBodyDeclaration
3 = MCModifier* ExtTypeParameters?
4 MCReturnType Name FormalParameters (dim:"[" "]")*
5 ("throws" Throws)? (MCJavaBlock | ";");

Listing 20.5: The MethodDeclaration nonterminal

The JavaLight grammar introduces the nonterminal MethodDeclaration for imple-
menting methods (cf. Listing 20.5). The nonterminal implements the JavaMethod sym-
bol interface (l. 1). Thus, for every MethodDeclaration, the corresponding model
de�nes a JavaMethod symbol. It implements the interface ClassBodyDeclaration

384

20.2. Nonterminals of JavaLight

(l. 2) to be reusable at every position where ClassBodyDeclaration is used. Every
MethodDeclaration starts with an arbitrary number of MCModifiers, optionally fol-
lowed by a type parameter (l. 3). Afterwards, every MethodDeclaration consists of
a MCReturnType, the method's Name, and FormalParameters (a list of parameters
enclosed by round brackets) (l. 4). The parameters are followed by an arbitrary number of
opening and closing brackets, de�ning the dimension of the return value (l. 4). Then, the
MethodDeclaration optionally de�nes exceptions that can be thrown (l. 5). Finally, the
MethodDeclaration either consists of an MCJavaBlock de�ning the method's body
or a semicolon1 (l. 5). For instance, when embedding appropriate syntax for type pa-
rameters into the external ExtTypeParameters, the word public <E> int calc(E
arg)[] throws ex.MyException; can be produced by the MethodDeclaration
production.

MCG JavaLight1 InterfaceMethodDeclaration implements JavaMethod,
2 InterfaceBodyDeclaration
3 = MCModifier* ExtTypeParameters?
4 MCReturnType Name FormalParameters (dim:"[" "]")*
5 ("throws" Throws)? ";";
6

7 ConstructorDeclaration implements JavaMethod, ClassBodyDeclaration
8 = MCModifier* ExtTypeParameters? Name FormalParameters
9 ("throws" Throws)? MCJavaBlock;

Listing 20.6: The nonterminals InterfaceMethodDeclaration and
ConstructorDeclaration

The nonterminals InterfaceMethodDeclaration and ConstructorDeclaration
are de�ned similar to the nonterminal MethodDeclaration (cf. Listing 20.6). An
InterfaceMethodDeclaration (ll. 1-5) must not end with a MCJavaBlock (l. 5).
Thus, it must end with a semicolon. It implements the interfaces JavaMethod and
InterfaceBodyDeclaration. Thus, using the nonterminal produces a JavaMethod
symbol and the nonterminal can be employed where InterfaceBodyDeclarations are
expected. The nonterminal ConstructorDeclaration (ll. 7-9) does not de�ne a return
value and cannot end with a semicolon (l. 9). Thus, ConstructorDeclarations must
end with a MCJavaBlock. The nonterminal implements the interfaces JavaMethod and
ClassBodyDeclaration (l. 7).

MCG JavaLight1 ConstDeclaration extends LocalVariableDeclarationStatement
2 implements ClassBodyDeclaration,
3 InterfaceBodyDeclaration
4 = LocalVariableDeclaration ";";

Listing 20.7: The nonterminal ConstDeclaration

The ConstDeclaration nonterminal (cf. Listing 20.7) extends the

1Java allows abstract classes to contain methods with empty bodies.

385

20. The JavaLight Language

LocalVariableDeclarationStatement nonterminal2 (l. 1). It imple-
ments the ClassBodyDeclaration and InterfaceBodyDeclaration in-
terfaces (ll. 2-3). Thus, ConstDeclarations can be used in all places
where the LocalVariableDeclarationStatements nonterminal, the
ClassBodyDeclarations interface, or the InterfaceBodyDeclaration in-
terface is expected. The right-hand side of the ConstDeclaration production contains
a LocalVariableDeclaration, followed by a semicolon (l. 4). For instance, public
final int x,y; is a valid ConstDeclaration.

20.2.2 Java Annotations

MCG JavaLight1 interface AnnotationArguments;
2 interface ElementValue;

Listing 20.8: The interfaces AnnotationArguments and ElementValue

The JavaLight grammar also introduces Java annotations. To this e�ect, the gram-
mar introduces the interface nonterminals AnnotationArguments and ElementValue
(cf. Listing 20.8). The AnnotationArguments nonterminal represents a block of possible
arguments for annotations. The ElementValue interface represents possible expressions
for the right-hand sides of element/value pairs used in annotations. JavaLight does not
support to introduce new annotation declarations. Only the call of existing annotations is
described here.

MCG JavaLight1 AnnotationPairArguments implements AnnotationArguments
2 = (ElementValuePair || ",")+;
3

4 ElementValueOrExpr implements AnnotationArguments
5 = ElementValue | Expression;
6

7 ElementValuePair
8 = Name "=" ElementValueOrExpr;
9

10 ElementValueArrayInitializer implements ElementValue
11 = "{" (ElementValueOrExpr || ",")* (",")? "}";

Listing 20.9: JavaLight nonterminals for annotations

Listing 20.9 presents the four nonterminals used for Java annotations.
The AnnotationPairArguments nonterminal implements the interface
AnnotationArguments (l. 1). The right-hand side consists of a comma-separated list
of ElementValuePairs (l. 2). The ElementValueOrExpr nonterminal implements
the AnnotationArguments interface (l. 4). Each ElementValueOrExpr is either
an ElementValue or an Expression (l. 5). Each ElementValuePair consists

2The LocalVariableDeclarationStatement nonterminal is de�ned in the grammar
MCVarDeclarationStatements.

386

20.2. Nonterminals of JavaLight

of a Name, followed by the keyword = and an ElementValueOrExpr (ll. 7-8). The
ElementValueArrayInitializer nonterminal (ll. 10-11) can be used to specify
an array of ElementValueOrExpr. As it implements the ElementValue interface
(l. 10), it can be used in all places where element values for annotations are expected. An
ElementValueArrayInitializer starts with an opening curly bracket, followed by
a comma-separated list of ElementValueOrExpr, optionally followed by a comma, and
ends with a closing curly bracket (l. 11). For instance, when embedding appropriate further
syntax into the ElementValue interface, then x = 5 is a valid ElementValuePair,
x = 5, y = 7 can be produced by the production AnnotationPairArguments, and
{4, 7} is a valid ElementValueArrayInitializer.

MCG JavaLight1 Annotation implements MCModifier, ElementValue
2 = "@" annotationName:MCQualifiedName
3 ("(" AnnotationArguments? ")")?;

Listing 20.10: The nonterminal Annotation

Listing 20.10 depicts the de�nition of the Annotation nonterminal. It implements the
interfaces MCModifier and ElementValue (l. 1). Thus, Annotations can be used in
all places where MCModifiers and ElementValues are expected. Each Annotation
starts with the lexical @, followed by the annotation's quali�ed name (l. 2), an opening
round bracket, optionally followed by AnnotationArguments, and ends with a closing
round bracket (l. 3). For example, when embedding appropriate further syntax into the
ElementValue interface, the Annotation production can produce @MyAnnotation(x
= 5, y = {4, 7}).

20.2.3 Java-Speci�c Array Initialization

MCG JavaLight1

2 ArrayDimensionByInitializer implements ArrayDimensionSpecifier
3 = (dim:"[" "]")+ ArrayInit;

Listing 20.11: The nonterminal ArrayDimensionByInitializer

The ArrayDimensionByInitializer nonterminal (cf. Listing 20.11,
ll. 2-3) implements the interface ArrayDimensionSpecifier3. Each
ArrayDimensionByInitializer starts with arbitrarily many opening and clos-
ing square brackets specifying the array's dimension, followed by ArrayInit for
initializing the array (l. 3).

3The interface ArrayDimensionSpecifier is de�ned in the grammar JavaClassExpressions

387

Chapter 21

Some Demonstrating Example Languages

co-authored with Robert Heim, Arvid Butting

Quite a number of languages have been developed using MontiCore, some of them are
publicly available in the repositories1. In this chapter we describe a small selection of
these languages, because they are used as examples in parts of the handbook.

The main purpose is to demonstrate some features of the MontiCore language workbench.
For a detailed and more complete overview of existing languages and tools behind that
languages please see the various MontiCore projects.

21.1 A Simple Automata Language

The SAutomata language (S is short for Simple) is an example for a language that is
delivered with standard MontiCore and can easily be used to build on.

When designing a language, the �rst step is to discuss its properties on the basis of concrete
examples. Listings 21.1 shows a simple automaton having two states and two transitions
and 21.2 shows an automaton describing how a ping-pong game is played. Graphical
representations are displayed in Figure 21.3.

Automaton Simple1 automaton Simple {
2 state A <<initial>>;
3 A - x > B;
4

5 state B <<final>>;
6 B - y > A;
7 }

Listing 21.1: Simple automaton in text format

1https://github.com/MontiCore

21. Some Demonstrating Example Languages

Automaton PingPong1 // The ping pong game
2 automaton PingPong {
3 state NoGame <<initial>> <<final>>;
4 state Ping;
5 state Pong <<final>>;
6

7 NoGame - startGame > Ping;
8

9 Ping - stopGame > NoGame;
10 Pong - stopGame > NoGame;
11

12 Ping - returnBall > Pong;
13 Pong - returnBall > Ping;
14 }

Listing 21.2: Example model for the Automaton language
Prof. Dr. B. Rumpe

Lehrstuhl für

Software Engineering

RWTH Aachen

Page 2

Two Automata Examples

NoGame

Ping

Pong

startGamestopGame

returnBall

returnBall

stopGame

y

xA

B

Automaton SimpleAutomaton
PingPong

Figure 21.3: Two automata example models

Concrete Syntax

As can be seen in these examples an automaton consists of a basic block (l. 2 and 14 in
Listing 21.2), states (l. 3�. in Listing 21.2) and transitions (l. 7�. in Listing 21.2). States
start with the keyword state and have a name. They can be initial, �nal or none of
it. Transitions connect two states where one state is the source and the other the target.
Furthermore, transitions are triggered by events such as stopGame in the examples or x
and y. After identifying the structure with �xed (e.g. keyword and multiplicities) and
variable parts (e.g. names) that all models of the desired language have in common, a
grammar can be de�ned. One such grammar that allows specifying automata as presented
before is shown in Listing 21.4.

MCG Automaton1 import de.monticore.*;
2 grammar SAutomata extends MCBasics {
3

4 symbol scope Automaton =
5 "automaton" Name "{" (State | Transition)* "}" ;
6

7 symbol State =

390

21.1. A Simple Automata Language

8 "state" Name
9 (("<<" ["initial"] ">>") | ("<<" ["final"] ">>"))* ";";
10

11 Transition =
12 from:Name@State "-" input:Name ">" to:Name@State ";" ;
13 }

Listing 21.4: MontiCore grammar for the SAutomata language

The grammar does not have an explicit package declaration and thus belongs to the default
package. It uses the most basic grammar, namely MCBasics, and therefore starts with
an import statement. MCBasics provides white space handling and common lexical
nonterminals such as Name. The grammar itself de�nes three nonterminals Automaton,
State and Transition corresponding to the di�erent modeling elements of the automa-
ton language. The MontiCore grammar describes the concrete and the abstract syntax, as
well as a core symbol table infrastructure. If we are only interested in the concrete syntax,
the reduced EBNF is easier to read:

MCG EBNF1 Automaton = "automaton" Name "{" (State | Transition)* "}"
2

3 State = "state" Name ("<<initial>>" | "<<final>>")* ";"
4

5 Transition = Name "-" Name ">" Name ";"

Listing 21.5: EBNF of the SAutomata language

Abstract Syntax

To understand the AST, it su�ces to use the grammar shown in Listing 21.6 that contains
all essential information that MontiCore needs to derive a set of Java classes for the AST.
The resulting AST classes are shown in Figure 21.7. As described in Chapter 5, MontiCore
translates the keyword final into the attribute boolean r__final to avoid naming
con�icts with the final keyword of Java.

MCG SAutomata (AST only)1 grammar SAutomata extends MCBasics {
2 Automaton = Name (State | Transition)* ;
3 State = Name (["initial"] | ["final"])* ;
4 Transition = from:Name input:Name to:Name ;
5 }

Listing 21.6: MontiCore grammar for the SAutomata language

For a deeper look into the class structure of the AST, the connection with the runtime
classes provided by MontiCore are shown in Figure 21.8.

391

21. Some Demonstrating Example Languages
Prof. Dr. B. Rumpe

Lehrstuhl für

Software Engineering

RWTH Aachen

Page 3

AST of the Automaton Language

State

boolean initial

boolean r__final

String name

Automaton

String name

Transition

String from

String input

String to

* *

AST-CD
«gen»

«gen»«gen»

Figure 21.7: AST of the Simple Automaton language

Prof. Dr. B. Rumpe

Lehrstuhl für

Software Engineering

RWTH Aachen

Page 4

Extended AST of the Automaton Language

AST-CD

State

boolean initial

boolean r__final

String name

Automaton

String name

Transition

String from

String input

String to

* *

«gen»

«gen»«gen»

«rte»

ASTCNode

«gen»

«interface»

AST

SAutomataNode

«rte»

«interface»

ASTNode

«gen»

SAutomata

Mill

Figure 21.8: AST of the SAutomata language extended by runtime classes

Visitors

For the SAutomata language the usual classes and interfaces for visitors are generated as
depicted in Figure 21.9. As described in Chapter 8 the generated interfaces and classes
already provide default implementations for traversing the AST and visiting AST nodes.
The default traversal strategy is depth �rst while the default visiting implementation is
empty. Thus, when implementing a visitor, e.g., for realizing a pretty printer, it is suf-
�cient to override visit methods relevant for the desired functionality. An example of
an implemented visitor interface is the the symbol table genitor, which is explained in
Chapter 9. Instances of the traverser SAutomataTraverser are obtainable via the mill,
because this allows easy creation as well as some checks on the composite.

Symbols

Two of the nonterminals de�ned in the SAutomata grammar in Listing 21.4 (p. 390) are
marked as symbols: Automaton and State. Transition sources and targets are references
to states. Therefore, a symbol table infrastructure is needed and because of this relatively
simple case, the generated classes completely cover what is needed. This includes symbols,

392

21.1. A Simple Automata Language
Prof. Dr. B. Rumpe

Lehrstuhl für

Software Engineering

RWTH Aachen

Page 5

Visitors for the Automaton Language

AST-CD
«interface»

SAutomataVisitor2

«interface»

SAutomataHandler

«gen»

«interface»

SAutomataTraverser

«gen»

SAutomataInheritance

Handler

«gen»

SAutomataTraverser

Implementation

«gen»

«gen»

*

1

1

Figure 21.9: Visitors for the Automata language

scope classes as well as symbol table genitors and an infrastructure for storing and loading
symbols on the �le system.Prof. Dr. B. Rumpe

Lehrstuhl für

Software Engineering

RWTH Aachen

Page 7

AutomatonSymbol

Symbol Structure of the SAutomaton Language

StateSymbol

«interface»

ICommonSAutomataSymbol

«interface»

IScopeSpanningSymbol

«interface»

ISymbol

CD

«RTE»

«gen»

SAutomata
language

State

SymbolSurrogate

Automaton

SymbolSurrogate

Figure 21.10: Symbols of the SAutomaton language

The generated symbols are shown in Figure 21.10. As described in Chapter 9, for every
nonterminal X marked as a symbol, the classes XSymbol and XSymbolSurrogate are
generated. The main classes are AutomatonSymbol and StateSymbol. Their surro-
gates should normally not be necessary. They are only used, when the symbol is not de�ned
in the currently processed model, but in a foreign model and the according symbol table
has not been loaded yet. This happens for example when only the check for the existence
of the symbol is needed, but no further information about the symbol is required and there
is a high potential that loading the entire symbol table of the model is not required in the
whole process. This is typically useful when lazy loading the signatures of classes, where
other classes are mentioned e.g. as parameter types.

393

21. Some Demonstrating Example Languages

Scopes

For each language, MontiCore always generates three interfaces and three implementation
classes that manage scope infrastructures. Figure 21.11 shows the structure of these classes.

Prof. Dr. B. Rumpe

Lehrstuhl für

Software Engineering

RWTH Aachen

Page 6

Scope Classes

CD

«RTE»

«gen»

SAutomata
language

«interface»

IGlobalScope

«interface»

ISAutomataGlobalScope

«interface»

IArtifactScope

«interface»

ISAutomataArtifactScope

«interface»

IScope

SAutomataScope

SAutomataGlobalScopeSAutomataArtifactScope

«interface»

ISAutomataScope

MCBasics (not shown)

Figure 21.11: Generated scope classes and interfaces of the SAutomaton language

In this simple case, where only the nonterminal Automaton is marked as scope spanning,
in a concrete model only the SAutomataScope scope is explicitly needed. For composi-
tion purposes, however, it is useful to use the also provided SAutomataScopeBuilder.
The interfaces, like ISAutomataScope, are mainly generated, to resolve the inheritance
diamonds (see Figure 21.11). The class ISAutomataScope also is the main interface to
be programmed against.

The class SAutomataGlobalScope acts like an ordinary scope from the model side, but
rede�nes the behavior of its implemented interface IGlobalScope to provide a global
look up and load of needed symbol tables (not needed in the simple automaton case).

Figure 21.12 connects the symbol and the scope classes by showing the relationship be-
tween the StateSymbol, the ASTState node and the SAutomataScope. For the
AutomatonSymbol, this relationship is slightly more complicated because it also spans
a new scope.

Prof. Dr. B. Rumpe

Lehrstuhl für

Software Engineering

RWTH Aachen

Page 8

ASTNode Symbol Scope

SAutomataScope

StateSymbol

1

*

contains

1
ASTState

ast

0..1

enclosingScope

subScopes
*

symbol

enclosingScope
1

CD

0..1

«gen»

SAutomata
language

Figure 21.12: Relation between AST node, symbol and scope in the Automaton language

394

21.1. A Simple Automata Language

Creation, Storage and Loading of Symbols

For loading and storing symbol tables of the SAutomata language, MontiCore generates
four classes that realize serialization and deserialization strategies for the language's sym-
bols and scopes. Loading and storing symbol tables of a language is realized by storing
each artifact scope as an individual artifact. Thus, the central class of the serialization
infrastructure is SAutomataDeSer, which o�ers methods for loading and storing artifact
scopes of the language. Further, the scope DeSer realizes methods for serializing and de-
serializing scope objects. As the language de�nes two symbol kinds, two DeSer classes �
one for each symbol kind � are generated for serializing and deserializing the symbols.

The class SAutomataSymbols2Json is a visitor that traverses the artifact scopes for the
purpose of their serialization. The Symbols2Json class and the DeSer classes collaborate
to load and store symbols. During the traversal of a scope, the local symbols of the scope
are visited. If a symbol spans a scope, this scope is traversed when traversing the symbol.

The SAutomataDeSer translates objects of the scope into JSON and JSON repre-
sentations of the scope back into scope objects. To traverse the scope, it uses the
SAutomataSymbols2Json class. For serializing and deserializing local symbols, it dele-
gates to symbol DesSer classes. As this language de�nes two symbol kinds and no symbol
kinds of super languages are reused, the DeSer uses the AutomatonSymbolDeSer and
the StateSymbolDeSer.

Prof. Dr. B. Rumpe

Lehrstuhl für

Software Engineering

RWTH Aachen

Page 9

SAutomata DeSer

Automaton-Tool CD

«interface»

SAutomataVisitor2

SAutomataSymbols2Json

«gen»

«gen»

SAutomataDeSer

ISAutomataScope load(String file)

store(ISAutomataScope s, String file)

-

AutomatonSymbolDeSer

StateSymbolDeSer

«gen»

«gen»

«gen»

Figure 21.13: Generated classes for loading and storing symbol tables of the SAutomaton
language

Context Conditions

Another important part of a language de�nition is well-formedness. Besides the restriction
expressed by the grammar there are typically further constraints that need to be satis�ed
by the models of a language in order to be well-formed. For the SAutomata language
these are for example:

� There must be at least one initial state.

� State names start with capital letter.

� Transition source and target must exist.

395

21. Some Demonstrating Example Languages
Prof. Dr. B. Rumpe

Lehrstuhl für

Software Engineering

RWTH Aachen

Page 10

SAutomata CoCo

«interface»

SAutomataASTStateCoCo

+ check(ASTState node)

StateNameStartsWithCapitalLetter

+ check(ASTState node)

«hc»

«gen»

@Override

public void check(ASTState node) {

if(!Character.isUpperCase(node.getName().charAt(0))){

Log.error(0xAUT02 State name should start with a capital letter.");

}}

Automaton-Tool CD

«interface»

SAutomataVisitor2

SAutomataCoCoChecker
,

+ addCoCo(SAutomataASTStateCoCo c)

+ checkAll(ASTAutomataNode n)

*

n.accept(traverser);

Start the visitor

«gen»

«gen»

Figure 21.14: De�ning context conditions for the SAutomata language

For de�ning well-formedness rules MontiCore generates infrastructure to implement con-
text conditions. For every nonterminal an interface is generated that should be imple-
mented by a context condition concerning this nonterminal. Furthermore, a context con-
dition checker and a context condition interface for the base node of the language are
generated. Figure 21.14 shows an example context condition implementation for state
names start with capital letters. Implemented context conditions must be added to the
context condition checker that afterwards is able to check the well-formedness of models
(cf. Figure 21.14). The checker uses a traverser to traverse the AST and checks all context
conditions suitable for the visited nodes. For the SAutomata language the �les listed in
Listing 21.15 are generated for de�ning context conditions.

1 sautomata/_cocos/SAutomataASTAutomatonCoCo.java
2 sautomata/_cocos/SAutomataASTSAutomataNodeCoCo.java
3 sautomata/_cocos/SAutomataASTStateCoCo.java
4 sautomata/_cocos/SAutomataASTTransitionCoCo.java
5 sautomata/_cocos/SAutomataCoCoChecker.java

Listing 21.15: Files for context conditions for the SAutomaton language

21.2 A Language Extension for Hierarchical Automata

In the previous section the language SAutomata for simple automata was explained and
two example automata where considered. The next automaton in Listing 21.16 is an
extended version of the automaton in Listing 21.2. Here, the automaton has an additional
state InGame that contains the two sub-states Ping and Pong and their transitions.
SAutomata does not allow containment and thus an extension is necessary for this kind
of automata.

396

21.2. Hierarchical Automata

Automaton PingPong1 automaton PingPong {
2 state NoGame <<initial>>;
3 state InGame <<final>> {
4 state Ping ;
5 state Pong ;
6

7 Ping - returnBall > Pong;
8 Pong - returnBall > Ping;
9 }
10

11 NoGame - startGame > Ping;
12

13 InGame - stopGame > NoGame;
14 }

Listing 21.16: Example model for the hierarchical Automaton language

As this language is an extension of the SAutomata language, the grammar of HAutomata
(H for Hierarchical) extends the grammar of SAutomata (l. 1 of Listing 21.17). Thereby
all nonterminals of SAutomata are inherited. HAutomata uses the same starting non-
terminal as SAutomata (cf. in l. 7). As states can be hierarchical in HAutomata, the
nonterminal State is rede�ned such that the former state syntax is still valid but in
addition states may have a body consisting of states and transitions (cf. l. 9).

MCG HierarchicalAutomaton1 grammar HAutomata extends SAutomata {
2 // keep the old start rule
3 start Automaton;
4

5 // redefine a nonterminal
6 @Override
7 State = "state" Name
8 ("<<" ["initial"] ">>" | "<<" ["final"] ">>")*
9 (";" | "{" (State | Transition)* "}");
10 }

Listing 21.17: MontiCore grammar for the HAutomata language

The resulting AST structure is depicted in Figure 21.18. The AST classes of SAutomata
are reused for HAutomata. For the rede�ned State nonterminal a new AST class State
is generated that extends the State class of SAutomata.

As for the SAutomata language, the typical four types of visitors are generated. They
are all implementing their respective visitors from the supergrammar SAutomaton.

The grammar de�nes no new symbols or scopes itself, thus no symbol classes are generated.
Instead, the symbols of the language SAutomata are reused for the language HAutomata.
However, as states are hierarchical in HAutomata, the symbol table creation needs to
be adapted to also consider sub-states. Furthermore, by default new scope classes are
generated for the language, even though they do not really implement anything in addition
to their superclasses from SAutomata.

397

21. Some Demonstrating Example Languages
Prof. Dr. B. Rumpe

Lehrstuhl für

Software Engineering

RWTH Aachen

Page 11

AST of the Hierarchical Automaton Language

State

boolean initial

boolean r__final

String name

Automaton

String name

Transition

String from

String input

String to

* *

AST-CD
«gen»

State

*
states

SAutomaton

HAutomaton

*

Figure 21.18: AST of the hierarchical Automaton language

A new context condition checker is generated and for the new state nonterminal of
HAutomata, a context condition interface allows to de�ne adapted CoCos.

21.3 A Language for Automata with Invariants

Another example of an automaton is shown in Listing 21.19. In comparison to the simple
automata of SAutomata states have invariants, which are modelled as external nontermi-
nal. A possible and �exible grammar for this kind of automata is shown in Listing 21.20.

Automaton PingPong1 automaton PingPong {
2 state NoGame - <<initial>>;
3

4 NoGame - startGame > Ping;
5

6 Ping - stopGame > NoGame;
7 Pong - stopGame > NoGame;
8

9 state Ping var1;
10 state Pong !var2 <<final>>;
11

12 Ping - returnBall > Pong;
13 Pong - returnBall > Ping;
14 }

Listing 21.19: Example model for the Automaton language with invariants

Grammar IAutomataComp (I for Invariant) de�nes states that have invariants. However,
it does not yet de�ne any syntax for invariants but uses an external nonterminal (cf. l. 6).
Thus, this grammar is meant for extension and must be marked as a component (cf. l. 1).
An extension of this grammar called IAutomata that de�nes its own syntax for invariants

398

21.3. A Language for Automata with Invariants

is shown in Listing 21.21. IAutomata overrides the external nonterminal Invariant and
thereby de�nes a syntax for it. The resulting AST structure is shown in Figure 21.22.

MCG IAutomataComp1 component grammar IAutomataComp extends MCBasics {
2

3 Automaton =
4 "automaton" Name "{" (State | Transition)* "}" ;
5

6 external Invariant;
7

8 State = "state" Name
9 Invariant ("<<" ["initial"] ">>" | "<<" ["final"] ">>")* ";" ;
10

11 Transition =
12 from:Name "-" input:Name ">" to:Name ";" ;
13 }

Listing 21.20: Grammar component for IAutomataComp that de�nes state with invariants

For IAutomataComp MontiCore generates the AST classes for Automaton, State and
Transition and an interface Invariant for the external nonterminal. We now could
embed the expressions provided by MontiCore as invariant language using Invariant =
Expression and importing some of MontiCores expression grammars. But we deliber-
ately decide against this (normally recommended, simple and powerful option) and de�ne
IAutomata instead.

For IAutomata, MontiCore generates an Interface for the interface nonterminal
LogicExpr, AST classes for the nonterminals Truth, Not and Var, and an AST class
for the overriding nonterminal Invariant. The AST class for Invariant implements
the interface Invariant generated for IAutomataComp. ["-"] in l. 6 is used to denote
the absence of an invariant with a "-" sign and the brackets force the generator to store a
boolean attribute mINUS in the class ASTInvariant indicating whether "-" was used.

MCG IAutomata1 grammar IAutomata extends IAutomataComp {
2 start Automaton;
3

4 // use this production as Invariant in Automata
5 @Override
6 Invariant = LogicExpr | ["-"] ;
7

8 interface LogicExpr;
9 Truth implements LogicExpr = tt:["true"] | "false" ;
10 Not implements LogicExpr = "!" LogicExpr ;
11 Var implements LogicExpr = Name ;
12 }

Listing 21.21: Grammar for automata with state invariants

As for SAutomata the typical four types of visitors are generated for IAutomataComp
as well as for IAutomata. Both grammar de�ne no symbols or scopes, thus no symbol

399

21. Some Demonstrating Example Languages
Prof. Dr. B. Rumpe

Lehrstuhl für

Software Engineering

RWTH Aachen

Page 12

AST of the Invariant Automaton Language

State

boolean initial

boolean r__final

String name

Automaton

String name

Transition

String from

String input

String to

* *

AST-CD
«gen»

Invariant

IAutomatonComp

IAutomaton

«interface»

InvariantExt

«interface»

LogicExpr

NotTruth

boolean r__true

Var

String name

Figure 21.22: AST of the Automaton language with Invariants

or scope classes are generated. For all nonterminals regardless of whether their marked as
interfaces or external or not marked at all context condition interfaces are generated.

21.4 Scannerless Parsing to Handle Complex Tokens

Section 4.1 discusses how the lexer groups individual characters into tokens, which are then
used by the context-free parser to construct the abstract syntax. Because tokens are de�ned
using regular expressions and are scanned without any context information, overlapping
tokens may lead to problems. It depends on the order of de�nition, which tokens are
recognized and given to the parser. Furthermore, if one token is a pre�x of another, then
only the longer token is recognized. For example the in�x operator ">>" has a pre�x ">",
the negative decimals like "-42" are pre�xed by "-".

To prevent these problems, we discuss two explicit mechanisms among several possible
solutions in the following two sections. MontiCore provides the noSpace(.) semantic
predicate and the splittoken directive that solve already most of the discussed cases.

21.4.1 Parsing with Whitespaces

When the simple comparison ">" needs to be recognizable as token, the in�x operator
">>" cannot be directly de�ned, but needs to be de�ned as nonterminal with two token.
Unfortunately, on the nonterminal level, whitespaces are not visible anymore and a non-
terminal with right-hand side ">" ">" can not distinguish the correct input ">>" from
an erroneous "> >".

One way to handle this is to switch o� the parsing and ignoring of whitespaces as de�ned
in the token WS by not including the MCBasics grammar. Token de�nition WhiteSpace
achieves this:

400

21.4. Scannerless Parsing to Handle Complex Tokens

MCG Scannerless1 S = WhiteSpace* ;
2 S1 = WhiteSpace+ ;
3

4 token WhiteSpace = (' ' | '\t' | '\r' | '\n') ;

Listing 21.23: Whitespaces made explicit in the productions

Nonterminal S groups an arbitrary sequence of whitespaces including the empty sequence,
while S1 demands at least one whitespace.

The advantage is that whitespaces can now be explicitly handled in the productions. The
disadvantage is that they need to be handled everywhere explicitly as the following excerpt
of a grammar shows:

MCG Scannerless1 interface Expression;
2

3 ShiftExpression implements Expression <160> =
4 leftExpression:Expression
5 (shiftOp2:"<" "<"
6 | shiftOp4:">" ">"
7)
8 rightExpression:Expression;
9

10 BracketExpression implements Expression <310>
11 = S "(" Expression ")" S;
12

13 NameExpression implements Expression <350>
14 = S Name S;
15

16 Type = S Name S TypeArguments? S;
17

18 TypeArguments = S "<" (Type || ",")* ">" S ;

Listing 21.24: Whitespaces explicitly used in productions

The productions are decorated with the explicit whitespace nonterminal S in many places,
to explicitly allow spaces at the beginning, between and after a language element. The
paradigm is that each nonterminal in itself embeds whitespaces (S) before it really starts
and ends. Thus, between two terminals an explicit S must be included. Furthermore, at
the beginning and end of each production, S is added if the production starts respectively
ends with a terminal.

For example, it is not necessary to repeat the initial S in left recursive de�nitions (it is not
even allowed to repeat it). Explicit omission of S between two character terminals enforces
both to stand in the input directly next to each other and thus allows us to achieve that
"<" "<" in the production only parses "<<" in the input. Please note that the production
still needs to contain two individual characters and not their combination, because that
implicitly de�nes a new token.

401

21. Some Demonstrating Example Languages

This form of grammar de�nition almost does not use the lexer and thus is called almost
scannerless. It puts the burden of token aggregation to the parser and thus slows down the
parsing process by a not neglectable factor. However, it exploits the parsing capabilities to
full context-free parsing. Not only whitespaces are managed by the parser, but many other
tokens are separated into their character sequences and managed by the parser directly.

21.4.2 Temporarily Parsing with Whitespaces

As an alternative, it would also be possible, to switch o� the omission of whitespaces
temporarily. This means that we would generally add a status concept, stored in form of
attributes in the lexer and change the behavior of certain tokens according to that status.

The following grammar excerpt demonstrates such a de�nition, again using an alternate
de�nition of whitespaces. It relies on the possibility to add extra functionality to a token
(discussed in Section 4.1.2) and to the lexer in general (introduced in Section 4.2.11). In
addition, this example demonstrates, how to use a state to dynamically adapt behavior of
the lexer and similarly of the parser if necessary.

MCG SpaceOnO�1 token WhiteSpace = (' ' | '\t' | '\r' | '\n')
2 :{ if(isSpaceOn()) {_channel = HIDDEN; } };
3

4 concept antlr {
5 lexerjava {
6 protected boolean spaceOnFlag = true;
7

8 public boolean isSpaceOn() {
9 return spaceOnFlag;
10 }
11 }
12 }

Listing 21.25: Whitespaces temporarily explicit in the production using a state switch in
the lexer

In case the boolean variable spaceOnFlag is true the token WhiteSpace has the usual
behavior. That means whitespaces are �ltered from the input stream and not delivered to
the parser. Setting spaceOnFlag temporarily to false changes this behavior. Whites-
paces are now submitted to the parser and must explicitly be parsed if they occur in the
input stream or cannot occur in the input stream.

Switching the spaceOnFlag can only be controlled from the scanner. Because of the
variable lookahead of the scanner, multiple preprocessed tokens may already include (or
�lter) whitespaces, before the parser can switch the behavior. To be able to switch from
the lexer to the parser, special tokens need to be de�ned for performing the switching.
Unfortunately, these tokens need to be present in the input stream, which makes the
process only usable for certain special cases. The following excerpt shows an impractical
example for the ">>" operator:

402

21.4. Scannerless Parsing to Handle Complex Tokens

MCG SpaceOnO�1 ShiftExpression implements Expression <160> =
2 leftExpression:Expression
3 WSOff (shiftOp2:"<" "<"
4 | shiftOp4:">" ">"
5) WSOn
6 rightExpression:Expression ;
7

8 token WSOff = ":!"
9 :{ spaceOnFlag = false; };
10

11 token WSOn = "!:"
12 :{ spaceOnFlag = true; };

Listing 21.26: Switching whitespaces on and o� temporarily in productions

Token WSOn and WSOff adapt the behavior of token WhiteSpace. Both nonterminals
are selected such that they do not interfere with other nonterminals. Unfortunately they
cannot be empty and they need to be token (and not other nonterminals). The result is
unsatisfactory for our use case.

21.4.3 Preventing Whitespaces between Tokens

If the tokens need to be de�ned individually, but should follow consecutively without spaces
in between, we can also use the line and column position of tokens after being parsed. The
following grammar shows how the extra function is used in the productions in form of a
semantic predicate.

MCG SpaceFreeChecks1 ShiftExpression implements Expression <160> =
2 leftExpression:Expression
3 ({noSpace(2)}? shiftOp2:"<" "<"
4 | {noSpace(2,3)}? shiftOp3:">" ">" ">"
5)
6 rightExpression:Expression;
7

8 C = Name "." NoWSLast2 Name NoWSLast2 ;
9 D = NoWSNext3 Name "." Name ;
10

11 NoWSLast2 = {noSpace()}? ;
12 NoWSNext3 = {noSpace(2,3)}? ;

Listing 21.27: Disallowing spaces between last two token

The semantic predicate {noSpace()}? can be used directly or can be encapsulated in a
nonterminal like e.g. NoWSLast2. It must be applied after the two tokens that shall be
directly connected and can be used repeatedly, e.g. to de�ne ">>>" but also with tokens
that consist of several characters as shown with nonterminals C and D.

403

21. Some Demonstrating Example Languages

21.5 Tip: Testing Grammars and their Models

De�ning a new grammar is a task as complex and error prone as writing arbitrary software.
Much can be said about how to assure the quality of a grammar. To ensure the quality
of a grammar, a comprehensive set of parsable model, as well as negative examples are
useful. It is necessary to

� review the grammar thoroughly,

� use a comprehensive set of input models to be parsed, and

� Identify a set of negative (not parseable) models to prevent false positives.

Tip 21.28: Testing a Grammar

A kind of "unit tests" can relatively easy be achieved by embedding the grammar
to test into a testing grammar that includes the nonterminals to be tested e.g. into
repeating lists, etc.

This simpli�es the tests that need to be set up especially for grammars that deal
with small literals.

The test framework JUnit [Bec15] allows to de�ne small tests to check whether
a model or a part of a model has been transformed into the correct AST.

Unit tests are among the most helpful and e�cient techniques to check a grammar respec-
tively its outcome for the desired behavior. Therefore, we use a JUnit infrastructure to
check the desired behavior of a grammar's result.

This piece of Java code can be used in a similar manner for many unit tests, like in example
in Listing 21.29.

Java CheckScannerlessTest1 package test;
2 import de.monticore.scannerless._ast.*;
3

4 public class CheckScannerlessTest {
5

6 // setup the language infrastructure
7 ScannerlessParser parser = new ScannerlessParser() ;
8

9 @BeforeClass
10 public static void init() {
11 // replace log by a side effect free variant
12 LogStub.init();
13 // LogStub.initPlusLog(); // for manual testing purposes
14 Log.enableFailQuick(false);
15 }
16

17 @Before
18 public void setUp() {
19 Log.getFindings().clear();

404

21.6. ColoredGraph Language

20 }
21 }

Listing 21.29: Setting up a JUnit test infrastructure

A typical testing class, such as CheckScannerlessTest de�nes a reusable parser for
the grammar under test (here Scannerless). It also replaces the normal logging by a
stub that collects and ignores all errors, which is necessary to handle negative models as
well. The log is cleared for each test.

Figure 21.30 contains a positive and a negative test. Both use the parsing from a String.
In the �rst case a Type is parsed and in the second case an Expression (here types are
also expressions like in OCL, but the comparison ">>" contains an erroneous space).

Java CheckScannerlessTest1 @Test
2 public void testType2() throws IOException {
3 ASTType ast = parser.parse_StringType(" List < Theo > ").get();
4 assertEquals("List", ast.getName());
5 ASTTypeArguments ta = ast.getTypeArguments();
6 assertEquals("Theo", ta.getType(0).getName());
7 }
8

9 @Test
10 public void testType8() throws IOException {
11 // This cannot be parsed because of the illegal space in ">>"
12 Optional<ASTExpression> ast0 = parser.parse_StringExpression(
13 "List<Set<Theo>>> >wert");
14 assertFalse(ast0.isPresent());
15 }

Listing 21.30: Some JUnit tests

Other possibilities would be to parse a string, pretty print it and compare the original and
the pretty printed version, while completely ignoring all whitespaces.

For smaller examples parsing and pretty printing etc. can be done within the process and
no �les are needed, which speeds up the execution.

21.6 ColoredGraph Language

The ColoredGraph language enables modeling graphs that comprise vertices with a color
attribute and directed edges. The colors in this language can be either symbolic color
names or tuples of RGB values. The language showcases how the generated serialization
and deserialization can be adjusted with handwritten extensions.

ColoredGraph model1 graph Blinker {
2 initial vertex Off (black);
3 vertex BlinkBlue (0, 0, 204);

405

21. Some Demonstrating Example Languages

4

5 Off -> BlinkBlue;
6 BlinkBlue -> Off;
7 }

Listing 21.31: Example model of the ColoredGraph language

Listing 21.31 depicts an example model of the language. The model realizes a graph with
the name Blinker (l. 1). The graph has a state with the name Off that is assigned with
a color that has the prede�ned symbolic name black (l. 2). It further has a vertex with
the name BlinkBlue that has a color de�ned via a tuple of RGB values (l. 3). Both
vertices are connected via two edges (ll. 5-6).

MCG ColoredGraph1 grammar ColoredGraph
2 extends de.monticore.literals.MCCommonLiterals {
3

4 symbol scope Graph = "graph" Name "{" (Vertex | Edge)* "}" ;
5

6 symbol Vertex = ["initial"]? "vertex" Name "(" Color ")" ";" ;
7

8 interface Color;
9

10 RGBColor implements Color = NatLiteral "," NatLiteral
11 "," NatLiteral ;
12

13 NameColor implements Color = Name;
14

15 Edge = s:Name@Vertex "->" t:Name@Vertex ";" ;
16

17 symbolrule Vertex = color:java.awt.Color initial:boolean;
18

19 scoperule = numberOfColors:int;
20

21 }

Listing 21.32: Grammar of the ColoredGraph language

The grammar of the colored graph language is depicted in Listing 21.32. Each graph begins
with the keyword graph and has a name as well as a body embraced by curly brackets,
which contains vertices and edges (l. 4). A vertex (l. 6) can be marked initial and has
a color, which is realized as interface nonterminal (l. 8). For the two options of de�ning
colors in this language, the grammar uses two individual nonterminals implementing the
color interface nonterminal. Edges (l. 15) connect a source vertex with a target vertex via
their names.

Graph nonterminals span a scope and de�ne a symbol (l. 4), vertices de�ne vertex symbols
(l. 6), and edges use the names of vertex symbols (l. 15). These properties are de�ned in
the grammar with the respective annotations as explained in Chapter 9. The grammar
further de�nes a symbolrule (l. 17) and a scoperule (l. 19) to indicate attributes of the
VertexSymbol and of the language's scope. The symbolrule for vertex symbols de�nes

406

21.6. ColoredGraph Language

two attributes, one for the color of the vertex and another one for indicating whether
a vertex is initial. The scoperule de�nes an integer attribute numberOfColors that
indicates the number of distinct colors that vertices in the scope de�ne. We added the
scoperule for demonstration purposes only. In practice, this information could also be
derived from the symbols.

For scoperule and symbolrule attributes, MontiCore generates Java attributes as well as
access and manipulation methods for these in the symbol and scope classes. Beyond this,
MontiCore generates the serialization and deserialization infrastructure for these symbol
and scope attributes. The serialization and deserialization for attributes of built-in data
types, such as integer, Boolean, double, and String as well as for iterations thereof
or optionals is generated completely. In the example of the colored graph language, this
applies to the attributes initial and numberOfColors. However, the serialization and
deserialization for other data types is not fully generated. To this end, language engineers
have to plug in their own functionality in the DeSer class as well as in the Symbols2Json
class with the TOP mechanism (see Section 14.3) and override methods accordingly. Only
the method skeletons are generated for these attributes.

We demonstrate how to serialize custom data on the example of colors, which can be
serialized in various di�erent forms. For instance, it is possible to serialize colors as:

� String with symbolic name (e.g., "blue")

� String with hexadecimal RGB values (e.g.,"#0000cc")

� JSON array of integers for RGB values (e.g., [0, 0, 204])

� JSON object (e.g., {"r":0, "g":0, "b":204})

In this example, language engineers decided to serialize colors as Json arrays with RGB val-
ues. Listing 21.33 depicts the handwritten serialization of the color attribute that is located
in the TOP mechanism extension of the VertexSymbolDeSer. The serializeColor
method has parameter s2j, which is of the type ColoredGraphSymbols2Json and
provides a printer that is used to print JSON syntax. For a passed color value, the method
serializeVertexColor uses this s2j to obtain the printer to print colors as JSON
arrays. The �rst value of the array is always the red value, followed by the green and the
blue values.

Java1 /**
2 * Serializes Color as RGB values in form [0,0,0]
3 */
4 public class VertexSymbolDeSer extends VertexSymbolDeSerTOP {
5

6 @Override
7 public void serializeColor(Color color,
8 ColoredGraphSymbols2Json s2j) {
9 JsonPrinter p = s2j.getJsonPrinter();
10 p.beginArray("color"); // Serialize color as arrays,
11 p.value(color.getRed()); // add red value first
12 p.value(color.getGreen()); // ... followed by green
13 p.value(color.getBlue()); // ... and blue.

407

21. Some Demonstrating Example Languages

14 p.endArray(); // Print the array end.
15 }
16 }

Listing 21.33: Handwritten serialization of the color attribute of VertexSymbols in
the class VertexSymbolDeSer

The deserialization, on the other hand, uses a JsonObject of the vertex symbol passed
as a method argument for deserializing the serialized JSON array to an instance of the
class java.awt.Color. It is realized in the method deserializeColor located in
the handwritten extension of the generated VertexSymbolDeSer.

Java1 @Override
2 public Color deserializeColor(JsonObject symbolJson) {
3 // get color attribute from the symbol represented in Json
4 List<JsonElement> rgb = symbolJson.getArrayMember("color");
5

6 // cache each color value as integer number in a variable
7 int r = rgb.get(0).getAsJsonNumber().getNumberAsInteger();
8 int g = rgb.get(1).getAsJsonNumber().getNumberAsInteger();
9 int b = rgb.get(2).getAsJsonNumber().getNumberAsInteger();
10

11 // create new color using deserialized color values
12 return new Color(r, g, b);
13 }

Listing 21.34: Handwritten deserialization of the color attribute of VertexSymbols in
the class VertexSymbolDeSer

Other forms of serialization and deserialization for colors can be realized similarly, by
overriding the respective methods of the DeSers.

21.7 Questionnaire Language

The language Questionnaire provides modeling elements for questionnaires. The key
idea is to easily de�ne and develop questionnaires and allow a backend to setup a website
with a database to let people �ll the questionnaire. The user has speci�c demands on the
language, which are partially re�ected below.

As usual, we start with an example for a model, which in this case is a questionnaire
de�nition for personal skills. A questionnaire de�nes items (i.e. questions) that ask for
information as strings, alternatives, numbers or values from a speci�c scale. The listing
below consists of four items asking for the name, age and programming skills in Java and
C++ (ll. 2-5).

Often items share a scale (e.g., rating an item on a range from "Beginner" 1 to
"Expert" 5). Consequently, scales can be de�ned once (as scale types) and items reuse
them (see l. 6). The user has provided the following example:

408

21.7. Questionnaire Language

Questionnaire model1 questionnaire Personal {
2 item name "What is your name?" text 140
3 item age "What is your age?" number
4 item java "Rate your Java skill" skill
5 item cpp "Rate your C++ skill" skill
6 scale skill range ["Beginner" 1 .. 5 "Expert"]
7 }

The example allows us to identify a number of keywords, such as questionnaire or
item. While the user did ask for a speci�c form of indentation, we as usual decided to
provide a robust implementation, which means that white spaces are ignored. The language
is only loosely inspired by programming languages, like Java, because it uses curly brackets
to enclose the questionnaires body. We also identify a number of statements, namely the
item and the scale de�nitions, which start with an appropriate keyword, but not have
a regular terminator, such as ";" or ",". We might either use the newline (which would
make it sensitive to white spaces) or the implicit termination, when the next keyboard
occurs. After clari�cation with the user, the second approach was chosen. The user denied
our suggestion to introduce a regular terminator.

As the users have to experience the language, we usually try to accommodate their wishes.
This di�ers, when the representation of the language is de�ned in a grammar, which is for
tool developers only. In the following, the grammar details are described.

MCG Questionnaire1 grammar Questionnaire
2 extends de.monticore.literals.MCCommonLiterals {
3

4 symbol scope QDefinition = "questionnaire" Name "{"
5 (Item | Scale)*
6 "}";
7

8 symbol Item = "item" Name question:String (scale:Name | ScaleType);
9

10 symbol Scale = "scale" Name ScaleType;
11

12 interface ScaleType;
13

14 Range implements ScaleType = "range" "["
15 minTitle:String? min:NatLiteral
16 ".."
17 max:NatLiteral maxTitle:String?
18 "]";
19

20 Number implements ScaleType = "number";
21 Text implements ScaleType = "text" maxCharacters:NatLiteral?;
22

23 Select implements ScaleType = "select" "{"
24 options:SelectOption+
25 "}";
26

409

21. Some Demonstrating Example Languages

27 SelectOption = id:NatLiteral ":" title:String;
28 }

The grammar omits an explicit package declaration and starts with the grammar de-
�ned as Questionnaire (l. 1). It makes use of MontiCore's common grammar
MCCommonLiterals and therefore extends it.

As de�ned by production rule QDefinition, each questionnaire model starts with the
keyword questionnaire (l. 4) followed by its name and an arbitrary count of Items
and Scales enclosed by curly brackets (ll. 4-6).

An Item (l. 8) is introduced by the keyword item. It has a name and speci�es the question
to ask. It either refers to a scale by its name or de�nes a new type of scale for that speci�c
item.

A Scale (l. 10) starts with the keyword scale followed by a name and a de�nition of a
ScaleType. There are several kinds of scale types and they all implement the interface
production ScaleType (l. 12). Since ScaleType is an interface production it is easy to
extend the language by other kinds of scales.

The language supports the following scale types. A Range (ll. 14-18) starts with the
keyword range and an interval de�nition in square brackets. Each end of the interval
has an optional title. The scale type Number (l. 20) simply states the keyword number
meaning that any number is expected for the item (e.g., age of a person). Similar, the
Text scale type (l. 21) starting with keyword text expects any free text (which can be
restricted to a maximum character count). Choosing an element of prede�ned options is
modeled by scale type Select (ll. 23-25). The keyword select introduces the modeling
element and encloses the available options in curly brackets. Each SeclectOption (l. 27)
consists of an id and a title separated by a colon.

The presentation of such a grammar is relatively straightforward, we begin with the starting
nonterminal that describes the overall language and introduces the next nonterminals. To
keep readers in the �ow, it is generally a best practice, to de�ne the next nonterminals in
order of their occurrence in the previous de�nition.

There is a second best practice, to start with nonterminals for larger parts of the language
and de�ne the small nonterminals, which are usually not further decomposed, at the end.
And a third best practice is to try to de�ne nonterminals that implement an interface
directly below the interface. Finally for larger grammars, we try to group nonterminals
that belong together. Unfortunately, these best practices are regularly in con�ict.

We decided to introduce ScaleType as an interface, because this re�ects that several
potential implementations are available and furthermore, we assume that more variants
will be coming. It would also have been a natural possibility to introduce an interface, e.g.
QStatement, as a common super-nonterminal for Item and Scale. This is especially
interesting, if it matters whether a scale has been de�ned before it is used in an item,
because the current AST item and scale de�nitions are kept in separate lists.

We can also see from the productions for QDefinition and Range, that the represen-
tation (layout, indents, brackets) of the production mimics the expected representation of
the text to be parsed.

410

21.7. Questionnaire Language

The language obviously needs context conditions, a completed symbol infrastructure and
a generative backend. From those aspects the visitors are discussed in Chapter 8 in detail.

411

Chapter 22

Developer's View on MontiCore

This chapter overviews the locations of MontiCore's source �les. MontiCore is an open
source framework primarily developed by the Software Engineering Group of RWTH
Aachen University. MontiCore imports other sources, partly as open source. Some
re-usable languages that are anticipated to be often reused in other languages (e.g.,
Expressions, Literals, Types, etc.) are part of the source �les of the MontiCore
project. Other languages are developed in external repositories.

MontiCore itself and languages based on MontiCore are generally developed with Java.
Gradle1 is the standard build automaton and dependency management tool for MontiCore
itself and languages developed with MontiCore.

MontiCore's source code is structured in Gradle's default project layout. Each Gradle
project should consist of a build script, a settings �le, and a properties �le. The build
script de�nes and con�gures the tasks that are executed for the project (e.g., generation
of source code, compilation, packaging, publishing archives to a repository, etc.). For this
task, it can include external plugins that may manipulate the build (e.g., by adding new
tasks). The settings �le mainly de�nes the root project, all included subprojects, and the
con�guration for retrieving external plugins. The properties �le con�gures startup options
(e.g., JVM memory size) and properties (e.g., String constants) that can be used in the
build script.

The build script �le build.gradle, the settings �le settings.gradle, and the prop-
erties �le gradle.properties are located in the root folder of the Gradle project. The
contents of the build script build.gradle and the settings �le settings.gradle are based
on an internal Groovy DSL. The properties �le contains simple key = value pairs. It
is also possible to specify Gradle build scripts and settings using an internal Kotlin DSL.
The MontiCore project itself uses the Groovy DSL.

The following overviews the most important folders of MontiCore Gradle projects. The
top level folder src separates handwritten source code from generated code. The
generated code is located in the build folder, which is typically target or the Gra-
dle default build. The src folder contains a main folder for the productive source
code and a test folder containing source code for tests. Both folders then are struc-
tured by separating the actual java source code (src/main/java, src/test/java)
from additional resources (src/main/resources, src/test/resources). Also,

1https://gradle.org/

22. Developer's View on MontiCore

grammars (src/main/grammars) and models (src/main/models) are separated.
By default, only the compiled source code (target folder) and resources of the
src/main/resources folder are included when Gradle packages the �nal jar. Also,
the target folder must never be part of a version control system since it is generated.

Tip 22.1: Di�erent Kinds of Projects

The term project is used in multiple ways. Some common usages are speci�ed in
the following.

A software engineering project commonly consists of a project de�nition (often
in form of a research or industry application), has a budget, a lifetime, potential
project partners, responsible project managers, a project team, project management
tools, a development infrastructure, etc. This is the business oriented interpretation
of the term project.

To conduct a SE project, project management tools are used. Here, the term
management project is a set of services provided by any of the project management
tools (e.g., SSELab, GitLab, GitHub). These tools support the project development,
documentation and communication between team members. Their services may
include source code repositories and their version control (SVN, git), a ticket system,
wikis, mailing lists, etc. A SE project may use several management projects (e.g.,
some may be accessible for customers or students, others may be internal or open
source such as MontiCore).

A Gradle project is the technical bundling of speci�c source code that can be
deployed as an artifact (this is often a library jar or an executable jar). A Gradle
project is reusable in other Gradle projects by de�ning a dependency on the deployed
artifact. Most management projects consist of multiple Gradle projects to structure
modules of complex source code. Gradle projects can be nested. E.g., MontiCore
as well as its runtime are available as single jars that bundle the di�erent speci�c
projects and subprojects.

MontiCore uses the two project management tools GitHub and an RWTH Aachen internal
GitLab instance. The RWTH GitLab projects are not public. Access can be granted
upon request. All source code speci�c to MontiCore that is not yet open source is located
in its git repository. Besides that a main purpose of the GitLab project is its ticket
system for planning development cycles. Additionally, some languages that are still in
early development stages are located in the RWTH GitLab instance.

22.1 MontiCore's GitHub Repository

MontiCore's source code itself is open source and located in the MontiCore GitHub repos-
itory2. There are several main branches:

2https://github.com/MontiCore/monticore

414

22.1. MontiCore's GitHub Repository

Tip 22.2: Repositories

MontiCore and its components can be found under:

Files1 // MontiCore core parts
2 Repository: https://github.com/MontiCore/monticore
3

4 // Basics, such as logging
5 Repository: https://github.com/MontiCore/se-commons
6

7 // MontiCore open source languages
8 Repository: https://github.com/MontiCore/
9

10 // Release notes about important changes, etc.
11 Release Notes: http://monticore.github.io/monticore/00.org/
12 Explanations/CHANGELOG/
13

14 // Overview of language-projects in development
15 Repository: https://github.com/MontiCore/monticore/blob/dev/
16 docs/Languages.md
17

18 // Packaged components, sources, snaphots etc.
19 Nexus: https://nexus.se.rwth-aachen.de/
20

21 // Management of open issues, enhancements, etc.
22 Tickets: https://git.rwth-aachen.de/monticore/monticore/-/
23 issues

The MontiCore GitHub organization is public. It contains the MontiCore project
and projects of languages developed with MontiCore (e.g, an automaton language,
json, sequence diagrams), and statecharts. The GitHub page containing the Mon-
tiCore release notes is public. The Nexus website can be used to download source
�les for integrating them in other projects and can be used as a repository location
for using the projects as dependencies in Gradle projects. The MontiCore GitLab
Project is private. It contains an overview of languages under development that will
be release as open-source projects and an internal ticket system.

master contains the source code of the latest stable MontiCore release. On each release of
MontiCore, the dev branch is integrated into the master branch (usually resulting in
the master branch being replaced by the dev branch). As usual, the master branch
mainly receives the consolidated changes from the dev branch.

dev is the main development branch. Changes such as enhancements as well as bug �xes
are integrated through the dev branch.

other branches are created from the dev branch. Changes in these branches are either for
bug �xing or for implementing new features. Once the bug is �xed or the feature is
implemented, the branch is merged back into the dev branch.

415

22. Developer's View on MontiCore

22.2 For External Developers: How to Contribute

The projects located in the MontiCore organization3 of GitHub are public. The projects
located in the organization are internally developed by MontiCore's core developers in
the RWTH GitLab instance. The protected branches are mirrored into the corresponding
GitHub project. The automated mirroring process ensures that the source code of mirrored
branches on GitHub and GitLab is always the same.

External developers who plan to contribute to a GitHub project located in the MontiCore
organization should work on the dev branch of the project. The best practice for con-
tributing to the project is to fork the repository and continue working in the fork. The
changes should usually be applied to the dev branch. When �nished, the external devel-
oper must merge all new changes from dev branch of the project into the fork. Afterwards,
the developer creates a pull request from the fork in the project. The core developers will
review the pull request, respond with questions if necessary, and accept the pull request
when integrable.

While many of the language projects in the MontiCore GitHub organization are actively
developed, a number of language projects are located in the organization for documenta-
tion and reuse purposes only. This is the case, for example, if a corresponding research
paper referenced speci�c parts of the source code. These projects sometimes use outdated
MontiCore versions and can be identi�ed by their version histories.

22.3 MontiCore's Gradle Projects

The MontiCore Repository consists of several Gradle projects, from which the following
provide MontiCore's core features:

monticore-generator contains the grammar language for MontiCore-based grammars
(cf. Chapter 4), a transformation to transform a given grammar to its internal CD
representation and the generator that derives a DSL infrastructure from the CD. The
Groovy-based MontiCore-script and all MontiCore con�guration options are de�ned
in this project as well.

monticore-runtime provides the source code required to execute MontiCore or a
MontiCore-based DSL. This includes the Generator Engine (cf. Chapter 13), common
infrastructure of Symbol Tables and ASTs (e.g., the ASTNode interface as described
in Section 5.7), and helpers, e.g., for �le operations.

monticore-grammar contains the library of the common grammars (cf. Chapter 17) pro-
viding lexical tokens, literal constants, types, expressions, and statements as well as
some tools to work with these grammars (e.g., pretty printers).

The other Gradle projects complement the core functionalities of MontiCore:

3https://github.com/MontiCore

416

22.4. Further Source Code Locations

monticore-cli provides MontiCore's Command Line Interface by basically wrapping the
MontiCore generator script with a CLI.

monticore-emf-runtime contains the runtime environment for EMF compatible Monti-
Core applications.

monticore-maven contains the Maven plugin that enables executing MontiCore as part of
the Maven build lifecycle.

monticore-gradle contains the Gradle plugin that enables executing MontiCore as part of
Gradle builds.

monticore-templateclassgenerator contains a MontiCore module to generate Java classes
from templates to enable a Java-based type-safe work�ow when calling templates
(disabled by default).

22.4 Further Source Code Locations

The MontiCore git project includes source code speci�c to MontiCore and a core library
of languages, e.g. for expressions and statements. The following list overviews further git
projects belonging to the extensible MontiCore language zoo. These are easily reusable for
the development of further domain-speci�c or generic languages. The projects are actively
under curation of the MontiCore team.

cd4analysis mainly focuses on class diagrams for early activities of development projects.
It contains full assistance for associations, composition, quali�ers, etc., but does not
de�ne method bodies. There is a code generator available, that ensures consistency
of the de�ned model, storage, etc.

Feature Diagram provides grammars for a feature diagram and a feature con�guration
language. The project further contains advanced tools for performing semantic fea-
ture diagram analysis.

javaDSL is fully compatible with the Java 8 standard. It contains a complete grammar,
symbol table infrastructure, context conditions, and related tooling. The language
can be completely integrated into a larger languages or individual parts of the lan-
guage can be selected for their integration.

JSON provides a grammar conforming to the JSON standard and advanced tooling such
as a pretty printer and a model di�erencing tool.

MontiArc provides the language de�nition for a component and connector architecture
description language. The project further contains a code generator that can generate
simulations as executable Java source code from MontiArc component models.

Object Diagram provides grammars for de�ning several textual object diagram variants.
The project also contains context conditions, a symbol table infrastructure and tool-
ing such as a pretty printer.

OCL provides the OCL/P [Rum16] language de�nition, which is an enhanced variant of
the UML Object Constraint Language with a syntax that is similar to Java.

417

22. Developer's View on MontiCore

se-commons The se-commons project provides the following parts that are used by Mon-
tiCore:

se-commons-logging contains the Log classes as described in Section 15.3.

se-commons-groovy contains auxiliary functions such as the GroovyRunner and
GroovyInterpreter to interpret Groovy scripts (cf. Section 16.5). This is
used in MontiCore itself, but also applicable for other tools.

se-commons-utilities contains utility classes such as SourceCodePosition,
CLIArguments, and the Names helper.

sequence-diagram focuses on UML/P sequence diagrams [Rum16]. The project contains
grammars, a symbol table infrastructure, context conditions, and advanced tooling
such as a pretty printer and a semantic di�erencing tool.

si-units provides grammars and type checks for integrating data types based on physical
units into larger languages.

Statechart provides the language de�nitions for building various Statechart variants, a
symbol table infrastructure, and advanced tooling such as model-to-model transfor-
mations for normalizing Statecharts (e.g., expanding hierarchical states).

418

Chapter 23

Further Reading and Related Work

The following section gives an overview on related work done at the SE Group, RWTH
Aachen. More details can be found on the website

https://www.se-rwth.de/topics/ or in [HMR+19].

The work presented here mainly has been guided by our mission statement:

Our mission is to de�ne, improve, and industrially apply techniques, concepts, and methods
for innovative and e�cient development of software and software-intensive systems, such
that high-quality products can be developed in a shorter period of time and with �exible
integration of changing requirements. Furthermore, we demonstrate the applicability of our
results in various domains and potentially re�ne these results in a domain speci�c form.

Agile Model Based Software Engineering

Agility and modeling in the same project? This question was raised in [Rum04]: �Using
an executable, yet abstract and multi-view modeling language for modeling, designing and
programming still allows to use an agile development process.�, [JWCR18] addresses the
question how digital and organizational techniques help to cope with physical distance
of developers and [RRSW17] addresses how to teach agile modeling. Modeling will in-
creasingly be used in development projects, if the bene�ts become evident early, e.g with
executable UML [Rum02] and tests [Rum03]. In [GKRS06], for example, we concentrate
on the integration of models and ordinary programming code. In [Rum12] and [Rum16],
the UML/P, a variant of the UML especially designed for programming, refactoring and
evolution, is de�ned. The language workbench MontiCore [GKR+06, GKR+08, HR17]
is used to realize the UML/P [Sch12]. Links to further research, e.g., include a general
discussion of how to manage and evolve models [LRSS10], a precise de�nition for model
composition as well as model languages [HKR+09] and refactoring in various modeling and
programming languages [PR03]. In [FHR08] we describe a set of general requirements for
model quality. Finally, [KRV06] discusses the additional roles and activities necessary in
a DSL-based software development project. In [CEG+14] we discuss how to improve the
reliability of adaptivity through models at runtime, which will allow developers to delay
design decisions to runtime adaptation.

23. Further Reading and Related Work

Artifacts in Complex Development Projects

Developing modern software solutions has become an increasingly complex and time con-
suming process. Managing the complexity, size, and number of the artifacts developed and
used during a project together with their complex relationships is not trivial [BGRW17].
To keep track of relevant structures, artifacts, and their relations in order to be able e.g.
to evolve or adapt models and their implementing code, the artifact model [GHR17] was
introduced. [BGRW18] explains its applicability in systems engineering based on MDSE
projects.

An artifact model basically is a meta-data structure that explains which kinds of artifacts,
namely code �les, models, requirements �les, etc. exist and how these artifacts are related
to each other. The artifact model therefore covers the wide range of human activities during
the development down to fully automated, repeatable build scripts. The artifact model
can be used to optimize parallelization during the development and building, but also to
identify deviations of the real architecture and dependencies from the desired, idealistic
architecture, for cost estimations, for requirements and bug tracing, etc. Results can be
measured using metrics or visualized as graphs.

Arti�cial Intelligence in Software Engineering

MontiAnna is a family of explicit domain speci�c languages for the concise description
of the architecture of (1) a neural network, (2) its training, and (3) the training data
[KNP+19]. We have developed a compositional technique to integrate neural networks
into larger software architectures [KRRvW17] as standardized machine learning com-
ponents [KPRS19]. This enables the compiler to support the systems engineer by au-
tomating the lifecycle of such components including multiple learning approaches such
as supervised learning, reinforcement learning, or generative adversarial networks. Ac-
cording to [MRR11g] the semantic di�erence between two models are the elements con-
tained in the semantics of the one model that are not elements in the semantics of the
other model. A smart semantic di�erencing operator is an automatic procedure for com-
puting di� witnesses for two given models. Smart semantic di�erencing operators have
been de�ned for Activity Diagrams [MRR11a], Class Diagrams [MRR11d], Feature Mod-
els [DKMR19], Statecharts [DEKR19], and Message-Driven Component and Connector
Architectures [BKRW17, BKRW19]. We also developed a modeling language-independent
method for determining syntactic changes that are responsible for the existence of semantic
di�erences [KR18].

We apply logic, knowledge representation and intelligent reasoning to software engineering
to perform correctness proofs, execute symbolic tests or �nd counterexamples using a
theorem prover. And we have applied it to challenges in intelligent �ight control systems
and assistance systems for air or road tra�c management [KRRS19, HRR12] and based it
on the core ideas of Broy's Focus theory [RR11, BR07]. Intelligent testing strategies have
been applied to automotive software engineering [EJK+19, DGH+19, KMS+18], or more
generally in systems engineering [DGH+18]. These methods are realized for a variant of
SysML Activity Diagrams and Statecharts.

420

Machine Learning has been applied to the massive amount of observable data in energy
management for buildings [FLP+11a, KLPR12] and city quarters [GLPR15] to optimize
the operation e�ciency and prevent unneeded CO2 emissions or reduce costs. This creates
a structural and behavioral system theoretical view on cyber-physical systems understand-
able as essential parts of digital twins [RW18, BDH+20].

Generative Software Engineering

The UML/P language family [Rum12, Rum11, Rum16] is a simpli�ed and semantically
sound derivate of the UML designed for product and test code generation. [Sch12] de-
scribes a �exible generator for the UML/P based on the MontiCore language workbench
[KRV10, GKR+06, GKR+08, HR17]. In [KRV06], we discuss additional roles necessary in
a model-based software development project. [GKRS06, GHK+15a] discuss mechanisms to
keep generated and handwritten code separated. In [Wei12], we demonstrate how to sys-
tematically derive a transformation language in concrete syntax. [HMSNRW16] presents
how to generate extensible and statically type-safe visitors. In [MSNRR16], we propose
the use of symbols for ensuring the validity of generated source code. [GMR+16] discusses
product lines of template-based code generators. We also developed an approach for en-
gineering reusable language components [HLMSN+15b, HLMSN+15a]. To understand the
implications of executability for UML, we discuss needs and advantages of executable mod-
eling with UML in agile projects in [Rum04], how to apply UML for testing in [Rum03],
and the advantages and perils of using modeling languages for programming in [Rum02].

Uni�ed Modeling Language (UML)

Starting with an early identi�cation of challenges for the standardization of the UML in
[KER99] many of our contributions build on the UML/P variant, which is described in the
books [Rum16, Rum17] respectively [Rum12, Rum13] and is implemented in [Sch12]. Se-
mantic variation points of the UML are discussed in [GR11]. We discuss formal semantics
for UML [BHP+98] and describe UML semantics using the �System Model� [BCGR09a],
[BCGR09b], [BCR07b] and [BCR07a]. Semantic variation points have, e.g., been applied to
de�ne class diagram semantics [CGR08]. A precisely de�ned semantics for variations is ap-
plied, when checking variants of class diagrams [MRR11c] and objects diagrams [MRR11e]
or the consistency of both kinds of diagrams [MRR11f]. We also apply these concepts to
activity diagrams [MRR11b] which allows us to check for semantic di�erences of activity
diagrams [MRR11a]. The basic semantics for ADs and their semantic variation points is
given in [GRR10]. We also discuss how to ensure and identify model quality [FHR08], how
models, views and the system under development correlate to each other [BGH+98], and
how to use modeling in agile development projects [Rum04], [Rum02]. The question how to
adapt and extend the UML is discussed in [PFR02] describing product line annotations for
UML and more general discussions and insights on how to use meta-modeling for de�ning
and adapting the UML are included in [EFLR99], [FELR98] and [SRVK10].

421

23. Further Reading and Related Work

Domain Speci�c Languages (DSLs)

Computer science is about languages. Domain Speci�c Languages (DSLs) are better to
use, but need appropriate tooling. The MontiCore language workbench [GKR+06, KRV10,
Kra10, GKR+08, HR17] allows the speci�cation of an integrated abstract and concrete
syntax format [KRV07b, HR17] for easy development. New languages and tools can be
de�ned in modular forms [KRV08, GKR+07, Völ11, HLMSN+15b, HLMSN+15a, HRW18,
BEK+18a, BEK+18b, BEK+19] and can, thus, easily be reused. We discuss the roles
in software development using domain speci�c languages in [KRV14]. [Wei12] presents
a tool that allows to create transformation rules tailored to an underlying DSL. Vari-
ability in DSL de�nitions has been examined in [GR11, GMR+16]. [BDL+18] presents a
method to derive internal DSLs from grammars. In [BJRW18], we discuss the translation
from grammars to accurate metamodels. Successful applications have been carried out
in the Air Tra�c Management [ZPK+11] and television [DHH+20] domains. Based on
the concepts described above, meta modeling, model analyses and model evolution have
been discussed in [LRSS10] and [SRVK10]. DSL quality [FHR08], instructions for de�ning
views [GHK+07], guidelines to de�ne DSLs [KKP+09] and Eclipse-based tooling for DSLs
[KRV07a] complete the collection.

Software Language Engineering

For a systematic de�nition of languages using composition of reusable and adaptable lan-
guage components, we adopt an engineering viewpoint on these techniques. General ideas
on how to engineer a language can be found in the GeMoC initiative [CBCR15, CCF+15]
and the concern-oriented language development approach [CKM+18]. As said, the Mon-
tiCore language workbench provides techniques for an integrated de�nition of languages
[KRV07b, Kra10, KRV10, HR17, HRW18, BEK+19]. In [SRVK10] we discuss the pos-
sibilities and the challenges using metamodels for language de�nition. Modular compo-
sition, however, is a core concept to reuse language components like in MontiCore for
the frontend [Völ11, KRV08, HLMSN+15b, HLMSN+15a, HMSNRW16, HR17, BEK+18a,
BEK+18b, BEK+19] and the backend [RRRW15, MSNRR16, GMR+16, HR17, BEK+18b].
In [GHK+15b, GHK+15a], we discuss the integration of handwritten and generated object-
oriented code. [KRV14] describes the roles in software development using domain speci�c
languages. Language derivation is to our believe a promising technique to develop new
languages for a speci�c purpose that rely on existing basic languages [HRW18]. How to
automatically derive such a transformation language using concrete syntax of the base
language is described in [HRW15, Wei12] and successfully applied to various DSLs. We
also applied the language derivation technique to tagging languages that decorate a base
language [GLRR15] and delta languages [HHK+15a, HHK+13], where a delta language
is derived from a base language to be able to constructively describe di�erences between
model variants usable to build feature sets. The derivation of internal DSLs from gram-
mars is discussd in [BDL+18] and a translation of grammars to accurate metamodels in
[BJRW18].

422

Modeling Software Architecture & the MontiArc Tool

Distributed interactive systems communicate via messages on a bus, discrete event sig-
nals, streams of telephone or video data, method invocation, or data structures passed
between software services. We use streams, statemachines and components [BR07] as well
as expressive forms of composition and re�nement [PR99, RW18] for semantics. Further-
more, we built a concrete tooling infrastructure called MontiArc [HRR12] for architecture
design and extensions for states [RRW13b]. In [RRW13a], we introduce a code genera-
tion framework for MontiArc. MontiArc was extended to describe variability [HRR+11]
using deltas [HRRS11, HKR+11] and evolution on deltas [HRRS12]. Other extensions
are concerned with modeling cloud architectures [NPR13] and with the robotics domain
[AHRW17a, AHRW17b]. [GHK+07] and [GHK+08a] close the gap between the require-
ments and the logical architecture and [GKPR08] extends it to model variants. [MRR14b]
provides a precise technique to verify consistency of architectural views [Rin14, MRR13]
against a complete architecture in order to increase reusability. We discuss the syn-
thesis problem for these views in [MRR14a]. Co-evolution of architecture is discussed
in [MMR10] and modeling techniques to describe dynamic architectures are shown in
[HRR98, BHK+17, KKR19].

Compositionality & Modularity of Models

[HKR+09] motivates the basic mechanisms for modularity and compositionality for mod-
eling. The mechanisms for distributed systems are shown in [BR07, RW18] and alge-
braically underpinned in [HKR+07]. Semantic and methodical aspects of model composi-
tion [KRV08] led to the language workbench MontiCore [KRV10, HR17] that can even be
used to develop modeling tools in a compositional form [HR17, HLMSN+15b, HLMSN+15a,
HMSNRW16, MSNRR16, HRW18, BEK+18a, BEK+18b, BEK+19]. A set of DSL design
guidelines incorporates reuse through this form of composition [KKP+09]. [Völ11] exam-
ines the composition of context conditions respectively the underlying infrastructure of
the symbol table. Modular editor generation is discussed in [KRV07a]. [RRRW15] applies
compositionality to Robotics control. [CBCR15] (published in [CCF+15]) summarizes our
approach to composition and remaining challenges in form of a conceptual model of the
�globalized� use of DSLs. As a new form of decomposition of model information we have
developed the concept of tagging languages in [GLRR15]. It allows to describe additional
information for model elements in separated documents, facilitates reuse, and allows to
type tags.

Semantics of Modeling Languages

The meaning of semantics and its principles like underspeci�cation, language precision
and detailedness is discussed in [HR04]. We de�ned a semantic domain called �System
Model� by using mathematical theory in [RKB95, BHP+98] and [GKR96, KRB96]. An
extended version especially suited for the UML is given in [BCGR09b] and in [BCGR09a]

423

23. Further Reading and Related Work

its rationale is discussed. [BCR07a, BCR07b] contain detailed versions that are applied to
class diagrams in [CGR08]. To better understand the e�ect of an evolved design, detec-
tion of semantic di�erencing as opposed to pure syntactical di�erences is needed [MRR10].
[MRR11a, MRR11b] encode a part of the semantics to handle semantic di�erences of ac-
tivity diagrams and [MRR11f, MRR11f] compare class and object diagrams with regard to
their semantics. In [BR07], a simpli�ed mathematical model for distributed systems based
on black-box behaviors of components is de�ned. Meta-modeling semantics is discussed
in [EFLR99]. [BGH+97] discusses potential modeling languages for the description of an
exemplary object interaction, today called sequence diagram. [BGH+98] discusses the re-
lationships between a system, a view and a complete model in the context of the UML.
[GR11] and [CGR09] discuss general requirements for a framework to describe semantic and
syntactic variations of a modeling language. We apply these on class and object diagrams
in [MRR11f] as well as activity diagrams in [GRR10]. [Rum12] de�nes the semantics in a
variety of code and test case generation, refactoring and evolution techniques. [LRSS10]
discusses evolution and related issues in greater detail. [RW18] discusses an elaborated
theory for the modeling of underspeci�cation, hierarchical composition, and re�nement
that can be practically applied for the development of CPS.

Evolution and Transformation of Models

Models are the central artifacts in model driven development, but as code they are not
initially correct and need to be changed, evolved and maintained over time. Model trans-
formation is therefore essential to e�ectively deal with models. Many concrete model
transformation problems are discussed: evolution [LRSS10, MMR10, Rum04], re�nement
[PR99, KPR97, PR94], decomposition [PR99, KRW20], synthesis [MRR14a], refactoring
[Rum12, PR03], translating models from one language into another [MRR11c, Rum12], and
systematic model transformation language development [Wei12]. [Rum04] describes how
comprehensible sets of such transformations support software development and mainte-
nance [LRSS10], technologies for evolving models within a language and across languages,
and mapping architecture descriptions to their implementation [MMR10]. Automaton re-
�nement is discussed in [PR94, KPR97], re�ning pipe-and-�lter architectures is explained
in [PR99]. Refactorings of models are important for model driven engineering as discussed
in [PR01, PR03, Rum12]. Translation between languages, e.g., from class diagrams into
Alloy [MRR11c] allows for comparing class diagrams on a semantic level.

Variability and Software Product Lines (SPL)

Products often exist in various variants, for example cars or mobile phones, where one
manufacturer develops several products with many similarities but also many variations.
Variants are managed in a Software Product Line (SPL) that captures product common-
alities as well as di�erences. Feature diagrams describe variability in a top down fashion,
e.g., in the automotive domain [GHK+08a] using 150% models. Reducing overhead and
associated costs is discussed in [GRJA12]. Delta modeling is a bottom up technique start-
ing with a small, but complete base variant. Features are additive, but also can modify the

424

core. A set of commonly applicable deltas con�gures a system variant. We discuss the ap-
plication of this technique to Delta-MontiArc [HRR+11, HRR+11] and to Delta-Simulink
[HKM+13]. Deltas can not only describe spacial variability but also temporal variability
which allows for using them for software product line evolution [HRRS12]. [HHK+13] and
[HRW15] describe an approach to systematically derive delta languages. We also apply
variability modeling languages in order to describe syntactic and semantic variation points,
e.g., in UML for frameworks [PFR02] and generators [GMR+16]. Furthermore, we speci-
�ed a systematic way to de�ne variants of modeling languages [CGR09], leverage features
for compositional reuse [BEK+18b], and applied it as a semantic language re�nement on
Statecharts in [GR11].

Modeling for Cyber-Physical Systems (CPS)

Cyber-Physical Systems (CPS) [KRS12] are complex, distributed systems which control
physical entities. In [RW18], we discuss how an elaborated theory can be practically
applied for the development of CPS. Contributions for individual aspects range from re-
quirements [GRJA12], complete product lines [HRRW12], the improvement of engineering
for distributed automotive systems [HRR12], autonomous driving [BR12a, KKR19], and
digital twin development [BDH+20] to processes and tools to improve the development
as well as the product itself [BBR07]. In the aviation domain, a modeling language for
uncertainty and safety events was developed, which is of interest for the European airspace
[ZPK+11]. A component and connector architecture description language suitable for the
speci�c challenges in robotics is discussed in [RRW13b, RRW14]. In [RRW13a], we de-
scribe a code generation framework for this language. Monitoring for smart and energy
e�cient buildings is developed as Energy Navigator toolset [KPR12, FPPR12, KLPR12].

Model-Driven Systems Engineering (MDSysE)

Applying models during Systems Engineering activities is based on the long tradi-
tion on contributing to systems engineering in automotive [GHK+08b], which culmi-
nated in a new comprehensive model-driven development process for automotive soft-
ware [KMS+18, DGH+19]. We leveraged SysML to enable the integrated �ow from re-
quirements to implementation to integration. To facilitate modeling of products, resources,
and processes in the context of Industry 4.0, we also conceived a multi-level framework
for machining based on these concepts [BKL+18]. Research within the excellence cluster
Internet of Production considers fast decision making at production time with low laten-
cies using contextual data traces of production systems, also known as Digital Shadows
(DS) [SHH+20]. We have investigated how to derive Digital Twins (DTs) for injection
molding [BDH+20], how to generate interfaces between a cyber-physical system and its
DT [KMR+20] and have proposed model-driven architectures for DT cockpit engineer-
ing [DMR+20].

425

23. Further Reading and Related Work

State Based Modeling (Automata)

Today, many computer science theories are based on statemachines in various forms in-
cluding Petri nets or temporal logics. Software engineering is particularly interested in
using statemachines for modeling systems. Our contributions to state based modeling can
currently be split into three parts: (1) understanding how to model object-oriented and
distributed software using statemachines resp. Statecharts [GKR96, BCR07b, BCGR09b,
BCGR09a], (2) understanding the re�nement [PR94, RK96, Rum96, RW18] and com-
position [GR95, GKR96, RW18] of statemachines, and (3) applying statemachines for
modeling systems. In [Rum96, RW18] constructive transformation rules for re�ning au-
tomata behavior are given and proven correct. This theory is applied to features in
[KPR97]. Statemachines are embedded in the composition and behavioral speci�cation
concepts of Focus [GKR96, BR07]. We apply these techniques, e.g., in MontiArcAu-
tomaton [RRW13a, RRW14, RRW13a, RW18] as well as in building management systems
[FLP+11b].

Model-Based Assistance and Information Services (MBAIS)

Assistive systems are a special type of information system: they (1) provide situational
support for human behaviour (2) based on information from previously stored and real-
time monitored structural context and behaviour data (3) at the time the person needs
or asks for it [HMR+19]. To create them, we follow a model centered architecture ap-
proach [MMR+17] which de�nes systems as a compound of various connected models.
Used languages for their de�nition include DSLs for behavior and structure such as the
human cognitive modeling language [MM13], goal modeling languages [MRV20] or UM-
L/P based languages [MNRV19]. [MM15] describes a process how languages for assistive
systems can be created.

We have designed a system included in a sensor �oor able to monitor elderlies and ana-
lyze impact patterns for emergency events [LMK+11]. We have investigated the model-
ing of human contexts for the active assisted living and smart home domain [MS17] and
user-centered privacy-driven systems in the IoT domain in combination with process min-
ing systems [MKM+19], di�erential privacy on event logs of handling and treatment of
patients at a hospital [MKB+19], the mark-up of online manuals for devices [SM18] and
websites [SM20], and solutions for privacy-aware environments for cloud services [ELR+17]
and in IoT manufacturing [MNRV19]. The user-centered view on the system design allows
to track who does what, when, why, where and how with personal data, makes information
about it available via information services and provides support using assistive services.

Modelling Robotics Architectures and Tasks

Robotics can be considered a special �eld within Cyber-Physical Systems which is de�ned
by an inherent heterogeneity of involved domains, relevant platforms, and challenges. The

426

engineering of robotics applications requires composition and interaction of diverse dis-
tributed software modules. This usually leads to complex monolithic software solutions
hardly reusable, maintainable, and comprehensible, which hampers broad propagation of
robotics applications. The MontiArcAutomaton language [RRW13a] extends the ADL
MontiArc and integrates various implemented behavior modeling languages using Monti-
Core [RRW13b, RRW14, RRRW15, HR17] that perfectly �t robotic architectural modeling.
The LightRocks [THR+13] framework allows robotics experts and laymen to model robotic
assembly tasks. In [AHRW17a, AHRW17b], we de�ne a modular architecture modeling
method for translating architecture models into modules compatible to di�erent robotics
middleware platforms.

Automotive, Autonomic Driving & Intelligent Driver
Assistance

Introducing and connecting sophisticated driver assistance, infotainment and communi-
cation systems as well as advanced active and passive safety-systems result in complex
embedded systems. As these feature-driven subsystems may be arbitrarily combined by
the customer, a huge amount of distinct variants needs to be managed, developed and
tested. A consistent requirements management that connects requirements with features
in all phases of the development for the automotive domain is described in [GRJA12].
The conceptual gap between requirements and the logical architecture of a car is closed
in [GHK+07, GHK+08a]. [HKM+13] describes a tool for delta modeling for Simulink
[HKM+13]. [HRRW12] discusses means to extract a well-de�ned Software Product Line
from a set of copy and paste variants. [RSW+15] describes an approach to use model
checking techniques to identify behavioral di�erences of Simulink models. In [KKR19], we
introduce a framework for modeling the dynamic recon�guration of component and connec-
tor architectures and apply it to the domain of cooperating vehicles. Quality assurance,
especially of safety-related functions, is a highly important task. In the Carolo project
[BR12a, BR12b], we developed a rigorous test infrastructure for intelligent, sensor-based
functions through fully-automatic simulation [BBR07]. This technique allows a dramatic
speedup in development and evolution of autonomous car functionality, and thus enables
us to develop software in an agile way [BR12a]. [MMR10] gives an overview of the current
state-of-the-art in development and evolution on a more general level by considering any
kind of critical system that relies on architectural descriptions. As tooling infrastructure,
the SSElab storage, versioning and management services [HKR12] are essential for many
projects.

Smart Energy Management

In the past years, it became more and more evident that saving energy and reducing
CO2 emissions is an important challenge. Thus, energy management in buildings as well
as in neighbourhoods becomes equally important to e�ciently use the generated energy.
Within several research projects, we developed methodologies and solutions for integrating

427

23. Further Reading and Related Work

heterogeneous systems at di�erent scales. During the design phase, the Energy Navigators
Active Functional Speci�cation (AFS) [FPPR12, KPR12] is used for technical speci�cation
of building services already. We adapted the well-known concept of statemachines to
be able to describe di�erent states of a facility and to validate it against the monitored
values [FLP+11b]. We show how our data model, the constraint rules, and the evaluation
approach to compare sensor data can be applied [KLPR12].

Cloud Computing & Enterprise Information Systems

The paradigm of Cloud Computing is arising out of a convergence of existing technolo-
gies for web-based application and service architectures with high complexity, criticality,
and new application domains. It promises to enable new business models, to lower the
barrier for web-based innovations and to increase the e�ciency and cost-e�ectiveness of
web development [KRR14]. Application classes like Cyber-Physical Systems and their
privacy [HHK+14, HHK+15b], Big Data, App, and Service Ecosystems bring attention
to aspects like responsiveness, privacy and open platforms. Regardless of the application
domain, developers of such systems are in need for robust methods and e�cient, easy-to-
use languages and tools [KRS12]. We tackle these challenges by perusing a model-based,
generative approach [NPR13]. The core of this approach are di�erent modeling languages
that describe di�erent aspects of a cloud-based system in a concise and technology-agnostic
way. Software architecture and infrastructure models describe the system and its physical
distribution on a large scale. We apply cloud technology for the services we develop, e.g.,
the SSELab [HKR12] and the Energy Navigator [FPPR12, KPR12] but also for our tool
demonstrators and our own development platforms. New services, e.g., collecting data
from temperature, cars etc. can now easily be developed.

Model-Driven Engineering of Information Systems

Information Systems provide information to di�erent user groups as main system goal. Us-
ing our experiences in the model-based generation of code with MontiCore [KRV10, HR17],
we developed several generators for such data-centric information systems. Mon-
tiGem [AMN+20] is a speci�c generator framework for data-centric business applications
that uses standard models from UML/P optionally extended by GUI description models as
sources [GMN+20]. While the standard semantics of these modeling languages remains un-
touched, the generator produces a lot of additional functionality around these models. The
generator is designed �exible, modular and incremental, handwritten and generated code
pieces are well integrated [GHK+15a], tagging of existing models is possible [GLRR15],
e.g., for the de�nition of roles and rights or for testing [DGH+18].

428

List of Figures

1.2 Some languages MontiCore provides . 3

1.4 Notational conventions . 4

1.5 Agile use of models for coding and testing 5

2.7 Parts of the AST data structure generated for the Automata grammar . . 14

2.10 Parts of the class AutomataParser, which is generated from the
Automata grammar . 16

2.12 The scope classes generated from the Automata grammar 17

2.14 Parts of the symbol classes generated from the Automata grammar 17

2.17 Parts of the visitor infrastructure generated from the Automata grammar . 19

2.28 Eclipse after importing the example project and executing MontiCore 31

2.29 IntelliJ IDEA after importing the example project and executing MontiCore 32

3.1 Structure of a generator - external view . 34

3.2 Internal architecture of a generator . 35

3.3 Chapter structure of the handbook . 36

4.32 Constraining the cardinality of a nonterminal, when parsing 56

5.2 Sequences of nonterminals in the AST . 78

5.3 Optional nonterminals . 78

5.4 How interfaces in a grammar map to the abstract syntax 79

5.5 How abstract nonterminals in a grammar map to abstract classes 79

5.7 Productions extending other productions . 80

5.8 Implements in abstract and concrete syntax 81

5.9 Inheritance in abstract and concrete syntax 81

5.10 Extending the AST structure . 82

List of Figures

5.11 Adding attributes in the AST with the astrule statement 82

5.12 Adding methods in the AST with the astrule statement 82

5.14 Terminals included in the AST . 84

5.15 Choice of one of several values stored as int 84

5.16 Explicit de�nition of an enumeration . 85

5.18 Common interfaces of AST classes . 86

5.29 Example: Handwritten AST class ASTState injected into the parsing process 97

7.11 Language inheritance . 122

7.17 Composition of a language is executed as late as possible: late binding . . . 128

8.6 Generated visitor infrastructure for a language L 138

8.7 Traverser for the Questionnaire language and an handcoded usage . . . 139

8.8 Control �ow of a traverser with an attached visitor implementation 140

8.14 The traverser instantiation via mill always guarantees the most speci�c tra-
verser type in composed languages . 144

8.17 Overview of visitor classes for Automata6 146

8.23 Overview of visitor infrastructure for Automata3 150

9.4 Overview of the main concepts of SMI . 159

9.5 An example structure of a hierarchy of scopes 160

9.7 Symbol interfaces provided by SMI RTE and a language speci�c class 162

9.9 Symbols may carry access modi�ers de�ning their visibility 163

9.16 Scope classes genererated for the Automata language 172

9.20 Relationship between AST, symbol, and scope by example 176

9.26 Infrastructure for parsing and printing JSON 185

9.36 Principle of resolution in a hierarchy of scopes 197

9.44 E�ect of grammar inheritance on inheritance between scope interfaces . . . 205

9.45 E�ect of grammar inheritance on artifact and global scope interfaces 206

10.1 CoCo infrastructure for nonterminals . 213

10.2 The generated CoCo checker . 213

11.3 Components use realThis instead of this to enable close collaboration . 224

430

List of Figures

11.4 The runtime program �ow in a realThis composition 225

11.5 Splitting Classes in Interface and Implementation 226

11.6 Composing objects using the realThis approach 227

11.11Template hook pattern variants that can be used for integrating handwritten
and generated code . 232

11.12Publicly available interfaces of the mill pattern for object creation 234

11.13Internal Structure of the Mill Pattern . 235

11.14Interface Pattern for language composition 236

13.17Hierarchical include structure induced by the include commands. The
knowledge direction goes from A to B to C and D 263

13.18Decoration before and after a template. The knowledge direction is inverted:
C and D know B . 263

13.20External replacement of a template . 264

13.21De�ning an explicit hook point and binding it 264

13.22External template replacement keeps its decoration (execution order is 1..5) 265

14.3 How a given class can be extended by building a subclass 281

14.5 How a given class can be replaced by a handwritten class 282

14.7 How a given class and its builder can be replaced by handwritten versions . 283

14.8 How a given class and its subclass can be replaced by a handwritten class . 284

15.10Relationship between artifacts (templates and Java, excerpt) 299

15.11Relationship between template artifacts (excerpt) 300

16.3 Di�erent ways to de�ne tasks . 311

18.2 Component grammar hierarchy of Chapter 18 340

18.3 Grammars de�ning Literal . 340

18.7 Grammars de�ning Expression . 346

18.11Component grammar de�ning symbols . 352

18.13Overview over the types grammar hierarchy 355

18.18The SymTypeEypression class hierarchy 362

18.20Overview over the TypeCheck class and Interfaces 365

431

List of Figures

18.22TypeCheck con�guration for MyLang . 367

19.2 Component grammar structure hierarchy of Chapter 19 372

19.3 Some statement examples . 372

20.1 A language feature diagram depicting the languages included in the
JavaLight language . 382

21.3 Two automata example models . 390

21.7 AST of the Simple Automaton language 392

21.8 AST of the SAutomata language extended by runtime classes 392

21.9 Visitors for the Automata language . 393

21.10Symbols of the SAutomaton language . 393

21.11Generated scope classes and interfaces of the SAutomaton language 394

21.12Relation between AST node, symbol and scope in the Automaton language 394

21.13Generated classes for loading and storing symbol tables of the SAutomaton
language . 395

21.14De�ning context conditions for the SAutomata language 396

21.18AST of the hierarchical Automaton language 398

21.22AST of the Automaton language with Invariants 400

432

Listings

1.3 Example in Java . 4

2.3 The Automata grammar . 10
2.5 A model conforming to the Automata grammar 11
2.16 Di�erent resolve methods . 18
2.19 Attributes and constructor of the PrettyPrinter for the Automata lan-

guage . 20
2.21 Some methods of the AutomataMill API 22
2.23 The CountStates visitor implementation 23
2.24 Context condition implementation for checking that there exist at least one

initial and at least one �nal state . 24
2.25 Context condition implementation for checking that states used in transi-

tions exist . 25
2.26 Methods for parsing and creating symbol tables 25
2.27 Main method of the AutomataTool class 26

3.4 Example tool for the Automata DSL . 36

4.1 Minimal grammar example . 40
4.2 Lexical productions for SimpleName and SimpleString 41
4.3 Lexical productions for Numbers using token fragments 42
4.5 Lexical productions for white spaces . 42
4.6 Lexical production for strings without quotation marks, which are removed

in a Java action . 43
4.7 Changing the result type of lexicals . 43
4.8 Adding a conversion method for lexical types 44
4.12 Some production examples . 46
4.13 next, cmpToken and cmpTokenRegEx . 48
4.14 Augmentation of terminals for storage in the AST 49
4.15 A choice of alternate terminals is stored as integers 49
4.16 Explicit de�nition of an enumeration . 50
4.17 Automatic naming of unnamed nonterminals 50
4.19 An interface nonterminal and several nonterminals implementing it 51
4.20 Alternative to interface nonterminal in Listing 4.19 accepting the same con-

crete syntax, but I knows A and B . 51
4.21 Interface nonterminal de�ning its signature 52
4.22 Extending the production of a nonterminal 52
4.23 Equivalent alternative to extension in Listing 4.22 accepting the same con-

crete syntax for A, but A knows and thus is coupled to B 52

Listings

4.25 Abstract production in a grammar . 53
4.26 Alternative to abstract nonterminal in Listing 4.25 accepting the same con-

crete syntax . 53
4.27 Explicitly setting a top-level nonterminal that is inherited with start . . . 54
4.28 Grammar ExpressionsBasis which provides an interface Expression

and basic expressions for the other expression grammars to use 54
4.29 Excerpt of grammar AssignmentExpressions for several forms of as-

signments . 55
4.30 Excerpt of grammar CommonExpressions for common expressions like

a+b including in�x operation priorities . 55
4.33 Constraining the cardinality of a nonterminal 56
4.34 Add Java code to the parser . 57
4.35 Add Java code to the lexer . 58
4.37 Add a conversion method for lexical types 61
4.39 Using nokeyword to de�ne "automaton" as a local keyword 61
4.40 EBNF of the MontiCore grammar MCG . 70

5.17 Signature of the ASTNode superclass of all AST nodes 85
5.19 Signature of the generated AST class to represent states: part 1 87
5.20 Attribute management signature of a generated AST class: part 2 88
5.21 Signature for a List attribute in a generated AST class: part 3 89
5.22 Comparison and cloning in a generated AST class: part 4 90
5.24 EMF version of the ASTState class signature 91
5.25 Signature of the builder mill for all Automaton AST classes 92
5.26 Signature of the Builder for State objects: part 1 92
5.27 Retrieving methods for a Builder class: part 2 94
5.31 Internal structure of the AutomataMill 98
5.32 Handcoded extension of the AutomataMill 98

6.1 Location of the MontiCore parser generator 102
6.2 Method signature used to generate a parser 102
6.3 Java code creates a parser for automata (using its grammar) 103
6.4 List of �les produced during the generation of a parser 104
6.5 Methods that can be used for parsing . 105
6.6 Various forms of parsing . 106
6.8 Where to �nd the MontiCore grammar grammar 107

7.3 Example of a grammar component with an external nonterminal 117
7.4 External nontermials are mapped to interfaces in the AST 118
7.5 Language embedding with binding the external nonterminal 118
7.6 Implementation of the Invariant nonterminal 119
7.9 Language inheritance: One grammar extending another and rede�ning an

inherited nonterminal . 120
7.10 The new ASTState class extends the old ASTState class and serves as a

substitute . 121
7.12 Language inheritance: One grammar extending another and rede�ning an

inherited nonterminals inheritance structure without modifying the body . . 123

434

Listings

7.13 Language inheritance: One grammar extending another and rede�ning an
inherited nonterminals by eliminating the body 124

7.14 Language inheritance: One grammar extending another and rede�ning an
inherited nonterminals inheritance structure as well as the body 124

7.15 Language embedding: Filling extension points 125

8.2 Signature of a Traverser for language L 136

8.9 Simpli�ed presentation of visit and endVisit operations in the visitor
interface of language L . 141

8.10 Simpli�ed presentation of handle and traverse operations in the handler
interface of language L . 142

8.13 Implementation of an inheritance handler's handle method 143

8.15 Automaton language with interface nonterminal AutElement used for ex-
tension . 146

8.16 Adding transitions with output to the Automata5 language of Listing 8.15 146

8.18 A visitor implementation for the new language Automata6 147

8.19 Automaton language without explicit extension point 148

8.20 Conservative extension of transitions from Automata15 of Listing 8.19 . . 148

8.21 A visitor of the new language for an overriden nonterminal 148

8.22 Prepare a handler implementation for compositional use 149

8.25 The implementation of the pretty printer for the Automata3 sublanguage
(with only one nonterminal) . 151

8.26 Composing the three visitors through delegation and giving them the same
shared state . 152

8.27 The composed visitors can be used as if it is only one monolithic component 153

9.2 Example use of symbol de�ning grammar constructs 156

9.6 Automata with counters and transition statements 161

9.8 Interface of all Symbol classes . 162

9.10 Excerpt of the generated implementation of class StateSymbol 164

9.11 symbolrule that de�nes three symbol attributes and a symbol method . 166

9.12 Con�guring global scope attributes . 169

9.13 Signature of all scope classes that implement IScope 169

9.14 IArtifactScope dealing with scopes for full artifacts and thus manages
package information . 170

9.15 IGlobalScope describes the interface of the global scope 171

9.17 IAutomataScope core functions . 174

9.18 Method signatures of the AutomataGlobalScope class 174

9.19 A scoperule that de�nes two attributes and a method of the scope . . . 176

9.22 Repeated excerpt of Automata grammar . 178

9.23 Extended signature of ASTTransitions 178

9.24 Methods of the AutomataScopesGenitor 180

9.25 Content of an Example Symbol Table PingPong.autsym 183

9.27 Signature of the IDeSer interface . 186

9.28 Signature of the ISymbolDeSer interface 186

9.29 AutomataDeSer for scopes and artifact scope of the Automata language . 188

435

Listings

9.30 StateSymbolDeSer for State symbols with addon attribute
adjacentStates of type List<String> 189

9.31 Optimized symbol table with state list only 193
9.32 Customization of the AutomatonSymbolDeSer 193
9.33 Customization of the AutomataSymbols2Json 194
9.35 Example for resolving a state symbol . 197
9.37 Example class for bottom-up intra model resolution 198
9.38 Example class for inter model resolution . 198
9.39 Example class for top-down inter model resolution 199
9.40 Standard resolving method signatures for StateSymbols in the

IAutomataScope interface . 200
9.41 More generated resolving method signatures for StateSymbols in the

IAutomataScope interface . 201
9.42 Handwritten adjustment of the method calculateModelNamesForState202
9.43 Symbol table method signatures of a Visitor of a language L 204
9.46 Symbol adapter for CDClassSymbols to StimulusSymbols 207
9.47 Resolving symbols with added adapters if the scope knows both symbol kinds208
9.48 Example resolver for CDClass2StimulusAdapters 209

10.3 Implementation of the AutomataCoCoChecker class 214
10.4 Con�gure the AutomataCoCoChecker and check the context conditions . 214
10.6 Implementation of a context condition for State objects 216
10.8 Using the symbol table in a context condition 216
10.9 Initial setup to test a context condition . 217
10.10Testing a context condition on a valid model 217
10.11Testing a context condition on an invalid model 218

11.1 A static delegator method . 222
11.2 Customized static delegator method . 222
11.7 Classic get and set method signature for an attribute 228
11.8 Methods for an optional attribute . 228
11.9 Methods for a List attribute . 229
11.10Manipulation methods provided by builders 231

12.1 Principle of FreeMarker: Copy the template content, execute FreeMarker
commands, and inject their results into the output 237

12.2 Result when applying the template . 238
12.5 FreeMarker conditional . 241
12.6 FreeMarker switch statement . 241
12.7 FreeMarker loop . 241
12.8 Example for a FreeMarker loop . 242
12.9 Extended form of a FreeMarker loop . 242
12.10signature asserts variables to be de�ned 243

13.1 Signature of a generate and generateNoA method 248
13.2 How the GeneratorEngine can be used 249
13.3 Con�guration options of the GeneratorSetup class 250

436

Listings

13.6 Include methods provided by the TemplateController tc 254

13.7 Examples for including sub-templates within a template 255

13.8 The includeArg methods provided by the TemplateController tc . . 255

13.9 Examples for using signature . 256

13.11Write methods provided by the TemplateController tc 257

13.13Further methods provided by the TemplateController tc 259

13.14Logging examples from within templates . 260

13.15Methods to manage global variables with glex 260

13.16Manipulating global variables from within a template 261

13.24Signature that HookPoints provide . 266

13.25Constructor for StringHookPoints . 267

13.26Constructors for TemplateHookPoint . 267

13.27Constructor of TemplateStringHookPoint 267

13.28Methods to de�ne a hook point in a template 269

13.29Methods of the GlobalExtensionManagement class for hook point man-
agement . 270

13.30Example: setting a hook point . 271

13.31GlobalExtensionManagement for hook point management 272

13.34Producing attributes in the State Pattern 275

13.35Resulting code for State attributes . 275

13.36Modi�ed generation template . 275

13.37Replacing the default template . 275

13.38Resulting State attributes for adapted generation 276

13.39Decorating the default template . 276

13.40Decorating template for StatechartStateAttributes 276

13.41Resulting code including get functions . 276

13.42Template generating a State class . 277

13.43Binding strings to the hook points . 277

13.44Resulting method bodies and count attribute 277

15.2 Logging API in class Log . 290

15.3 Example for controlling fail quick . 291

15.4 How to enable reporting . 294

15.5 How to stop and start reporting . 295

15.6 Additional information reported in 08_Detailed.txt 295

15.7 Exemplaric object identi�ers in reports . 295

15.8 Object identi�ers in reports . 296

15.9 Representation of various entities . 296

16.1 Executing MontiCore via CLI . 304

16.4 Integrating the MontiCore plugin in a build script 312

16.5 Creating a task to process the grammar HierAutomata 312

16.6 Con�guring the model path . 313

16.7 Using the Java Library plugin . 314

16.8 Integrating the MontiCore plugin in a build script 314

16.9 Adding MontiCore dependencies . 315

437

Listings

16.10Repository declaration in build.gradle 315
16.11Repository declaration in settings.gradle 315
16.12Example build.gradle . 316
16.13Groovy script used to generate the standard result 320
16.14Methods available in the Groovy scripts . 322

18.15Grammar MyBasicLanguage, showing the usage of the base grammars . . 360
18.16Grammar MySimpleBaseLanguage.mc4, containing simple base gram-

mar alternatives . 361
18.17The grammar KotlinCommonGenericTypes.mc4 361
18.19Methods of the TypeCheck class . 364
18.21Example language MyLang . 367
18.23init() method of SynthesizeFromMyLang 368
18.24Methods of the TypeCheck class . 369
18.25Usage of TypeCheck methods demonstrated in a JUnit test 369

20.2 External and interfaces introduced by the JavaLight grammar for com-
fortable reuse of type parameters and class and interface elements 383

20.3 The JavaMethod symbol . 383
20.4 Nonterminals de�ned in the JavaLight grammar that are used by the

nonterminals for methods and annotations 384
20.5 The MethodDeclaration nonterminal 384
20.6 The nonterminals InterfaceMethodDeclaration and

ConstructorDeclaration . 385
20.7 The nonterminal ConstDeclaration . 385
20.8 The interfaces AnnotationArguments and ElementValue 386
20.9 JavaLight nonterminals for annotations 386
20.10The nonterminal Annotation . 387
20.11The nonterminal ArrayDimensionByInitializer 387

21.1 Simple automaton in text format . 389
21.2 Example model for the Automaton language 390
21.4 MontiCore grammar for the SAutomata language 390
21.5 EBNF of the SAutomata language . 391
21.6 MontiCore grammar for the SAutomata language 391
21.15Files for context conditions for the SAutomaton language 396
21.16Example model for the hierarchical Automaton language 397
21.17MontiCore grammar for the HAutomata language 397
21.19Example model for the Automaton language with invariants 398
21.20Grammar component for IAutomataComp that de�nes state with invariants399
21.21Grammar for automata with state invariants 399
21.23Whitespaces made explicit in the productions 401
21.24Whitespaces explicitly used in productions 401
21.25Whitespaces temporarily explicit in the production using a state switch in

the lexer . 402
21.26Switching whitespaces on and o� temporarily in productions 403
21.27Disallowing spaces between last two token 403

438

Listings

21.29Setting up a JUnit test infrastructure . 404
21.30Some JUnit tests . 405
21.31Example model of the ColoredGraph language 405
21.32Grammar of the ColoredGraph language 406
21.33Handwritten serialization of the color attribute of VertexSymbols in

the class VertexSymbolDeSer . 407
21.34Handwritten deserialization of the color attribute of VertexSymbols in

the class VertexSymbolDeSer . 408

439

References

[AHRW17a] Kai Adam, Katrin Hölldobler, Bernhard Rumpe, and Andreas Wort-
mann. Engineering Robotics Software Architectures with Exchangeable
Model Transformations. In International Conference on Robotic Comput-
ing (IRC'17), pages 172�179. IEEE, April 2017.

[AHRW17b] Kai Adam, Katrin Hölldobler, Bernhard Rumpe, and Andreas Wortmann.
Modeling Robotics Software Architectures with Modular Model Transfor-
mations. Journal of Software Engineering for Robotics (JOSER), 8(1):3�16,
2017.

[AMN+20] Kai Adam, Judith Michael, Lukas Netz, Bernhard Rumpe, and Simon
Varga. Enterprise Information Systems in Academia and Practice: Lessons
learned from a MBSE Project. In 40 Years EMISA: Digital Ecosystems of
the Future: Methodology, Techniques and Applications (EMISA'19), vol-
ume P-304 of LNI, pages 59�66. Gesellschaft für Informatik e.V., May
2020.

[ASU86] Alfred V. Aho, Ravi Sethi, and Je�rey D. Ullman. Compilers: Principles,
Techniques, and Tools. Addison-Wesley, 1986.

[BA04] Kent Beck and Cynthia Andres. Extreme Programming Explained: Em-
brace Change. Addison-Wesley Professional, 2004.

[BBR07] Christian Basarke, Christian Berger, and Bernhard Rumpe. Software
& Systems Engineering Process and Tools for the Development of Au-
tonomous Driving Intelligence. Journal of Aerospace Computing, Informa-
tion, and Communication (JACIC), 4(12):1158�1174, 2007.

[BCGR09a] Manfred Broy, María Victoria Cengarle, Hans Grönniger, and Bernhard
Rumpe. Considerations and Rationale for a UML System Model. In
K. Lano, editor, UML 2 Semantics and Applications, pages 43�61. John
Wiley & Sons, November 2009.

[BCGR09b] Manfred Broy, María Victoria Cengarle, Hans Grönniger, and Bernhard
Rumpe. De�nition of the UML System Model. In K. Lano, editor, UML 2
Semantics and Applications, pages 63�93. John Wiley & Sons, November
2009.

[BCR07a] Manfred Broy, María Victoria Cengarle, and Bernhard Rumpe. Towards
a System Model for UML. Part 2: The Control Model. Technical Report
TUM-I0710, TU Munich, Germany, February 2007.

References

[BCR07b] Manfred Broy, María Victoria Cengarle, and Bernhard Rumpe. Towards
a System Model for UML. Part 3: The State Machine Model. Technical
Report TUM-I0711, TU Munich, Germany, February 2007.

[BDH+20] Pascal Bibow, Manuela Dalibor, Christian Hopmann, Ben Mainz, Bern-
hard Rumpe, David Schmalzing, Mauritius Schmitz, and Andreas Wort-
mann. Model-Driven Development of a Digital Twin for Injection Molding.
In Schahram Dustdar, Eric Yu, Camille Salinesi, Dominique Rieu, and Vik
Pant, editors, International Conference on Advanced Information Systems
Engineering (CAiSE'20), volume 12127 of Lecture Notes in Computer Sci-
ence, pages 85�100. Springer International Publishing, June 2020.

[BDL+18] Arvid Butting, Manuela Dalibor, Gerrit Leonhardt, Bernhard Rumpe, and
Andreas Wortmann. Deriving Fluent Internal Domain-speci�c Languages
from Grammars. In International Conference on Software Language Engi-
neering (SLE'18), pages 187�199. ACM, 2018.

[Bec15] Kent Beck. JUnit Pocket Guide. O'Reilly, 2015.

[BEK+18a] Arvid Butting, Robert Eikermann, Oliver Kautz, Bernhard Rumpe, and
Andreas Wortmann. Controlled and Extensible Variability of Concrete
and Abstract Syntax with Independent Language Features. In Proceedings
of the 12th International Workshop on Variability Modelling of Software-
Intensive Systems (VAMOS'18), pages 75�82. ACM, January 2018.

[BEK+18b] Arvid Butting, Robert Eikermann, Oliver Kautz, Bernhard Rumpe, and
Andreas Wortmann. Modeling Language Variability with Reusable Lan-
guage Components. In International Conference on Systems and Software
Product Line (SPLC'18). ACM, September 2018.

[BEK+19] Arvid Butting, Robert Eikermann, Oliver Kautz, Bernhard Rumpe, and
Andreas Wortmann. Systematic Composition of Independent Language
Features. Journal of Systems and Software, 152:50�69, June 2019.

[Ber10] Christian Berger. Automating Acceptance Tests for Sensor- and Actuator-
based Systems on the Example of Autonomous Vehicles. Aachener
Informatik-Berichte, Software Engineering, Band 6. Shaker Verlag, 2010.

[BGH+97] Ruth Breu, Radu Grosu, Christoph Hofmann, Franz Huber, Ingolf Krüger,
Bernhard Rumpe, Monika Schmidt, and Wolfgang Schwerin. Exemplary
and Complete Object Interaction Descriptions. In Object-oriented Behav-
ioral Semantics Workshop (OOPSLA'97), Technical Report TUM-I9737,
Germany, 1997. TU Munich.

[BGH+98] Ruth Breu, Radu Grosu, Franz Huber, Bernhard Rumpe, and Wolfgang
Schwerin. Systems, Views and Models of UML. In Proceedings of the
Uni�ed Modeling Language, Technical Aspects and Applications, pages 93�
109. Physica Verlag, Heidelberg, Germany, 1998.

[BGRW17] Arvid Butting, Timo Greifenberg, Bernhard Rumpe, and Andreas Wort-
mann. Taming the Complexity of Model-Driven Systems Engineering

442

References

Projects. Part of the Grand Challenges in Modeling (GRAND'17) Work-
shop, July 2017.

[BGRW18] Arvid Butting, Timo Greifenberg, Bernhard Rumpe, and Andreas Wort-
mann. On the Need for Artifact Models in Model-Driven Systems Engi-
neering Projects. In Martina Seidl and Ste�en Zschaler, editors, Software
Technologies: Applications and Foundations, LNCS 10748, pages 146�153.
Springer, January 2018.

[BHK+17] Arvid Butting, Robert Heim, Oliver Kautz, Jan Oliver Ringert, Bernhard
Rumpe, and Andreas Wortmann. A Classi�cation of Dynamic Recon�gura-
tion in Component and Connector Architecture Description Languages. In
Proceedings of MODELS 2017. Workshop ModComp, CEUR 2019, Septem-
ber 2017.

[BHP+98] Manfred Broy, Franz Huber, Barbara Paech, Bernhard Rumpe, and Katha-
rina Spies. Software and System Modeling Based on a Uni�ed Formal Se-
mantics. In Workshop on Requirements Targeting Software and Systems
Engineering (RTSE'97), LNCS 1526, pages 43�68. Springer, 1998.

[BJRW18] Arvid Butting, Nico Jansen, Bernhard Rumpe, and Andreas Wortmann.
Translating Grammars to Accurate Metamodels. In International Confer-
ence on Software Language Engineering (SLE'18), pages 174�186. ACM,
2018.

[BKL+18] Christian Brecher, Evgeny Kusmenko, Achim Lindt, Bernhard Rumpe, Si-
mon Storms, Stephan Wein, Michael von Wenckstern, and Andreas Wort-
mann. Multi-Level Modeling Framework for Machine as a Service Appli-
cations Based on Product Process Resource Models. In Proceedings of the
2nd International Symposium on Computer Science and Intelligent Control
(ISCSIC'18). ACM, September 2018.

[BKRW17] Arvid Butting, Oliver Kautz, Bernhard Rumpe, and Andreas Wortmann.
Semantic Di�erencing for Message-Driven Component & Connector Archi-
tectures. In International Conference on Software Architecture (ICSA'17),
pages 145�154. IEEE, April 2017.

[BKRW19] Arvid Butting, Oliver Kautz, Bernhard Rumpe, and Andreas Wortmann.
Continuously Analyzing Finite, Message-Driven, Time-Synchronous Com-
ponent & Connector Systems During Architecture Evolution. Journal of
Systems and Software, 149:437�461, March 2019.

[BR07] Manfred Broy and Bernhard Rumpe. Modulare hierarchische Modellierung
als Grundlage der Software- und Systementwicklung. Informatik-Spektrum,
30(1):3�18, Februar 2007.

[BR12a] Christian Berger and Bernhard Rumpe. Autonomous Driving - 5 Years
after the Urban Challenge: The Anticipatory Vehicle as a Cyber-Physical
System. In Automotive Software Engineering Workshop (ASE'12), pages
789�798, 2012.

443

References

[BR12b] Christian Berger and Bernhard Rumpe. Engineering Autonomous Driving
Software. In C. Rou� and M. Hinchey, editors, Experience from the DARPA
Urban Challenge, pages 243�271. Springer, Germany, 2012.

[CBCR15] Tony Clark, Mark van den Brand, Benoit Combemale, and Bernhard
Rumpe. Conceptual Model of the Globalization for Domain-Speci�c Lan-
guages. In Globalizing Domain-Speci�c Languages, LNCS 9400, pages 7�20.
Springer, 2015.

[CCF+15] Betty H. C. Cheng, Benoit Combemale, Robert B. France, Jean-Marc
Jézéquel, and Bernhard Rumpe, editors. Globalizing Domain-Speci�c Lan-
guages, LNCS 9400. Springer, 2015.

[CEG+14] Betty Cheng, Kerstin Eder, Martin Gogolla, Lars Grunske, Marin Litoiu,
Hausi Müller, Patrizio Pelliccione, Anna Perini, Nauman Qureshi, Bern-
hard Rumpe, Daniel Schneider, Frank Trollmann, and Norha Villegas. Us-
ing Models at Runtime to Address Assurance for Self-Adaptive Systems. In
Models@run.time, LNCS 8378, pages 101�136. Springer, Germany, 2014.

[CFJ+16] Benoit Combemale, Robert France, Jean-Marc Jézéquel, Bernhard Rumpe,
James Steel, and Didier Vojtisek. Engineering Modeling Languages: Turn-
ing Domain Knowledge into Tools. Chapman & Hall/CRC Innovations in
Software Engineering and Software Development Series, November 2016.

[CGR08] María Victoria Cengarle, Hans Grönniger, and Bernhard Rumpe. Sys-
tem Model Semantics of Class Diagrams. Informatik-Bericht 2008-05, TU
Braunschweig, Germany, 2008.

[CGR09] María Victoria Cengarle, Hans Grönniger, and Bernhard Rumpe. Vari-
ability within Modeling Language De�nitions. In Conference on Model
Driven Engineering Languages and Systems (MODELS'09), LNCS 5795,
pages 670�684. Springer, 2009.

[CKM+18] Benoit Combemale, Jörg Kienzle, Gunter Mussbacher, Olivier Barais, Er-
wan Bousse, Walter Cazzola, Philippe Collet, Thomas Degueule, Robert
Heinrich, Jean-Marc Jézéquel, Manuel Leduc, Tanja Mayerhofer, Sébastien
Mosser, Matthias Schöttle, Misha Strittmatter, and Andreas Wortmann.
Concern-Oriented Language Development (COLD): Fostering Reuse in
Language Engineering. Computer Languages, Systems & Structures, 54:139
� 155, 2018.

[DEKR19] Imke Drave, Robert Eikermann, Oliver Kautz, and Bernhard Rumpe. Se-
mantic Di�erencing of Statecharts for Object-oriented Systems. In Slimane
Hammoudi, Luis Ferreira Pires, and Bran Seli¢, editors, Proceedings of the
7th International Conference on Model-Driven Engineering and Software
Development (MODELSWARD'19), pages 274�282. SciTePress, February
2019.

[DGH+18] Imke Drave, Timo Greifenberg, Ste�en Hillemacher, Stefan Kriebel,
Matthias Markthaler, Bernhard Rumpe, and Andreas Wortmann. Model-
Based Testing of Software-Based System Functions. In Conference on Soft-

444

References

ware Engineering and Advanced Applications (SEAA'18), pages 146�153,
August 2018.

[DGH+19] Imke Drave, Timo Greifenberg, Ste�en Hillemacher, Stefan Kriebel,
Evgeny Kusmenko, Matthias Markthaler, Philipp Orth, Karin Samira
Salman, Johannes Richenhagen, Bernhard Rumpe, Christoph Schulze,
Michael Wenckstern, and Andreas Wortmann. SMArDT modeling for auto-
motive software testing. Software: Practice and Experience, 49(2):301�328,
February 2019.

[DHH+20] Imke Drave, Timo Henrich, Katrin Hölldobler, Oliver Kautz, Judith
Michael, and Bernhard Rumpe. Modellierung, Veri�kation und Synthese
von validen Planungszuständen für Fernsehausstrahlungen. In Dominik
Bork, Dimitris Karagiannis, and Heinrich C. Mayr, editors, Modellierung
2020, pages 173�188. Gesellschaft für Informatik e.V., February 2020.

[DKMR19] Imke Drave, Oliver Kautz, Judith Michael, and Bernhard Rumpe. Semantic
Evolution Analysis of Feature Models. In Thorsten Berger, Philippe Collet,
Laurence Duchien, Thomas Fogdal, Patrick Heymans, Timo Kehrer, Ja-
bier Martinez, Raúl Mazo, Leticia Montalvillo, Camille Salinesi, Xhevahire
Tërnava, Thomas Thüm, and Tew�k Ziadi, editors, International Systems
and Software Product Line Conference (SPLC'19), pages 245�255. ACM,
September 2019.

[DMR+20] Manuela Dalibor, Judith Michael, Bernhard Rumpe, Simon Varga, and
Andreas Wortmann. Towards a Model-Driven Architecture for Interactive
Digital Twin Cockpits. In Gillian Dobbie, Ulrich Frank, Gerti Kappel,
Stephen W. Liddle, and Heinrich C. Mayr, editors, Conceptual Modeling,
pages 377�387. Springer International Publishing, October 2020.

[EFLR99] Andy Evans, Robert France, Kevin Lano, and Bernhard Rumpe. Meta-
Modelling Semantics of UML. In H. Kilov, B. Rumpe, and I. Simmonds,
editors, Behavioral Speci�cations of Businesses and Systems, pages 45�60.
Kluver Academic Publisher, 1999.

[EHRR19] Robert Eikermann, Katrin Hölldobler, Alexander Roth, and Bernhard
Rumpe. Reuse and Customization for Code Generators: Synergy by Trans-
formations and Templates. In Slimane Hammoudi, Luis Ferreira Pires, and
Bran Seli¢, editors, Model-Driven Engineering and Software Development,
pages 34�55. Springer, February 2019.

[EJK+19] Rolf Ebert, Jahir Jolianis, Stefan Kriebel, Matthias Markthaler, Benjamin
Pruenster, Bernhard Rumpe, and Karin Samira Salman. Applying Product
Line Testing for the Electric Drive System. In Thorsten Berger, Philippe
Collet, Laurence Duchien, Thomas Fogdal, Patrick Heymans, Timo Kehrer,
Jabier Martinez, Raúl Mazo, Leticia Montalvillo, Camille Salinesi, Xhe-
vahire Tërnava, Thomas Thüm, and Tew�k Ziadi, editors, International
Systems and Software Product Line Conference (SPLC'19), pages 14�24.
ACM, September 2019.

445

References

[ELR+17] Robert Eikermann, Markus Look, Alexander Roth, Bernhard Rumpe, and
Andreas Wortmann. Architecting Cloud Services for the Digital me in a
Privacy-Aware Environment. In Ivan Mistrik, Rami Bahsoon, Nour Ali,
Maritta Heisel, and Bruce Maxim, editors, Software Architecture for Big
Data and the Cloud, chapter 12, pages 207�226. Elsevier Science & Tech-
nology, June 2017.

[FELR98] Robert France, Andy Evans, Kevin Lano, and Bernhard Rumpe. The
UML as a formal modeling notation. Computer Standards & Interfaces,
19(7):325�334, November 1998.

[FHR08] Florian Fieber, Michaela Huhn, and Bernhard Rumpe. Modellqualität
als Indikator für Softwarequalität: eine Taxonomie. Informatik-Spektrum,
31(5):408�424, Oktober 2008.

[FLP+11a] M. Norbert Fisch, Markus Look, Claas Pinkernell, Stefan Plesser, and
Bernhard Rumpe. Der Energie-Navigator - Performance-Controlling für
Gebäude und Anlagen. Technik am Bau (TAB) - Fachzeitschrift für Tech-
nische Gebäudeausrüstung, pages 36�41, März 2011.

[FLP+11b] M. Norbert Fisch, Markus Look, Claas Pinkernell, Stefan Plesser, and
Bernhard Rumpe. State-based Modeling of Buildings and Facilities. In
Enhanced Building Operations Conference (ICEBO'11), 2011.

[FPPR12] M. Norbert Fisch, Claas Pinkernell, Stefan Plesser, and Bernhard Rumpe.
The Energy Navigator - A Web-Platform for Performance Design and
Management. In Energy E�ciency in Commercial Buildings Confer-
ence(IEECB'12), 2012.

[FPR01] Marcus Fontoura, Wolfgang Pree, and Bernhard Rumpe. The UML/F
Pro�le for Framework Architecture. Addison-Wesley, 2001.

[Fre21] FreeMarker website. http://freemarker.org/, 2021.

[GHJV94] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
patterns: elements of reusable object-oriented software. Addison-Wesley
Professional, 1994.

[GHK+07] Hans Grönniger, Jochen Hartmann, Holger Krahn, Stefan Kriebel,
and Bernhard Rumpe. View-based Modeling of Function Nets. In
Object-oriented Modelling of Embedded Real-Time Systems Workshop
(OMER4'07), 2007.

[GHK+08a] Hans Grönniger, Jochen Hartmann, Holger Krahn, Stefan Kriebel, Lutz
Rothhardt, and Bernhard Rumpe. Modelling Automotive Function Nets
with Views for Features, Variants, and Modes. In Proceedings of 4th Eu-
ropean Congress ERTS - Embedded Real Time Software, 2008.

[GHK+08b] Hans Grönniger, Jochen Hartmann, Holger Krahn, Stefan Kriebel, Lutz
Rothhardt, and Bernhard Rumpe. View-Centric Modeling of Automotive
Logical Architectures. In Tagungsband des Dagstuhl-Workshop MBEES:
Modellbasierte Entwicklung eingebetteter Systeme IV, Informatik Bericht
2008-02. TU Braunschweig, 2008.

446

References

[GHK+15a] Timo Greifenberg, Katrin Hölldobler, Carsten Kolassa, Markus Look,
Pedram Mir Seyed Nazari, Klaus Müller, Antonio Navarro Perez, Dim-
itri Plotnikov, Dirk Reiÿ, Alexander Roth, Bernhard Rumpe, Martin
Schindler, and Andreas Wortmann. Integration of Handwritten and Gen-
erated Object-Oriented Code. In Model-Driven Engineering and Software
Development, volume 580 of Communications in Computer and Informa-
tion Science, pages 112�132. Springer, 2015.

[GHK+15b] Timo Greifenberg, Katrin Hölldobler, Carsten Kolassa, Markus Look, Pe-
dram Mir Seyed Nazari, Klaus Müller, Antonio Navarro Perez, Dimitri
Plotnikov, Dirk Reiÿ, Alexander Roth, Bernhard Rumpe, Martin Schindler,
and Andreas Wortmann. A Comparison of Mechanisms for Integrating
Handwritten and Generated Code for Object-Oriented Programming Lan-
guages. In Model-Driven Engineering and Software Development Confer-
ence (MODELSWARD'15), pages 74�85. SciTePress, 2015.

[GHR17] Timo Greifenberg, Ste�en Hillemacher, and Bernhard Rumpe. Towards
a Sustainable Artifact Model: Artifacts in Generator-Based Model-Driven
Projects. Aachener Informatik-Berichte, Software Engineering, Band 30.
Shaker Verlag, December 2017.

[GJS05] James Gosling, Bill Joy, and Guy L. Steele. The Java Language Speci�ca-
tion. Addison-Wesley, 3rd edition edition, 2005.

[GKPR08] Hans Grönniger, Holger Krahn, Claas Pinkernell, and Bernhard Rumpe.
Modeling Variants of Automotive Systems using Views. In Modellbasierte
Entwicklung von eingebetteten Fahrzeugfunktionen, Informatik Bericht
2008-01, pages 76�89. TU Braunschweig, 2008.

[GKR96] Radu Grosu, Cornel Klein, and Bernhard Rumpe. Enhancing the SysLab
System Model with State. Technical Report TUM-I9631, TU Munich,
Germany, July 1996.

[GKR+06] Hans Grönniger, Holger Krahn, Bernhard Rumpe, Martin Schindler, and
Steven Völkel. MontiCore 1.0 - Ein Framework zur Erstellung und Ver-
arbeitung domänspezi�scher Sprachen. Informatik-Bericht 2006-04, CFG-
Fakultät, TU Braunschweig, August 2006.

[GKR+07] Hans Grönniger, Holger Krahn, Bernhard Rumpe, Martin Schindler, and
Steven Völkel. Textbased Modeling. In 4th International Workshop
on Software Language Engineering, Nashville, Informatik-Bericht 4/2007.
Johannes-Gutenberg-Universität Mainz, 2007.

[GKR+08] Hans Grönniger, Holger Krahn, Bernhard Rumpe, Martin Schindler, and
Steven Völkel. MontiCore: A Framework for the Development of Textual
Domain Speci�c Languages. In 30th International Conference on Software
Engineering (ICSE 2008), Leipzig, Germany, May 10-18, 2008, Compan-
ion Volume, pages 925�926, 2008.

[GKRS06] Hans Grönniger, Holger Krahn, Bernhard Rumpe, and Martin Schindler.
Integration von Modellen in einen codebasierten Softwareentwick-
lungsprozess. InModellierung 2006 Conference, LNI 82, pages 67�81, 2006.

447

References

[GLPR15] Timo Greifenberg, Markus Look, Claas Pinkernell, and Bernhard Rumpe.
Energiee�ziente Städte - Herausforderungen und Lösungen aus Sicht des
Software Engineerings. In Linnho�-Popien, Claudia and Zaddach, Michael
and Grahl, Andreas, editor, Marktplätze im Umbruch: Digitale Strategien
für Services im Mobilen Internet, Xpert.press, chapter 56, pages 511�520.
Springer Berlin Heidelberg, April 2015.

[GLRR15] Timo Greifenberg, Markus Look, Sebastian Roidl, and Bernhard Rumpe.
Engineering Tagging Languages for DSLs. In Conference on Model
Driven Engineering Languages and Systems (MODELS'15), pages 34�43.
ACM/IEEE, 2015.

[GMN+20] Arkadii Gerasimov, Judith Michael, Lukas Netz, Bernhard Rumpe, and
Simon Varga. Continuous Transition from Model-Driven Prototype to Full-
Size Real-World Enterprise Information Systems. In Bonnie Anderson,
Jason Thatcher, and Rayman Meservy, editors, 25th Americas Conference
on Information Systems (AMCIS 2020), AIS Electronic Library (AISeL),
pages 1�10. Association for Information Systems (AIS), August 2020.

[GMR+16] Timo Greifenberg, Klaus Müller, Alexander Roth, Bernhard Rumpe,
Christoph Schulze, and Andreas Wortmann. Modeling Variability in
Template-based Code Generators for Product Line Engineering. In Model-
lierung 2016 Conference, volume 254 of LNI, pages 141�156. Bonner Köllen
Verlag, March 2016.

[GR95] Radu Grosu and Bernhard Rumpe. Concurrent Timed Port Automata.
Technical Report TUM-I9533, TU Munich, Germany, October 1995.

[GR11] Hans Grönniger and Bernhard Rumpe. Modeling Language Variability. In
Workshop on Modeling, Development and Veri�cation of Adaptive Systems,
LNCS 6662, pages 17�32. Springer, 2011.

[Gra17] Graphviz. Graphviz - Graph Visualization Software, 2017. http://
www.graphviz.org/ [Online; accessed Jan-21].

[GRJA12] Tim Gülke, Bernhard Rumpe, Martin Jansen, and Joachim Axmann. High-
Level Requirements Management and Complexity Costs in Automotive De-
velopment Projects: A Problem Statement. In Requirements Engineering:
Foundation for Software Quality (REFSQ'12), 2012.

[Gro21] GraphMLWorking Group. The graphml �le format, 2021. http://graphml.
graphdrawing.org/ [Online; accessed Jan-2021].

[GRR10] Hans Grönniger, Dirk Reiÿ, and Bernhard Rumpe. Towards a Semantics
of Activity Diagrams with Semantic Variation Points. In Conference on
Model Driven Engineering Languages and Systems (MODELS'10), LNCS
6394, pages 331�345. Springer, 2010.

[Hab16] Arne Haber. MontiArc - Architectural Modeling and Simulation of Inter-
active Distributed Systems. Aachener Informatik-Berichte, Software Engi-
neering, Band 24. Shaker Verlag, September 2016.

448

References

[HHK+13] Arne Haber, Katrin Hölldobler, Carsten Kolassa, Markus Look, Klaus
Müller, Bernhard Rumpe, and Ina Schaefer. Engineering Delta Model-
ing Languages. In Software Product Line Conference (SPLC'13), pages
22�31. ACM, 2013.

[HHK+14] Martin Henze, Lars Hermerschmidt, Daniel Kerpen, Roger Häuÿling, Bern-
hard Rumpe, and Klaus Wehrle. User-driven Privacy Enforcement for
Cloud-based Services in the Internet of Things. In Conference on Future
Internet of Things and Cloud (FiCloud'14). IEEE, 2014.

[HHK+15a] Arne Haber, Katrin Hölldobler, Carsten Kolassa, Markus Look, Klaus
Müller, Bernhard Rumpe, Ina Schaefer, and Christoph Schulze. System-
atic Synthesis of Delta Modeling Languages. Journal on Software Tools for
Technology Transfer (STTT), 17(5):601�626, October 2015.

[HHK+15b] Martin Henze, Lars Hermerschmidt, Daniel Kerpen, Roger Häuÿling, Bern-
hard Rumpe, and Klaus Wehrle. A comprehensive approach to privacy in
the cloud-based Internet of Things. Future Generation Computer Systems,
56:701�718, 2015.

[HHRW15] Lars Hermerschmidt, Katrin Hölldobler, Bernhard Rumpe, and Andreas
Wortmann. Generating Domain-Speci�c Transformation Languages for
Component & Connector Architecture Descriptions. In Workshop on
Model-Driven Engineering for Component-Based Software Systems (Mod-
Comp'15), volume 1463 of CEUR Workshop Proceedings, pages 18�23,
2015.

[HKM+13] Arne Haber, Carsten Kolassa, Peter Manhart, Pedram Mir Seyed Nazari,
Bernhard Rumpe, and Ina Schaefer. First-Class Variability Modeling in
Matlab/Simulink. In Variability Modelling of Software-intensive Systems
Workshop (VaMoS'13), pages 11�18. ACM, 2013.

[HKR+07] Christoph Herrmann, Holger Krahn, Bernhard Rumpe, Martin Schindler,
and Steven Völkel. An Algebraic View on the Semantics of Model Com-
position. In Conference on Model Driven Architecture - Foundations and
Applications (ECMDA-FA'07), LNCS 4530, pages 99�113. Springer, Ger-
many, 2007.

[HKR+09] Christoph Herrmann, Holger Krahn, Bernhard Rumpe, Martin Schindler,
and Steven Völkel. Scaling-Up Model-Based-Development for Large Het-
erogeneous Systems with Compositional Modeling. In Conference on Soft-
ware Engineeering in Research and Practice (SERP'09), pages 172�176,
July 2009.

[HKR+11] Arne Haber, Thomas Kutz, Holger Rendel, Bernhard Rumpe, and Ina
Schaefer. Delta-oriented Architectural Variability Using MontiCore. In
Software Architecture Conference (ECSA'11), pages 6:1�6:10. ACM, 2011.

[HKR12] Christoph Herrmann, Thomas Kurpick, and Bernhard Rumpe. SSELab: A
Plug-In-Based Framework for Web-Based Project Portals. In Developing
Tools as Plug-Ins Workshop (TOPI'12), pages 61�66. IEEE, 2012.

449

References

[HLMSN+15a] Arne Haber, Markus Look, Pedram Mir Seyed Nazari, Antonio
Navarro Perez, Bernhard Rumpe, Steven Völkel, and Andreas Wortmann.
Composition of Heterogeneous Modeling Languages. In Model-Driven En-
gineering and Software Development, volume 580 of Communications in
Computer and Information Science, pages 45�66. Springer, 2015.

[HLMSN+15b] Arne Haber, Markus Look, Pedram Mir Seyed Nazari, Antonio
Navarro Perez, Bernhard Rumpe, Steven Völkel, and Andreas Wortmann.
Integration of Heterogeneous Modeling Languages via Extensible and Com-
posable Language Components. InModel-Driven Engineering and Software
Development Conference (MODELSWARD'15), pages 19�31. SciTePress,
2015.

[HMR+19] Katrin Hölldobler, Judith Michael, Jan Oliver Ringert, Bernhard Rumpe,
and Andreas Wortmann. Innovations in Model-based Software and Systems
Engineering. The Journal of Object Technology, 18(1):1�60, July 2019.

[HMSNR15] Katrin Hölldobler, Pedram Mir Seyed Nazari, and Bernhard Rumpe.
Adaptable Symbol Table Management by Meta Modeling and Generation
of Symbol Table Infrastructures. In Domain-Speci�c Modeling Workshop
(DSM'15), pages 23�30. ACM, 2015.

[HMSNRW16] Robert Heim, Pedram Mir Seyed Nazari, Bernhard Rumpe, and Andreas
Wortmann. Compositional Language Engineering using Generated, Exten-
sible, Static Type Safe Visitors. In Conference on Modelling Foundations
and Applications (ECMFA), LNCS 9764, pages 67�82. Springer, July 2016.

[HMU06] John E. Hopcroft, Rajeev Motwani, and Je�rey D. Ullman. Introduction to
Automata Theory, Languages, and Computation (3rd Edition). Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2006.

[Höl18] Katrin Hölldobler. MontiTrans: Agile, modellgetriebene Entwicklung von
und mit domänenspezi�schen, kompositionalen Transformationssprachen.
Aachener Informatik-Berichte, Software Engineering, Band 36. Shaker Ver-
lag, December 2018.

[HR04] David Harel and Bernhard Rumpe. Meaningful Modeling: What's the
Semantics of �Semantics�? IEEE Computer, 37(10):64�72, October 2004.

[HR17] Katrin Hölldobler and Bernhard Rumpe. MontiCore 5 Language Work-
bench Edition 2017. Aachener Informatik-Berichte, Software Engineering,
Band 32. Shaker Verlag, December 2017.

[HRR98] Franz Huber, Andreas Rausch, and Bernhard Rumpe. Modeling Dynamic
Component Interfaces. In Technology of Object-Oriented Languages and
Systems (TOOLS 26), pages 58�70. IEEE, 1998.

[HRR+11] Arne Haber, Holger Rendel, Bernhard Rumpe, Ina Schaefer, and Frank
van der Linden. Hierarchical Variability Modeling for Software Architec-
tures. In Software Product Lines Conference (SPLC'11), pages 150�159.
IEEE, 2011.

450

References

[HRR12] Arne Haber, Jan Oliver Ringert, and Bernhard Rumpe. MontiArc - Archi-
tectural Modeling of Interactive Distributed and Cyber-Physical Systems.
Technical Report AIB-2012-03, RWTH Aachen University, February 2012.

[HRRS11] Arne Haber, Holger Rendel, Bernhard Rumpe, and Ina Schaefer. Delta
Modeling for Software Architectures. In Tagungsband des Dagstuhl-
Workshop MBEES: Modellbasierte Entwicklung eingebetteterSysteme VII,
pages 1 � 10. fortiss GmbH, 2011.

[HRRS12] Arne Haber, Holger Rendel, Bernhard Rumpe, and Ina Schaefer. Evolving
Delta-oriented Software Product Line Architectures. In Large-Scale Com-
plex IT Systems. Development, Operation and Management, 17th Monterey
Workshop 2012, LNCS 7539, pages 183�208. Springer, 2012.

[HRRW12] Christian Hopp, Holger Rendel, Bernhard Rumpe, and Fabian Wolf. Ein-
führung eines Produktlinienansatzes in die automotive Softwareentwick-
lung am Beispiel von Steuergerätesoftware. In Software Engineering Con-
ference (SE'12), LNI 198, pages 181�192, 2012.

[HRW15] Katrin Hölldobler, Bernhard Rumpe, and Ingo Weisemöller. Systematically
Deriving Domain-Speci�c Transformation Languages. In Conference on
Model Driven Engineering Languages and Systems (MODELS'15), pages
136�145. ACM/IEEE, 2015.

[HRW18] Katrin Hölldobler, Bernhard Rumpe, and Andreas Wortmann. Software
Language Engineering in the Large: Towards Composing and Deriving
Languages. Computer Languages, Systems & Structures, 54:386�405, 2018.

[JvdAB+21] Matthias Jarke, Wil van der Aalst, Christian Brecher, Matthias Brock-
mann, István Koren, Gerhard Lakemeyer, Bernhard Rumpe, Günther
Schuh, Klaus Wehrle, and Martina Zie�e. Mit "Digitalen Schatten" Daten
verdichten und darstellen, pages 18�23. image Druck + MEDIEN GmbH,
Aachen, February 2021.

[JWCR18] Rodi Jolak, Andreas Wortmann, Michel Chaudron, and Bernhard Rumpe.
Does Distance Still Matter? Revisiting Collaborative Distributed Software
Design. IEEE Software, 35(6):40�47, 2018.

[KER99] Stuart Kent, Andy Evans, and Bernhard Rumpe. UML Semantics FAQ.
In A. Moreira and S. Demeyer, editors, Object-Oriented Technology,
ECOOP'99 Workshop Reader, LNCS 1743, Berlin, 1999. Springer Verlag.

[KKP+09] Gabor Karsai, Holger Krahn, Claas Pinkernell, Bernhard Rumpe, Mar-
tin Schindler, and Steven Völkel. Design Guidelines for Domain Speci�c
Languages. In Domain-Speci�c Modeling Workshop (DSM'09), Techreport
B-108, pages 7�13. Helsinki School of Economics, October 2009.

[KKR19] Nils Kaminski, Evgeny Kusmenko, and Bernhard Rumpe. Modeling Dy-
namic Architectures of Self-Adaptive Cooperative Systems. The Journal of
Object Technology, 18(2):1�20, July 2019. The 15th European Conference
on Modelling Foundations and Applications.

451

References

[KKRZ19] Jörg Christian Kirchhof, Evgeny Kusmenko, Bernhard Rumpe, and Heng-
wen Zhang. Simulation as a Service for Cooperative Vehicles. In Loli Bur-
gueño, Alexander Pretschner, Sebastian Voss, Michel Chaudron, Jörg Kien-
zle, Markus Völter, Sébastien Gérard, Mansooreh Zahedi, Erwan Bousse,
Arend Rensink, Fiona Polack, Gregor Engels, and Gerti Kappel, edi-
tors, Proceedings of MODELS 2019. Workshop MASE, pages 28�37. IEEE,
September 2019.

[KLK+15] Dierk Konig, Guillaume Laforge, Paul King, Jon Skeet, and Hamlet D'Arcy.
Groovy in Action, 2nd Edition. Manning Publications, 2015.

[KLM+97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina
Lopes, Jean marc Loingtier, and John Irwin. Aspect-Oriented Pro-
gramming. In European Conference on Object-Oriented Programming,
ECOOP'97. Springer Verlag, 1997.

[KLPR12] Thomas Kurpick, Markus Look, Claas Pinkernell, and Bernhard Rumpe.
Modeling Cyber-Physical Systems: Model-Driven Speci�cation of En-
ergy E�cient Buildings. In Modelling of the Physical World Workshop
(MOTPW'12), pages 2:1�2:6. ACM, October 2012.

[KMR+20] Jörg Christian Kirchhof, Judith Michael, Bernhard Rumpe, Simon Varga,
and Andreas Wortmann. Model-driven Digital Twin Construction: Synthe-
sizing the Integration of Cyber-Physical Systems with Their Information
Systems. In Proceedings of the 23rd ACM/IEEE International Conference
on Model Driven Engineering Languages and Systems, pages 90�101. ACM,
October 2020.

[KMS+18] Stefan Kriebel, Matthias Markthaler, Karin Samira Salman, Timo Greifen-
berg, Ste�en Hillemacher, Bernhard Rumpe, Christoph Schulze, Andreas
Wortmann, Philipp Orth, and Johannes Richenhagen. Improving Model-
based Testing in Automotive Software Engineering. In International
Conference on Software Engineering: Software Engineering in Practice
(ICSE'18), pages 172�180. ACM, June 2018.

[KNP+19] Evgeny Kusmenko, Sebastian Nickels, Svetlana Pavlitskaya, Bernhard
Rumpe, and Thomas Timmermanns. Modeling and Training of Neural Pro-
cessing Systems. In Marouane Kessentini, Tao Yue, Alexander Pretschner,
Sebastian Voss, and Loli Burgueño, editors, Conference on Model Driven
Engineering Languages and Systems (MODELS'19), pages 283�293. IEEE,
September 2019.

[KPR97] Cornel Klein, Christian Prehofer, and Bernhard Rumpe. Feature Spec-
i�cation and Re�nement with State Transition Diagrams. In Workshop
on Feature Interactions in Telecommunications Networks and Distributed
Systems, pages 284�297. IOS-Press, 1997.

[KPR12] Thomas Kurpick, Claas Pinkernell, and Bernhard Rumpe. Der Energie
Navigator. In H. Lichter and B. Rumpe, editors, Entwicklung und Evolu-
tion von Forschungssoftware. Tagungsband, Rolduc, 10.-11.11.2011, Aach-

452

References

ener Informatik-Berichte, Software Engineering, Band 14. Shaker Verlag,
Aachen, Deutschland, 2012.

[KPRS19] Evgeny Kusmenko, Svetlana Pavlitskaya, Bernhard Rumpe, and Sebastian
Stüber. On the Engineering of AI-Powered Systems. In Lisa O'Conner, ed-
itor, ASE'19. Software Engineering Intelligence Workshop (SEI'19), pages
126�133. IEEE, November 2019.

[KR18] Oliver Kautz and Bernhard Rumpe. On Computing Instructions to Re-
pair Failed Model Re�nements. In Conference on Model Driven Engineer-
ing Languages and Systems (MODELS'18), pages 289�299. ACM, October
2018.

[Kra10] Holger Krahn. MontiCore: Agile Entwicklung von domänenspezi�schen
Sprachen im Software-Engineering. Aachener Informatik-Berichte, Soft-
ware Engineering, Band 1. Shaker Verlag, März 2010.

[KRB96] Cornel Klein, Bernhard Rumpe, and Manfred Broy. A stream-based math-
ematical model for distributed information processing systems - SysLab
system model. In Workshop on Formal Methods for Open Object-based
Distributed Systems, IFIP Advances in Information and Communication
Technology, pages 323�338. Chapmann & Hall, 1996.

[KRR14] Helmut Krcmar, Ralf Reussner, and Bernhard Rumpe. Trusted Cloud Com-
puting. Springer, Schweiz, December 2014.

[KRRS19] Stefan Kriebel, Deni Raco, Bernhard Rumpe, and Sebastian Stüber.
Model-Based Engineering for Avionics: Will Speci�cation and Formal Ver-
i�cation e.g. Based on Broy's Streams Become Feasible? In Stephan Kr-
usche, Kurt Schneider, Marco Kuhrmann, Robert Heinrich, Reiner Jung,
Marco Konersmann, Eric Schmieders, Ste�en Helke, Ina Schaefer, Andreas
Vogelsang, Björn Annighöfer, Andreas Schweiger, Marina Reich, and André
van Hoorn, editors, Proceedings of the Workshops of the Software Engineer-
ing Conference. Workshop on Avionics Systems and Software Engineering
(AvioSE'19), volume 2308 of CEUR Workshop Proceedings, pages 87�94.
CEUR Workshop Proceedings, February 2019.

[KRRvW17] Evgeny Kusmenko, Alexander Roth, Bernhard Rumpe, and Michael von
Wenckstern. Modeling Architectures of Cyber-Physical Systems. In Euro-
pean Conference on Modelling Foundations and Applications (ECMFA'17),
LNCS 10376, pages 34�50. Springer, July 2017.

[KRS12] Stefan Kowalewski, Bernhard Rumpe, and Andre Stollenwerk. Cyber-
Physical Systems - eine Herausforderung für die Automatisierungstechnik?
In Proceedings of Automation 2012, VDI Berichte 2012, pages 113�116.
VDI Verlag, 2012.

[KRV06] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Roles in Software De-
velopment using Domain Speci�c Modelling Languages. In Domain-Speci�c
Modeling Workshop (DSM'06), Technical Report TR-37, pages 150�158.
Jyväskylä University, Finland, 2006.

453

References

[KRV07a] Holger Krahn, Bernhard Rumpe, and Steven Völkel. E�cient Editor Gen-
eration for Compositional DSLs in Eclipse. In Domain-Speci�c Modeling
Workshop (DSM'07), Technical Reports TR-38. Jyväskylä University, Fin-
land, 2007.

[KRV07b] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Integrated De�nition
of Abstract and Concrete Syntax for Textual Languages. In Conference on
Model Driven Engineering Languages and Systems (MODELS'07), LNCS
4735, pages 286�300. Springer, 2007.

[KRV08] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Monticore: Modular
Development of Textual Domain Speci�c Languages. In Conference on
Objects, Models, Components, Patterns (TOOLS-Europe'08), LNBIP 11,
pages 297�315. Springer, 2008.

[KRV10] Holger Krahn, Bernhard Rumpe, and Stefen Völkel. MontiCore: a Frame-
work for Compositional Development of Domain Speci�c Languages. In-
ternational Journal on Software Tools for Technology Transfer (STTT),
12(5):353�372, September 2010.

[KRV14] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Roles in Software
Development using Domain Speci�c Modeling Languages. In Proceedings
of the 6th OOPSLA Workshop on Domain-Speci�c Modeling (DSM` 06),
volume abs/1409.6618. CoRR arXiv, 2014.

[KRW20] Oliver Kautz, Bernhard Rumpe, and Andreas Wortmann. Automated
semantics-preserving parallel decomposition of �nite component and con-
nector architectures. Automated Software Engineering, 27:119�151, April
2020.

[LMK+11] Philipp Leusmann, Christian Möllering, Lars Klack, Kai Kasugai, Bern-
hard Rumpe, and Martina Zie�e. Your Floor Knows Where You Are:
Sensing and Acquisition of Movement Data. In Arkady Zaslavsky, Panos K.
Chrysanthis, Dik Lun Lee, Dipanjan Chakraborty, Vana Kalogeraki, Mo-
hamed F. Mokbel, and Chi-Yin Chow, editors, 12th IEEE International
Conference on Mobile Data Management (Volume 2), pages 61�66. IEEE,
June 2011.

[Loo17] Markus Look. Modellgetriebene, agile Entwicklung und Evolution
mehrbenutzerfähiger Enterprise Applikationen mit MontiEE. Aachener
Informatik-Berichte, Software Engineering, Band 27. Shaker Verlag, March
2017.

[LRSS10] Tihamer Levendovszky, Bernhard Rumpe, Bernhard Schätz, and Jonathan
Sprinkle. Model Evolution and Management. In Model-Based Engineering
of Embedded Real-Time Systems Workshop (MBEERTS'10), LNCS 6100,
pages 241�270. Springer, 2010.

[MKB+19] Felix Mannhardt, Agnes Koschmider, Nathalie Baracaldo, Matthias Wei-
dlich, and Judith Michael. Privacy-Preserving Process Mining: Di�eren-
tial Privacy for Event Logs. Business & Information Systems Engineering,
61(5):1�20, October 2019.

454

References

[MKM+19] Judith Michael, Agnes Koschmider, Felix Mannhardt, Nathalie Baracaldo,
and Bernhard Rumpe. User-Centered and Privacy-Driven Process Mining
System Design for IoT. In Cinzia Cappiello and Marcela Ruiz, editors,
Proceedings of CAiSE Forum 2019: Information Systems Engineering in
Responsible Information Systems, pages 194�206. Springer, June 2019.

[MM13] Judith Michael and Heinrich C. Mayr. Conceptual modeling for ambient
assistance. In Conceptual Modeling - ER 2013, volume 8217 of LNCS, pages
403�413. Springer, 2013.

[MM15] Judith Michael and Heinrich C. Mayr. Creating a domain speci�c modelling
method for ambient assistance. In International Conference on Advances
in ICT for Emerging Regions (ICTer2015), pages 119�124. IEEE, 2015.

[MMR10] Tom Mens, Je� Magee, and Bernhard Rumpe. Evolving Software Architec-
ture Descriptions of Critical Systems. IEEE Computer, 43(5):42�48, May
2010.

[MMR+17] Heinrich C. Mayr, Judith Michael, Suneth Ranasinghe, Vladimir A.
Shekhovtsov, and Claudia Steinberger. Model Centered Architecture, pages
85�104. Springer International Publishing, 2017.

[MNRV19] Judith Michael, Lukas Netz, Bernhard Rumpe, and Simon Varga. To-
wards Privacy-Preserving IoT Systems Using Model Driven Engineering.
In Nicolas Ferry, Antonio Cicchetti, Federico Ciccozzi, Arnor Solberg,
Manuel Wimmer, and Andreas Wortmann, editors, Proceedings of MOD-
ELS 2019. Workshop MDE4IoT, pages 595�614. CEUR Workshop Pro-
ceedings, September 2019.

[MRR10] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. A Manifesto for
Semantic Model Di�erencing. In Proceedings Int. Workshop on Models and
Evolution (ME'10), LNCS 6627, pages 194�203. Springer, 2010.

[MRR11a] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. ADDi�: Seman-
tic Di�erencing for Activity Diagrams. In Conference on Foundations of
Software Engineering (ESEC/FSE '11), pages 179�189. ACM, 2011.

[MRR11b] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. An Operational
Semantics for Activity Diagrams using SMV. Technical Report AIB-2011-
07, RWTH Aachen University, Aachen, Germany, July 2011.

[MRR11c] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. CD2Alloy: Class
Diagrams Analysis Using Alloy Revisited. In Conference on Model Driven
Engineering Languages and Systems (MODELS'11), LNCS 6981, pages
592�607. Springer, 2011.

[MRR11d] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. CDDi�: Semantic
Di�erencing for Class Diagrams. In Mira Mezini, editor, ECOOP 2011 -
Object-Oriented Programming, pages 230�254. Springer Berlin Heidelberg,
2011.

455

References

[MRR11e] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. Modal Object Di-
agrams. In Object-Oriented Programming Conference (ECOOP'11), LNCS
6813, pages 281�305. Springer, 2011.

[MRR11f] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. Semantically
Con�gurable Consistency Analysis for Class and Object Diagrams. In
Conference on Model Driven Engineering Languages and Systems (MOD-
ELS'11), LNCS 6981, pages 153�167. Springer, 2011.

[MRR11g] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. Summarizing
Semantic Model Di�erences. In Bernhard Schätz, Dirk Deridder, Alfonso
Pierantonio, Jonathan Sprinkle, and Dalila Tamzalit, editors, ME 2011 -
Models and Evolution, October 2011.

[MRR13] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. Synthesis of
Component and Connector Models from Crosscutting Structural Views.
In Meyer, B. and Baresi, L. and Mezini, M., editor, Joint Meeting of the
European Software Engineering Conference and the ACM SIGSOFT Sym-
posium on the Foundations of Software Engineering (ESEC/FSE'13), pages
444�454. ACM New York, 2013.

[MRR14a] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. Synthesis of
Component and Connector Models from Crosscutting Structural Views
(extended abstract). In Wilhelm Hasselbring and Nils Christian Ehmke,
editors, Software Engineering 2014, volume 227 of LNI, pages 63�64.
Gesellschaft für Informatik, Köllen Druck+Verlag GmbH, 2014.

[MRR14b] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. Verifying Com-
ponent and Connector Models against Crosscutting Structural Views. In
Software Engineering Conference (ICSE'14), pages 95�105. ACM, 2014.

[MRRW16] Shahar Maoz, Jan Oliver Ringert, Bernhard Rumpe, and Michael von
Wenckstern. Consistent Extra-Functional Properties Tagging for Compo-
nent and Connector Models. In Workshop on Model-Driven Engineering
for Component-Based Software Systems (ModComp'16), volume 1723 of
CEUR Workshop Proceedings, pages 19�24, October 2016.

[MRV20] Judith Michael, Bernhard Rumpe, and Simon Varga. Human behavior,
goals and model-driven software engineering for assistive systems. In Agnes
Koschmider, Judith Michael, and Bernhard Thalheim, editors, Enterprise
Modeling and Information Systems Architectures (EMSIA 2020), volume
2628, pages 11�18. CEUR Workshop Proceedings, June 2020.

[MS17] Judith Michael and Claudia Steinberger. Context modeling for active assis-
tance. In Cristina Cabanillas, Sergio España, and Siamak Farshidi, editors,
Proc. of the ER Forum 2017 and the ER 2017 Demo Track co-located with
the 36th Int. Conference on Conceptual Modelling (ER 2017), pages 221�
234, 2017.

[MSN17] Pedram Mir Seyed Nazari. MontiCore: E�cient Development of Composed
Modeling Language Essentials. Aachener Informatik-Berichte, Software En-
gineering, Band 29. Shaker Verlag, June 2017.

456

References

[MSNRR15] Pedram Mir Seyed Nazari, Alexander Roth, and Bernhard Rumpe. Man-
agement of Guided and Unguided Code Generator Customizations by Us-
ing a Symbol Table. In Domain-Speci�c Modeling Workshop (DSM'15),
pages 37�42. ACM, 2015.

[MSNRR16] Pedram Mir Seyed Nazari, Alexander Roth, and Bernhard Rumpe. An Ex-
tended Symbol Table Infrastructure to Manage the Composition of Output-
Speci�c Generator Information. In Modellierung 2016 Conference, volume
254 of LNI, pages 133�140. Bonner Köllen Verlag, March 2016.

[NPR13] Antonio Navarro Pérez and Bernhard Rumpe. Modeling Cloud Architec-
tures as Interactive Systems. InModel-Driven Engineering for High Perfor-
mance and Cloud Computing Workshop, volume 1118 of CEUR Workshop
Proceedings, pages 15�24, 2013.

[Oli07] Bruno C. d. S Oliveira. Genericity, extensibility and type-safety in the
Visitor pattern. Oxford University, 2007.

[Par13] Terence Parr. The de�nitive ANTLR 4 reference. The pragmatic program-
mers. O'Reilly Vlg. Gmbh & Co., 2013.

[PBI+16] Dimitri Plotnikov, Inga Blundell, Tammo Ippen, Jochen Martin Eppler,
Abigail Morrison, and Bernhard Rumpe. NESTML: a modeling language
for spiking neurons. In Modellierung 2016 Conference, volume 254 of LNI,
pages 93�108. Bonner Köllen Verlag, March 2016.

[PFR02] Wolfgang Pree, Marcus Fontoura, and Bernhard Rumpe. Product Line An-
notations with UML-F. In Software Product Lines Conference (SPLC'02),
LNCS 2379, pages 188�197. Springer, 2002.

[Pin14] Claas Pinkernell. Energie Navigator: Software-gestützte Optimierung
der Energiee�zienz von Gebäuden und technischen Anlagen. Aachener
Informatik-Berichte, Software Engineering, Band 17. Shaker Verlag, 2014.

[PR94] Barbara Paech and Bernhard Rumpe. A new Concept of Re�nement used
for Behaviour Modelling with Automata. In Proceedings of the Industrial
Bene�t of Formal Methods (FME'94), LNCS 873, pages 154�174. Springer,
1994.

[PR99] Jan Philipps and Bernhard Rumpe. Re�nement of Pipe-and-Filter Archi-
tectures. In Congress on Formal Methods in the Development of Computing
System (FM'99), LNCS 1708, pages 96�115. Springer, 1999.

[PR01] Jan Philipps and Bernhard Rumpe. Roots of Refactoring. In Kilov, H. and
Baclavski, K., editor, Tenth OOPSLA Workshop on Behavioral Semantics.
Tampa Bay, Florida, USA, October 15. Northeastern University, 2001.

[PR03] Jan Philipps and Bernhard Rumpe. Refactoring of Programs and Spec-
i�cations. In Kilov, H. and Baclavski, K., editor, Practical Foundations
of Business and System Speci�cations, pages 281�297. Kluwer Academic
Publishers, 2003.

457

References

[Pre95] W. Pree. Design Patterns for Object-Oriented Software Development.
Addison-Wesley, 1995.

[QOS21a] QOS.ch. Logback project, 2021. http://logback.qos.ch/ [Online; accessed
Jan-2021].

[QOS21b] QOS.ch. Simple logging facade for java, slf4j, 2021. http://www.slf4j.org/
[Online; accessed Jan-2021].

[Rei16] Dirk Reiÿ. Modellgetriebene generative Entwicklung von Web-
Informationssystemen. Aachener Informatik-Berichte, Software Engineer-
ing, Band 22. Shaker Verlag, May 2016.

[Rin14] Jan Oliver Ringert. Analysis and Synthesis of Interactive Component and
Connector Systems. Aachener Informatik-Berichte, Software Engineering,
Band 19. Shaker Verlag, 2014.

[RK96] Bernhard Rumpe and Cornel Klein. Automata Describing Object Behavior.
In B. Harvey and H. Kilov, editors, Object-Oriented Behavioral Speci�ca-
tions, pages 265�286. Kluwer Academic Publishers, 1996.

[RKB95] Bernhard Rumpe, Cornel Klein, and Manfred Broy. Ein strombasiertes
mathematisches Modell verteilter informationsverarbeitender Systeme -
Syslab-Systemmodell. Technischer Bericht TUM-I9510, TU München,
Deutschland, März 1995.

[Rot17] Alexander Roth. Adaptable Code Generation of Consistent and Customiz-
able Data Centric Applications with MontiDex. Aachener Informatik-
Berichte, Software Engineering, Band 31. Shaker Verlag, December 2017.

[RR11] Jan Oliver Ringert and Bernhard Rumpe. A Little Synopsis on Streams,
Stream Processing Functions, and State-Based Stream Processing. Inter-
national Journal of Software and Informatics, 2011.

[RRRW15] Jan Oliver Ringert, Alexander Roth, Bernhard Rumpe, and Andreas Wort-
mann. Language and Code Generator Composition for Model-Driven Engi-
neering of Robotics Component & Connector Systems. Journal of Software
Engineering for Robotics (JOSER), 6(1):33�57, 2015.

[RRSW17] Jan Oliver Ringert, Bernhard Rumpe, Christoph Schulze, and Andreas
Wortmann. Teaching Agile Model-Driven Engineering for Cyber-Physical
Systems. In International Conference on Software Engineering: Software
Engineering and Education Track (ICSE'17), pages 127�136. IEEE, May
2017.

[RRW13a] Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wortmann. From Soft-
ware Architecture Structure and Behavior Modeling to Implementations of
Cyber-Physical Systems. In Software Engineering Workshopband (SE'13),
volume 215 of LNI, pages 155�170, 2013.

[RRW13b] Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wortmann. MontiAr-
cAutomaton: Modeling Architecture and Behavior of Robotic Systems. In

458

References

Conference on Robotics and Automation (ICRA'13), pages 10�12. IEEE,
2013.

[RRW14] Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wortmann. Architec-
ture and Behavior Modeling of Cyber-Physical Systems with MontiArcAu-
tomaton. Aachener Informatik-Berichte, Software Engineering, Band 20.
Shaker Verlag, December 2014.

[RRW15] Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wortmann. Transform-
ing Platform-Independent to Platform-Speci�c Component and Connector
Software Architecture Models. In Workshop on Model-Driven Engineer-
ing for Component-Based Software Systems (ModComp'15), volume 1463
of CEUR Workshop Proceedings, pages 30�35, 2015.

[RSW+15] Bernhard Rumpe, Christoph Schulze, Michael von Wenckstern, Jan Oliver
Ringert, and Peter Manhart. Behavioral Compatibility of Simulink Models
for Product Line Maintenance and Evolution. In Software Product Line
Conference (SPLC'15), pages 141�150. ACM, 2015.

[Rum96] Bernhard Rumpe. Formale Methodik des Entwurfs verteilter objektorien-
tierter Systeme. Herbert Utz Verlag Wissenschaft, München, Deutschland,
1996.

[Rum02] Bernhard Rumpe. Executable Modeling with UML - A Vision or a Night-
mare? In T. Clark and J. Warmer, editors, Issues & Trends of Informa-
tion Technology Management in Contemporary Associations, Seattle, pages
697�701. Idea Group Publishing, London, 2002.

[Rum03] Bernhard Rumpe. Model-Based Testing of Object-Oriented Systems. In
Symposium on Formal Methods for Components and Objects (FMCO'02),
LNCS 2852, pages 380�402. Springer, November 2003.

[Rum04] Bernhard Rumpe. Agile Modeling with the UML. In Workshop on Radi-
cal Innovations of Software and Systems Engineering in the Future (RIS-
SEF'02), LNCS 2941, pages 297�309. Springer, October 2004.

[Rum11] Bernhard Rumpe. Modellierung mit UML, 2te Au�age. Springer Berlin,
September 2011.

[Rum12] Bernhard Rumpe. Agile Modellierung mit UML: Codegenerierung, Test-
fälle, Refactoring, 2te Au�age. Springer Berlin, Juni 2012.

[Rum13] Bernhard Rumpe. Towards Model and Language Composition. In Benoit
Combemale, Walter Cazzola, and Robert Bertrand France, editors, Pro-
ceedings of the First Workshop on the Globalization of Domain Speci�c
Languages, pages 4�7. ACM, 2013.

[Rum16] Bernhard Rumpe. Modeling with UML: Language, Concepts, Methods.
Springer International, July 2016.

[Rum17] Bernhard Rumpe. Agile Modeling with UML: Code Generation, Testing,
Refactoring. Springer International, May 2017.

459

References

[RW18] Bernhard Rumpe and Andreas Wortmann. Abstraction and Re�nement
in Hierarchically Decomposable and Underspeci�ed CPS-Architectures. In
Lohstroh, Marten and Derler, Patricia Sirjani, Marjan, editor, Principles
of Modeling: Essays Dedicated to Edward A. Lee on the Occasion of His
60th Birthday, LNCS 10760, pages 383�406. Springer, 2018.

[SB01] Ken Schwaber and Mike Beedle. Agile Software Development with Scrum.
Prentice Hall PTR, Upper Saddle River, NJ, USA, 1st edition, 2001.

[SBPM08] Dave Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks.
EMF: Eclipse Modeling Framework, 2nd Edition. Addison-Wesley Pro-
fessional, 2008.

[Sch12] Martin Schindler. Eine Werkzeuginfrastruktur zur agilen Entwicklung mit
der UML/P. Aachener Informatik-Berichte, Software Engineering, Band
11. Shaker Verlag, 2012.

[SHH+20] Günther Schuh, Constantin Häfner, Christian Hopmann, Bernhard Rumpe,
Matthias Brockmann, Andreas Wortmann, Judith Maibaum, Manuela Dal-
ibor, Pascal Bibow, Patrick Sapel, and Moritz Kröger. E�zientere Produk-
tion mit Digitalen Schatten. ZWF Zeitschrift für wirtschaftlichen Fabrik-
betrieb, 115(special):105�107, April 2020.

[SM18] Claudia Steinberger and Judith Michael. Towards Cognitive Assisted Liv-
ing 3.0 (Extended Abstract): Integration of non-smart resources into cog-
nitive assistance systems. EMISA Forum, 38(1):35�36, Nov 2018.

[SM20] Claudia Steinberger and Judith Michael. Using Semantic Markup to Boost
Context Awareness for Assistive Systems, pages 227�246. Computer Com-
munications and Networks. Springer International Publishing, 2020.

[SRVK10] Jonathan Sprinkle, Bernhard Rumpe, Hans Vangheluwe, and Gabor
Karsai. Metamodelling: State of the Art and Research Challenges.
In Model-Based Engineering of Embedded Real-Time Systems Workshop
(MBEERTS'10), LNCS 6100, pages 57�76. Springer, 2010.

[THR+13] Ulrike Thomas, Gerd Hirzinger, Bernhard Rumpe, Christoph Schulze, and
Andreas Wortmann. A New Skill Based Robot Programming Language
Using UML/P Statecharts. In Conference on Robotics and Automation
(ICRA'13), pages 461�466. IEEE, 2013.

[Vli98] John Vlissides. Pattern Hatching: Design Patterns Applied. Addison-
Wesley Professional, 1998.

[Völ11] Steven Völkel. Kompositionale Entwicklung domänenspezi�scher Sprachen.
Aachener Informatik-Berichte, Software Engineering, Band 9. Shaker Ver-
lag, 2011.

[Wei12] Ingo Weisemöller. Generierung domänenspezi�scher Transformation-
ssprachen. Aachener Informatik-Berichte, Software Engineering, Band 12.
Shaker Verlag, 2012.

460

References

[Wor16] Andreas Wortmann. An Extensible Component & Connector Archi-
tecture Description Infrastructure for Multi-Platform Modeling. Aach-
ener Informatik-Berichte, Software Engineering, Band 25. Shaker Verlag,
November 2016.

[yWo21] yWorks. yEd Graph Editor, 2021. http://www.yworks.com/en/products/
y�les/yed/ [Online; accessed Jan-21].

[ZPK+11] Massimiliano Zanin, David Perez, Dimitrios S Kolovos, Richard F Paige,
Kumardev Chatterjee, Andreas Horst, and Bernhard Rumpe. On Demand
Data Analysis and Filtering for Inaccurate Flight Trajectories. In Proceed-
ings of the SESAR Innovation Days. EUROCONTROL, 2011.

461

Index

${...}, 237

_ast, 13, 14

_auxiliary, 13

_channel, 42

_cocos, 13, 20

_od, 13

_parser, 13, 16

_symboltable, 13, 16

_visitor, 13, 19

actual type check, 365

-modelPath, 190
-cl, 293
-customLog, 293
-dev, 293
-d, 293
-handcodedPath, 251
-hcp, 280, 281
-mp, 120, 190
-out, 280
-script, 318, 319
-s, 318, 319
-templatePath, 251
.now, 240
01_Summary.txt, 297
02_GeneratedFiles.txt, 297
03_HandwrittenCodeFiles.txt, 297
04_Templates.txt, 297
05_HookPoint.txt, 297
06_Instantiations.txt, 297
07_Variables.txt, 297
08_Detailed.txt, 298
09_TemplateTree.txt, 298
10_NodeTree.txt, 298
11_NodeTreeDecorated.txt, 298
12_TypesOfNodes.txt, 298
14_Transformations.txt, 298
15_ArtifactGml.gml, 299
16_ArtifactGv.gv, 299

18_InvolvedFiles.txt, 298, 300
</#directive>, 240
<#-- ... --#>, 238
<#assign name=value>, 241
<#case ...>, 241
<#compress>, 242
<#default>, 241
<#directive parameters>, 240
<#else>, 241, 242
<#elsif ...>, 241
<#if ...>, 238, 241
<#items ...>, 242
<#list ...>, 241, 242
<#switch ...>, 241
<rightassoc>, 54
>>>, 349
>>, 349
?date, 239
ASTAutomata3Node, 87
ASTAutomatonBuilder, 92
ASTCNode, 80, 86, 87, 94
ASTConstantsGr, 84
ASTNodeBuilder, 92

PostComments, 92
PreComments, 92
SourcePositionEnd, 92
SourcePositionStart, 92
build, 92
deepClone, 92
deepEqualsWithComments, 92
deepEquals, 92
equalAttributes, 92
equalsWithComments, 92

ASTNode, 85, 86, 163
PostComments, 85
PreComments, 85
SourcePositionEnd, 85
SourcePositionStart, 85

Index

deepClone, 85
deepEqualsWithComments, 85
deepEquals, 85
equalAttributes, 85
equalsWithComments, 85

ASTStateBuilder, 92�94
ASTStateTOP, 96, 282
ASTState, 86�88, 90, 96, 176
ASTTransitionBuilder, 92
Aliases, 253
AnnotationArguments, 386
AnnotationPairArguments, 386
Annotation, 387
ArrayDimensionByInitializer, 387
ArrayDimensionSpecifier, 387
ArrayInit, 387
ArtifactScope, 170
AssertStatement, 377
AssignmentExpressions, 349, 381
AttributeSymbol, 160
AutElement, 145
Automata15, 147
Automata16, 147
Automata1, 120
Automata3PrettyPrinter, 152
Automata3Tool, 153
Automata3, 149, 150
Automata5, 145
Automata6PrettyPrinter, 146
Automata6, 145
AutomataASTAutomatonCoCo, 212
AutomataASTStateCoCo, 212
AutomataASTTransitionCoCo, 212
AutomataArtifactScope, 167, 172, 173
AutomataCoCoChecker, 213
AutomataDeSer, 188
AutomataGlobalScope, 168, 172�174
AutomataMillTOP, 98
AutomataMill, 92, 98
AutomataParser, 36, 106
AutomataScopesGenitor, 179, 180
AutomataScope, 172, 173, 176
AutomataSymbols2Json, 187, 188
AutomataTool.jar, 309
AutomataTraverser, 214
Automata, 87, 161, 167, 213

AutomatonElement, 79
AutomatonSymbolDeSerTOP, 193
AutomatonSymbolDeSer, 193
Automaton, 391
BasicAccessModifier, 163
BasicLongLiteral, 343
BasicSymbols, 352�354, 382
BitExpressions, 349
BlockScope, 160
BooleanLiteral, 342
BreakStatement, 378
CARDINALITY, 43
CD4A, 3
CD4Code, 246
CD, 3
CallExpression, 348
Cardinality, 336
CharLiteral, 329, 342
CharToken, 329
Char, 342
CheckScannerlessTest, 404
ClassBodyDeclaration, 383, 384
ClassExpression, 350
ClassScope, 160
ClassSymbol, 160
Cloneable, 86
CodeHookPoint, 267, 268
ColoredGraph, 405
CommonExpressions, 348
Completeness, 337
ConstDeclaration, 385
ConstructorDeclaration, 385
ContinueStatement, 378
Counter, 161
DeSer, 183�185, 206
DecimalToken, 332
Decimal, 332
DeclaratorId, 384
Deprecated, 58
DeriveFromMyLang, 367
DeriveSymTypeOf, 366
DiagramSymbol, 352, 353
Diagram, 353, 382
Digits, 345
Digit, 345
DoWhileStatement, 375

464

Index

DoubleLiteral, 345
EObjectContainmentEList, 90
ElementValueArrayInitializer, 386
ElementValueOrExpr, 386
ElementValuePair, 386
ElementValue, 386
EmptyStatement, 374
EscapeSequence, 342
ExpressionStatement, 374
ExpressionSublangPP, 149
ExpressionsBasis, 347, 381
Expression, 123, 125, 365
ExtReturnType, 350
ExtTypeArgument, 350
ExtTypeParameters, 383
ExtType, 350
Ext, 118
Feature Diagram, 417
FieldAccessExpression, 348
FieldSymbol, 354
Field, 354, 382
FileReaderWriter, 257
FloatLiteral, 345
ForStatement, 375
FormalParameterListing, 384
FreeMarkerTemplateEngine, 251
FunctionSymbol, 353, 354
Function, 353, 382
GenerateAutomataParser, 103
GeneratorEngine, 247�249, 258
GeneratorSetup, 247, 249, 250, 254
GlobalExtensionManagement, 252,

260, 270, 272, 324
GlobalExtensionMangement, 251
Grammar_WithConcepts.mc4, 106
Grammar_WithConceptsParser, 106
HAutomata, 397
HIDDEN, 402
Hash, 239
HexDigit, 345
HexInteger, 334
HexadecimalToken, 333
Hexadecimal, 333
HierarchicalAutomata, 120
HookClass, 232
HookPoint, 266

IArtifactScope, 172
IAutomataArtifactScope, 172�174
IAutomataComp, 398
IAutomataGlobalScope, 168, 172, 173,

202
IAutomataScope, 172�174, 195, 200, 201
IAutomata, 398
ICommonAutomataSymbol, 164
IDeSer, 184, 186
IDerive, 365
IGlobalScope, 171, 172, 394
IScope, 169, 172
IStateSymbolResolver, 164
ISymbolDeSer, 185�187
ISymbol, 162
ISynthesize, 365, 366
ITSymbolResolver, 209
IfStatement, 374
IncGenCheck.sh, 307�309
IncGenGradleCheck.txt, 312
Increment, 161
InfixExpression, 348
InputOutputFilesReporter, 325
InstanceofExpression, 350
IntLiteral, 345
Integer, 333
InterfaceBodyDeclaration, 383
InterfaceMethodDeclaration, 385
InvAutomata, 125, 150
Invariant, 118, 399
IterablePath, 324
JAVA_HOME, 8
JSON, 417
JavaArtifactScope, 160
JavaClassExpressions, 350, 381, 387
JavaCopyright, 270
JavaGlobalScope, 160
JavaLight, 381
JavaMethod, 383, 384
JavaModifier, 374, 384
Java, 381
JsonArray, 184, 185
JsonBoolean, 184, 186
JsonDeSers, 185
JsonElement, 184, 185
JsonNumber, 184, 186

465

Index

JsonObject, 184, 185
JsonParser, 184, 185
JsonPrinter, 184, 185
JsonString, 184, 185
LCoCoChecker, 213
LDelegatorVisitor, 151
LHandler, 137
LInheritanceHandler, 137, 142, 143
LTraverserImplementation, 137
LTraverser, 137
LVisitor2, 137
LabelSymbol, 378
Label, 378
LastFormalParameter, 384
List, 88
Literal, 341, 381
Log.init(), 293, 321
Log.initDEBUG(), 293
Log.initWARN(), 293
LogStub.init(), 293
LogStub, 217, 219, 223, 290, 294
LogicExpr, 118, 125, 399
LogicalRightShiftExpression, 349
Log, 221, 223, 252, 253, 259, 289, 290, 294,

325
LongLiteral, 345
MCArrayStatements, 374
MCArrayTypes, 46, 359
MCArrayType, 359
MCAssertStatements, 376, 377
MCBasicGenericType, 358
MCBasicTypeArgument, 357
MCBasicTypes, 46, 181, 356, 357, 382
MCBasics, 43, 126, 328
MCBlockStatement, 372, 382
MCCollectionTypes, 46, 357
MCCommonLiterals, 44, 341
MCCommonStatements, 374, 376, 381
MCCustomTypeArgument, 358
MCExceptionStatements, 377
MCFullGenericTypes, 46, 358
MCFullJavaStatements, 379
MCHexNumbers, 333
MCImportStatement, 46, 181, 357
MCInnerType, 358
MCJavaBlock, 374

MCJavaLiterals, 44, 345
MCListType, 46, 357
MCLiteralsBasis, 43, 341, 381
MCLowLevelStatements, 378
MCMapType, 357
MCModifier, 372, 382, 384, 387
MCMultipleGenericType, 358
MCNumbers, 331
MCObjectType, 356, 382
MCOptionalType, 357
MCPackageDeclaration, 181, 357
MCPrimitiveTypeArgument, 357
MCPrimitiveType, 356
MCQualifiedName, 46, 357
MCQualifiedType, 356
MCReturnStatements, 376
MCReturnType, 356, 384
MCSetType, 46, 357
MCSimpleGenericTypes, 46, 358
MCStatementsBasis, 371, 372, 382
MCStatement, 372, 382
MCSynchronizedStatements, 377
MCTask, 311

Gradle, 314, 315
MCType, 356, 366, 382
MCVarDeclarationStatements, 373,

381
MCVoidType, 356
MCWildcardTypeArgument, 358
ML_COMMENT, 328
MethodDeclaration, 384
MethodScope, 160
MethodSymbol, 160, 354
Method, 354, 382
MinusExpression, 348
ModelPath, 168, 324
Modifier, 336
MontiArc, 417
MontiCoreCLI, 303, 304
MontiCoreReports, 295, 324
MontiCoreScript, 295, 318, 321�324
MultExpression, 348
MyLang, 367

DeriveFromMyLang, 367
SynthesizeFromMyLang, 367

MyTransitionBuilder, 98

466

Index

NEWLINE, 328
Names, 325
Name, 78, 88, 177, 328
NatLiteral, 343
Not, 399
NullLiteral, 342
Number, 331
NumericLiteral, 342
OCL, 417
OOSymbols, 352, 354, 382
OOTypeSymbol, 354
OOType, 354, 382
Object Diagram, 417
Observer, 80
OctalDigit, 345
Optional, 88
Override, 58
PATH, 8, 29
ParserGenerator, 102
PingPong.autsym, 183, 193
PingPong.aut, 308
PingPong, 183, 390
PlusExpression, 348
PostComments, 85, 92
PreComments, 85, 92
QuestionnaireTool, 138
Questionnaire, 408
Reporting.flush(), 295
Reporting.off(), 295
Reporting.on(.), 295
Reporting.reportToDetailed(), 295
Reporting, 295, 325
ReturnStatement, 376
RightShiftExpression, 349
SAutomata, 389, 390
SI Units, 418
SL_COMMENT, 328
Scannerless, 400
ScopeGenitors, 205
ScopesGenitorDelegator, 205
ScopesGenitor, 180
Scope, 394
Sequence, 239
SignedBasicLongLiteral, 343
SignedLiteral, 342
SignedNatLiteral, 343

SignedNumericLiteral, 342
SimpleName, 41
SimpleString, 41
Slf4jLog, 290
SopeBuilder, 394
SourcePositionEnd, 85, 92
SourcePositionStart, 85, 92
SpaceOnOff, 402
StateNameStartsWithCapitalLetter,

215
StateSymbolBuilder, 164
StateSymbolDeSer, 164, 188, 189
StateSymbolSurrogate, 164
StateSymbol, 164, 176
Statechart, 418
Statement, 161
State, 118, 145, 147, 391
StereoValue, 335
Stereotype, 335
StringHookPoint, 267
StringLiterals, 329
StringLiteral, 330, 342
StringToken, 330
String, 78
SwitchStatement, 376
SymTypeArray, 363
SymTypeConstant, 362
SymTypeExpression, 353, 362, 364
SymTypeEypression, 362
SymTypeOfGenerics, 363
SymTypeOfNull, 363
SymTypeOfObject, 363
SymTypeOfWildCard, 363
SymTypeVariable, 363
SymTypeVoid, 363
SymbolResolver, 209
SymbolSurrogate, 393
Symbols2Json, 187, 190, 191, 205
Symbol, 393
Synthesize

init, 368
SynthesizeFromMyLang, 367, 368
SynthesizeSymTypeFrom, 366
Synthesize

getResult, 368
getTraverser, 368

467

Index

TOP mechanism, 233
TemplateClass, 232
TemplateController, 252, 254, 259
TemplateHookClass, 232
TemplateHookPoint, 256, 267
TemplateStringHookPoint, 267
ThisExpression, 350
ThrowStatement, 377
Throws, 384
TransitionSourceExists, 215
TransitionWithOutput, 145
Transition, 145, 147, 391
TraverserConfiguration, 142
Truth, 399
TryStatement*, 377
TypeCastExpression, 350
TypeCheck

compatible, 364, 365
isBoolean, 364
isByte, 364
isChar, 364
isDouble, 364
isFloat, 364
isInt, 364
isLong, 364
isOfTypeForAssign, 364, 365
isShort, 364
isString, 364
isVoid, 364
symTypeFromAST, 364
typeOf, 364
usage, 368

TypeSymbol, 353
TypeVarSymbol, 353
TypeVar, 353, 382
Type, 353, 382
UMLModifier, 336
UMLStereotype, 335
UML, 1
UnicodeEscape, 342
Variable declarations, 373
VariableSymbol, 353, 363
Variable, 353, 382
VisitorInfrastructure, 137
WSOff, 403
WSOn, 403

WS, 328
WhileStatement, 375
WhiteSpace, 400, 402
XYAntlr.g4, 104
XYAntlrLexer, 104
XYAntlrParser, 104
XYParser, 104
${...}, 238
_ast, 77
_automatonBuilder, 98
_channel, 402
_cocos, 77
_parser, 77
_reachable, 96
_report, 77
_stateBuilder, 98
_symboltable, 77, 164
_transitionBuilder, 98
_visitor, 77
abstract, 88
accept, 87, 137, 165

symbol, 165
addAdaptedStateSymbolResolver,

168
addCoCo, 213
addLoadedFile, 171
addToGlobalVar, 253, 260
additionalTemplatePaths, 251
add

scope, 174
adjacentStates, 190
assign, 260
astextends, 80
astextend, 80
astimplements, 80
astrule, 80, 81
ast, 248, 252, 256
automatonBuilder, 92
beginArray, 194
bindHookPoint, 253, 270, 273, 274, 277
bindStringHookPoint, 270
bindTemplateHookPoint, 270
bind, 265
boolean, 46
build(), 94
build.gradle

468

Index

Gradle, 315
buildDir

Gradle, 315
build, 92, 413

Gradle, 314
calculateModelNamesForC, 191
calculateModelNamesForState, 202
cd4analysis, 417
changeGlobalVar, 253, 260
checkAll, 213, 214
check, 212
clearLoadedFiles, 171
clear, 171
cmpToken(n,...), 344
commentEnd, 251
commentStart, 251
compatible, 364, 365
compileJava

Gradle, 314, 315
component, 116, 117
configTemplate

Gradle, 313
configureGenerator, 322, 323
continueAsStateSubScope, 201
continueStateWithEnclosingScope,

201
createFromAST, 180
createMCGlobalScope, 322, 323
createScope, 180, 181
createSymbolsFromAST, 322, 323
customLog

Gradle, 313
debug, 253, 260, 288, 290
decorateCD, 322, 323
decorateEmfCD, 322, 323
deepClone, 85, 90, 92
deepEqualsWithComments, 85, 90, 92
deepEquals, 85, 86, 90, 92
defaultFileExtension, 250
defineGlobalVar, 253, 260
defineHookPointWithDefault, 253,

270
defineHookPoint, 253, 268, 270
delegate, 207
dependencies

Gradle, 314, 315

dependsOn, 311
deriveCD, 322, 323
deserializeAddons, 189, 193, 194
deserializeAdjacentStates, 190
deserialize, 186, 187, 189
dev, 414

Gradle, 313
doInfo, 221
double, 382
eGet, 90
eIsSet, 90
eNotify, 90
eSet, 90
eUnset, 90
enableFailQuick, 290, 291
endArray, 194
endVisit, 136

ScopesGenitor, 180
enum, 49, 84
equalAttributes, 85, 90, 92
equalsWithComments, 85, 90, 92
error, 253, 260, 288, 290
existsHandwrittenFile, 259
existsHookPoint, 253, 269, 270
extends, 53, 120
external, 116, 117
flush, 295
for, 381
ftl, 237
generateEmfFromCD, 322, 323
generateFromCD, 322, 323
generateNoA, 248
generateParser, 102, 322, 323
generate, 248

Gradle, 315
getAccessModifier, 162
getAdaptedStateSymbolResolverList,

174
getAstNode, 164, 165
getDeSer, 171
getEnclosingScope, 162, 169, 170
getErrorCount, 290
getFileExt, 171
getFullName, 162, 170, 171
getGlobalVar, 253, 260
getLocalStateSymbols, 174

469

Index

getModelPath, 171
getName, 162
getPackageName, 162, 170, 171
getResult, 366
getSource(), 344
getSourcePosition, 162
getSource, 331
getStateSymbols, 174
getSubScopes, 170
getSymbolDeSers, 171
getSymbolDeSer, 171
getSymbols2Json, 174
getSymbolsSize(), 170
getSymbolsSize, 169
getTemplatename, 259
getToSymbol, 195
getTraverser, 366
getValue(), 45, 343, 344
getValue, 331
glex, 251, 252, 256, 260, 324
grammarDir, 312
grammarIterator, 324
grammar

Gradle, 314, 315
groovyHook1, 324

Gradle, 313
groovyHook2, 324

Gradle, 313
group

Gradle, 315
handCoded, 96
handcodedPath, 96, 250, 324

Gradle, 313
handle, 136
hasGlobalVar, 260
help

Gradle, 313
hook, 322, 323
hwc, 23
implementation

Gradle, 314
import, 116, 181
incCheck, 311, 312

Gradle, 315
incGenStamp.f, 308
include2, 253

includeArgs, 253, 255, 256
include, 253, 254
info, 221, 253, 260, 288, 290
init(), 223
initArtifactScopeHP1, 180, 181
initArtifactScopeHP2, 180, 181
initScopeHP1, 180, 181
initScopeHP2, 180, 181
initStateHP1, 180
initStateHP2, 180
init, 127, 171
instanceof, 381
instantiate, 259
interface, 88, 116
int, 46, 382
isBoolean, 364
isByte, 364
isChar, 364
isDouble, 364
isExportingSymbols, 169, 170
isFailQuickEnabled, 290, 291
isFileLoaded, 171
isFloat, 364
isInt, 364
isLong, 364
isOfTypeForAssign, 364, 365
isOrdered, 169, 170
isPresentAstNode, 162, 165
isReachable, 96
isShadowingScope, 170
isShadowing, 169
isShort, 364
isStateSymbolAlreadyResolved, 201
isString, 364
isVoid, 364
jar

Gradle, 314
javaDSL, 417
key, 61
loadC, 191
loadFileForModelName, 174
loadState, 174
load, 190
makefile, 306�308
master, 414
mc4, 103

470

Index

method, 83, 166
modelPath, 313
monticore-cli, 416
monticore-editor, 416
monticore-emf-runtime, 416
monticore-generator, 416
monticore-grammar, 416
monticore-maven, 416
monticore-runtime, 416
monticore-templateclassgen., 416
monticore.YYYY-MM-DD-HHmmss.log,

14
monticore_standard.groovy, 318, 319
new, 381
noSpace(), 403
noSpace(n), 343, 344
noSpace, 335
nokeyword, 42, 61, 338
nospace(), 60
null, 88, 95
outDir, 312
outputDirectory, 250
outputDir, 312

Gradle, 315
out, 13, 23
package, 181
parseGrammars, 322, 323
parseGrammar, 322, 323
parseNT, 105
parse_StringNT, 105
parse_String, 105
parse, 105
pluginManagement

Gradle, 315
plugins

Gradle, 315
processValue, 266
projectDir, 312
putOnStack, 181
putSymbolDeSer, 168, 171
reachableStates, 83
remove

scope, 174
replaceTemplate, 265, 272�275
reportCD, 322, 323
reportManagerFactory, 295, 324

reportToDetailed, 295
repositories

Gradle, 315
requiredGlobalVars, 253, 260
requiredGlobalVar, 253, 260
resolveAdaptedStateLocallyMany,

201
resolveAdaptedTLocallyMany, 208
resolveAdaptedTSymbol, 209
resolveDownMany, 196
resolveDown, 196, 200
resolveLocallyMany, 196
resolveLocally, 196, 200
resolveMany, 195, 200
resolveSLocallyMany, 209
resolveStateDownMany, 199, 201
resolveStateDown, 199, 201
resolveStateLocallyMany, 201
resolveStateLocally, 201
resolveStateMany, 200
resolveState, 195, 200
resolve, 195, 199, 200
runGrammarCoCos, 322, 323
scoperule, 176, 187
scope, 167, 172
script

Gradle, 313
se-commons-groovy, 418
se-commons-logging, 418
se-commons-utilities, 418
se-commons, 417
sequence diagram, 418
serializeAddons, 189, 193
serializeAdjacentStates, 190
serialize, 186, 187, 189
setAccessModifier, 162
setAdaptedStateSymbolResolverList,

174
setAfterTemplate, 265, 272�274, 276
setAstNode, 169
setBeforeTemplate, 265, 272�274
setDeSer, 171
setFileExt, 168, 171, 203
setModelPath, 168, 171
setName, 169
setSpanningSymbol, 169

471

Index

setStateSymbolAlreadyResolved,
201

setSymbolDeSers, 171
setSymbols2Json, 174
setTraverser

ScopesGenitor, 180
settings.gradle

Gradle, 315
signature, 243, 249, 253, 267
sourceSets

Gradle, 314, 315
spaceOnFlag, 402
splittoken, 42, 60, 335, 338, 349
src/main/grammars, 414
src/main/java, 413
src/main/models, 414
src/main/resources, 413
src/test/java, 413
src/test/resources, 413
src, 23
start, 54, 121
stateBuilder, 92
store, 190, 191
super, 381
switch, 381
symTypeFromAST, 364
symbolrule, 166, 187

attribute, 166
method, 166

symbol, 160, 161
Name?, 161
getName(), 161
inherited, 161
interface, 161
on extended nonterminal, 161

sym, 168, 192, 203
target, 413
tc, 252, 254, 256, 259
templatePath, 324

Gradle, 313
testImplementation

Gradle, 314
this, 381
trace, 253, 260, 288, 290
tracing, 251
transitionBuilder, 92

traverse, 136
typeOf, 364
varName??, 240
visit, 136

ScopesGenitor, 180
void, 382
warn, 253, 260, 288, 290
while, 381
writeArgs, 257
write, 257

abstract, 52

abstract nonterminal, 52, 79

abstract syntax, 14, 39, 77, 114

abstract syntax (AST), 34

abstract syntax tree, 34

AbstractState.ftl, 274, 275

access modi�er, 158

action, 43

adaptation

subclass, 281

TOP mechanism, 281

adapter

symbol, 206

Agile Model-Based Development, 6

agile modeling, 5

ambiguity

resolution, 195

annotation, 381

annotations, 58

anonymous scope, 167

Ansi-C++, 2

ANTLR, 39, 57, 69, 103, 319

concept, 57

lexerjava, 57

parserjava, 57

arrays, 46, 363

artifact, 109, 279

generated, 279

handcoded, 279

artifact scope, 167, 205

AST, 14, 34, 77

extension, 81

handwritten extension, 96

spanning tree, 155

AST classes, 77

472

Index

AST-access-conservative, 131

AST-conservation, 122

AST-conservative, 131, 145

AST-modi�cation-conservative, 131, 132

attribute, 381

symbolrule, 166
Automata DSL, 36

autonomous driving simulation, 2

AutoSar, 2

axiom, 54

backend, 116

Base Grammars, 359

bidirectional association pattern, 230

black-box reuse, 109

body, 46

bottom-up intra model resolution, 197, 201

build script, 29, 413

builder, 91, 114, 126, 281, 282

AST-conservative extension, 127

handwritten extension, 97

initialization, 127

mill, 233

builder mill, 91

handwritten extension, 97

initialization, 127

builder mills, 281

building facilities, 2

cardinality, 55

Char, 44

checker, 213

CI, 414

class body, 384

Class Diagrams for Analysis, 3

CLI, 7, 8, 12, 303, 306

cloud service, 2

CoCo, 211

code hook, 266

collection types, 46

command line, 7

Command Line Interface, 417

command line interface, 7

commandline, 304

commandline interface, 303

comparison, 86

compiling, 22
component

grammar, 39
language, 109

component grammar, 112
composition, 109

abstract syntax, 114
backend, 116
builder, 114, 126
concrete syntax, 113
conservative, 112
context conditions, 115
language mill, 126
late binding, 111
parser, 114, 127
parser CS-conservative, 128
scopes, 115
semantic, 111
symbol tables, 204
symbols, 115
visitors, 115

concept, 57
conceptual distance, 245
concrete syntax, 113
ConcreteState.ftl, 274, 275, 277
con�guration parameters, 304
conservative, 112
conservative extension, 129
console output, 289
constructor declaration, 381, 385
context condition, 20, 211

check, 213
implemenation, 212
implementation, 214
symbol table use, 215
tests, 216

context condition infrastructure, 212
context condition interface, 212
context conditions, 115
context-free grammar, 155, 211
context-free parser, 400
context-free syntax, 39
context-sensitive restrictions, 211
continuous integration, 414
CS-AST-compliance, 122
CS-conservation, 122

473

Index

CS-conservative, 129

data structure, 39

debug message, 287

DecimalDoublePointLiteral, 44

DecimalIntegerLiteral, 44

decorator hook point, 262

delegation pattern, 223

DeSer

global scope, 184

Deserialization, 183

deserialization, 19

design pattern, 221

bidirectional association, 230

list attribute, 228

mill, 233

multiple interface composition, 236

optional attribute, 228

ordinary attribute, 227

RealThis object composition pattern,
223

RealThis pattern, 223

RealThis pattern without common su-
perclass, 226

static delegator, 221

template hook, 232

unidirectional association, 230

visitor, 135

directory structure, 280

dispatching in visitors, 137

double dispatching, 137

DSL, 109

DSLs, 1

dynamic dispatching, 137

dynamic type, 137

EBNF, 70, 391

Eclipse, 7, 29

Eclipse Modeling Framework, 90, 323

Eclipse plugin, 7

EMF, 90, 323, 417

encapsulation, 109

enclosing scope, 163, 164

energy management, 2

enumeration, 49, 84

mapped to AST, 84

error, 300

by incorrect usage, 286

internal, 285, 286

error handling, 285

error management, 259

error message, 215

errors, 285

exception, 300

exp?functionname, 239

explicit hook point, 262

expression

type check, 363

type checking, 361

expression problem, 137

Expressions, 346

expressions, 381

extension, 52

AST, 81

AST-access-conservative, 131

AST-conservative, 122, 131

AST-modi�cation-conservative, 131,
132

conservative, 122, 129

CS-AST-compliance, 122

CS-conservative, 122, 129

Java type errors, 133

multiple grammars, 124

external nonterminal, 119

external type parameter, 383

Extreme Programming, 5

fail quick, 260, 291

feature diagram DSL, 2

�le extension

sym, 192
�ight control, 2

fragment token, 42

free modi�cation, 122

FreeMarker, 237, 245

Boolean, 239
Date, 239
Hash, 239
Number, 239
Sequence, 239
String, 239
control directives, 240

474

Index

control language, 237

data types, 239

drawbacks, 242

expressions, 237, 238

FreeMarker template language, 237

generation gap, 233

generator, 33

API, 247

architecture, 34

backend, 35

central part, 34

engine, 249

frontend, 34

setup, 250

work�ow, 35, 36

generator engine, 237, 245

generator scripts, 33

Generic invocation, 350

generic type, 383

generic types, 363

generics, 46

git, 414

GitHub, 414

github, 414

GitLab, 414

global scope, 168, 190, 199, 205, 209

DeSer, 184, 188

Globalscope, 394

Gradle, 29, 31, 303, 310, 413, 417

gradle, 282

Gradle build script, 311

Gradle plugin, 311

grammar, 10, 39, 77

Cardinality, 336
Completeness, 337
MCBasics, 328
MCCommon, 338
MCHexNumbers, 333
StringLiterals, 329
UMLModifier, 336
UMLStereotype, 335
import, 116
0xA4*** messages, 62

component, 39

context conditions, 62

deprecated, 58

derivates, 39

error messages, 62

nokeyword, 59

splittoken, 59

syntax, 39

testing, 404

grammar component, 117

Grammar concepts, 40

Grammar directives, 40

Grammar extension, 359

grammar format, 39

Grammar.mc4, 75

Grammar_WithConcepts.mc4, 75

grammars, 1

Graphviz, 299

Groovy, 247, 295, 304, 310, 318, 319, 321

Groovy script, 35

handcoded �les, 281

handcoded path, 280

handcoding, 279

handwritten class, 281

detection, 282

handwritten code, 279

handwritten extension, 96

HexIntegerLiteral, 44

hook

code, 266

string, 266

template, 266

template-string, 266

hook method

in design pattern, 232

hook point, 35, 262

binding, 262

decoration, 272

decorator, 262

explicit, 262, 268, 277

implicit, 262

name, 262

naming convention, 269

parameters, 256

replacing, 265, 272

value, 262

how to deal with

475

Index

errors, 300
exceptions, 300

human brain, 2

identi�ers, 157
implements, 51, 123
implicit hook point, 262
import, 112
import statement, 382
incremental compilation, 111
in�x, 54

associativity, 54
priority, 54
priority <180>, 54

information, 286
information message, 287
inheritance, 120
inheritance visitor, 147
integration

handwritten and generated code, 232
IntelliJ, 7, 31
IntelliJ plugin, 7
inter model resolution, 198, 201
interface, 51
interface method declaration, 381, 385
interface nonterminal, 51, 79

with symbol, 161
internal error, 286

Java, 2, 7, 155
Java classpath

con�guring, 282
Java Development Kit, 7
JDK, 7
Jenkins, 414
JSON, 183, 184
JUnit, 5, 217, 404

keyword
temporary, 61

kind, 157, 158
model entity, 157

language
component, 109
extension, 52

language aggregation, 110, 112, 119, 209

symbol tables, 204, 206
visitor, 144

language component, 109
language component feature diagram, 339
language components, 110
language composition, 109�111, 113
language embedding, 110, 112

symbol tables, 204
visitor, 144, 145, 149

language extension, 110, 112
symbol tables, 204

language inheritance, 110, 112, 120, 147, 208
symbol tables, 204, 205
visitor, 144, 145

language library, 111
language mill, 126
language parser, 39
language workbench, 1
LCD, 339
left recursion, 47
left-hand side, 46
lexer, 40, 400
Lexer productions, 40
lexerjava, 57
lexical production

action, 43
conversion, 43
result type, 43

lexical rules, 41
library, 111
list attribute pattern, 228
literal

type check, 363
Literals, 340
log �le, 289
logback, 292, 293
logback con�guration, 306, 314
logging, 259, 306, 313

debug, 260, 290
enableFailQuick, 290
error, 260, 290
getErrorCount, 290
info, 260, 290
isFailQuickEnabled, 290
trace, 260, 290
warn, 260, 290

476

Index

severity level, 260

logging API, 289

logging APIs, 292

logging component, 289

logs, 285

main control, 35

make, 282

Management Project, 414

Maven, 303, 317, 417

maven, 282

Maven Project, 414

MCBasicGenericType, 46

MCG, 70

MCGenericType, 46

MCListType, 46

MCPrimitiveType, 46

MCType, 46

MCTypeArgument, 46

MCWildcardTypeArgument, 46

message form

debug, 288
error, 288
info, 288
trace, 288
warn, 288

meta-tool, 1

method, 384

symbolrule, 166
method body

template, 246

method declaration, 381

mill, 21, 91

initMe, 234
init, 235
parser, 234
composition, 91

handwritten extension, 97

mill design pattern, 233

ML_COMMENT, 44

model, 33

model loader, 34

model parser, 34

model path, 168, 190

model processor, 33

model transformation, 33

Modeling in the large, 1

modeling language, 33

modularity, 109

MontiCore, 1

adaptation, 102

con�guration, 318

Continuous Integration, 414

design pattern, 221

Download, 9

error con�guration, 285

features, 1

generator engine, 237

Gradle, 29, 31

grammar, 106

grammars, 327

libaries, 327

Nexus, 414

parameters, 305

Release Notes, 414

reports, 285

Repositories, 414

RTE, 106

run, 12

runtime environment, 106

Sonar, 414

Ticket system, 414

multiple interface composition pattern, 236

MyStateAttributes.ftl, 275

MyStateGetter.ftl, 276

Name, 44

name, 157, 163

name de�nition, 157

name usage, 157

named scope, 167

NEWLINE, 44

Nexus, 414

node builder mill, 91

nonterminal, 39, 50, 78

* mapped to AST, 78

+ mapped to AST, 78

? mapped to AST, 78

external, 116, 117
interface, 116
abstract, 52, 79, 87

cardinality, 55

477

Index

deprecated, 58

enumeration, 49

extension, 52, 117, 121

extension mapped to AST, 79

external, 119, 350

implements, 123

interface, 51, 79, 87

list, 88

mapped to AST, 78

optional, 88

override, 58

overriding, 117, 121

rede�ning, 121

token mapped to AST, 78

nonterminals, 41

Notational Conventions, 3

Num_Long, 44

OID, 295

open source, 414

optional attribute pattern, 228

ordinary attribute pattern, 227

package declaration, 382

package name, 163

package structure, 280

parameter

�groovyHook1 �le.groovy, 305

�groovyHook2 �le.groovy, 305

-cl �le.xml, 305

-con�gTemplate �le.ftl, 305

-ct �le.ftl, 305

-customLog �le.xml, 305

-d, 305

-dev, 305

-fp path-list, 305

-g �le-list, 305

-gh1 �le.groovy, 305

-gh2 �le.groovy, 305

-grammar �le-list, 305

-grammars path-list, 305

-h, 305

-handcodedPath path-list, 305

-hcp path-list, 305

-help, 305

-modelPath path-list, 305

-mp path-list, 305

-o path, 305

-r path, 305

-report path, 305

-sc �le.groovy, 305

-script �le.groovy, 305

-templatePath path-list, 305

parameterized generator, 33

parser, 16, 39, 114

parser generator, 102

parserjava, 57

Pretty printing, 38

pretty printing, 245

primitive types, 382

production, 39, 46

cmpToken(n,st), 47
cmpTokenRegEx(n,a*b), 47
key(.), 47
next(0,*,none), 47
noSpace(n), 47
enumeration, 49

grouping (...), 47
lowerChar..upperChar, 47

name reference, 47

naming n:NT, 47
no keywords Name&, 47
optional ?, 47
recursion NT, 47
rede�ning, 121

repetition *, 47
repetition +, 47

Productions, 40

Project, 414

project management, 414

properties �le, 413

quali�ed name, 202

quali�ed types, 382

re-generation, 282

RealThis

advantages, 225

class structure, 223

control �ow, 224

disadvantages, 225

object collaboration, 224

478

Index

object structure, 224
RealThis object composition pattern, 223
realThis object composition pattern, 149
RealThis pattern, 223

variant, 226
RealThis variant, 226

advantages, 226
class structure, 226
control �ow, 226
disadvantages, 226
object structure, 226
visitors, 226

recursion, 46, 47
reference

entity, 157
regular expression, 41

(...), 41
lowerChar..upperChar, 41
negation ~, 41
optional ?, 41
repetition *, 41
repetition +, 41

regular expressions, 41
report, 286
reporting, 257
reports, 13, 285, 289, 294

hookpoints, 296
identi�ers, 295
Java classes, 296
templates, 296
variables, 296

Repositories, 414
resolution

adapting symbols, 208
ambiguity, 195
bottom-up, 196
bottom-up intra model, 197
concept, 196
inter model, 198
intra model, 196, 199
symbol, 195
top-down, 199

reuse, 109
right-hand side, 46
RTE, 106
runtime environment, 106

scannerless, 402
scannerless parsing, 400
scope, 15, 16, 56, 158, 167, 205, 208

ForStatement, 375
MCStatement, 374
artifact, 167
compilation unit, 167
global, 168

scope graph, 159
scope tree, 159
Scopes, 394
scopes, 39, 115, 205
Scrum, 5
SE Project, 414
semantic action, 69
semantic predicate, 69, 403

cmpToken(n,.), 69
cmpTokenRegEx(n,.), 69
next(...), 69
noSpace(n), 69
token(...), 69

semantic predicates, 39
Serialization, 183
serialization, 19
Serialization Strategy, 183
settings �le, 413
shadowing scope, 159
singleton, 223
SL_COMMENT, 44
SLF4J, 292
SMI, 155, 159
Sonar, 414
SSELab, 414
Statechart.ftl, 274, 276
StatechartStateAttributes.ftl, 274�276
Statements, 371
static delegator

delegate object, 221
do method, 221
static host class, 221
static method, 221

static delegator pattern, 91, 221, 281
static type, 137
String, 44
string hook, 266
subgrammar, 39

479

Index

sublanguage, 117

sublanguages, 110

su�x

Ext, 118

SVN, 414

symbol, 56, 157, 159

accept, 165
getAstNode, 165
access modi�er, 165

AccessModi�er, 163

name, 165

resolution, 195

scope, 165

shadowed, 158

usage, 177

visibility, 158, 167

symbol adapter, 204, 206

symbol kind, 158, 204

adaptation, 158

symbol management infrastructure, 155

symbol table, 16, 155, 159, 184, 212

List, 184
Optional, 184
String, 184
boolean, 184
defaults, 184
numeric defaults, 184
instantiation, 179

quick navigation, 159

scope, 184

surrogate, 159

to collect information, 159

symbol tables

composition, 204

language aggregation, 206

language inheritance, 205

symbol adapter, 206

Symbols, 352, 393

symbols, 39, 115

template

addToGlobalVar, 253
bindHookPoint, 253
changeGlobalVar, 253
debug, 253
defineGlobalVar, 253

defineHookPointWithDefault,
253

defineHookPoint, 253
error, 253
existsHookPoint, 253
getGlobalVar, 253
include2, 253
includeArgs, 253
include, 253
info, 253
requiredGlobalVars, 253
requiredGlobalVar, 253
signature, 253
trace, 253
warn, 253
adaptation, 262
API, 252
decoration, 272, 276
global variable, 260
hook point, 262
local variable, 260
name, 254
parameters, 256
quali�ed name, 254
replacing, 265, 272, 275
signature, 246, 257

template engine, 35, 245
template hook, 266
template hook pattern, 232
template method

in design pattern, 232
template path, 265
template-string hook, 266
templates, 33
temporary keyword, 61
terminal, 83

in square brackets, 83
mapped to AST, 83
named, 83
optional, 88
semantically relevant, 48, 83, 88

terminals, 48
testing, 404
text model, 4
token

Digits, 345

480

Index

Digit, 345
HexDigit, 345
Num_Double, 345, 346
Num_Float, 345
Num_Int, 345
Num_Long, 345
OctalDigit, 345
composed, 60

splitting, 335

tokens, 40, 400

tool provider, 34

tool smith, 34

TOP mechanism, 15, 18, 96, 281

top-down intra model resolution, 199, 201

Trac, 414

trace message, 287

transformation

AST, 246

traversal, 135

Traverser, 115

type check, 363

expression, 363

literal, 363

type check algorithm, 362

type checking, 361

expression, 361

type expression, 362

type inference algorithm, 362, 365, 366

type safe, 362

type system, 361, 362

type variable, 363

TypeCheck

IDerive, 365

ISynthesize, 365

typecheck, 361

Types, 355

unidirectional association pattern, 230

unique error code, 214

usage error, 286, 287

V-Model, 5

variable declaration, 381

version control, 280

visibilities, 157

visibility, 158, 167

visibility scope, 159
visit, 135
visitor, 19

endVisit, 136
handle, 136
traverse, 136
visit, 136
composition, 149
embedding, 145
external, 135
functional, 135
imperative, 135
language embedding, 144, 145, 149
language inheritance, 144, 145
subclassing, 145

visitor infrastructure, 136
visitor pattern, 87, 135
visitors, 115

warning, 286, 287
warnings, 285
well-formedness, 211
whitespaces, 400
work�ow, 35, 318
WS, 42, 44

XP, 5

481

	1 Introduction to Tool Generation
	1.1 MontiCore Language Workbench
	1.2 Notational Conventions
	1.3 Textual Modeling
	1.4 Methodical Considerations: Agile Modeling

	2 Getting Started with MontiCore
	2.1 Prerequisites: Installing the Java Development Kit
	2.2 Install and Use the MontiCore Command Line Interface
	2.2.1 Installation
	2.2.2 Inspect the Example Grammar
	2.2.3 Run MontiCore
	2.2.4 Compile the Target
	2.2.5 Run the Tool

	2.3 Using MontiCore via Gradle From the Command Line
	2.4 Using MontiCore in Eclipse
	2.4.1 Setting up Eclipse
	2.4.2 Importing the Example
	2.4.3 Running MontiCore

	2.5 Using MontiCore in IntelliJ IDEA
	2.5.1 Setting up IntelliJ IDEA
	2.5.2 Importing the Example
	2.5.3 Running MontiCore

	3 Architecture of a Model Processor
	3.1 Structure of a Model Processor - External View
	3.2 Internal Architecture of a Generator - Component View
	3.3 Tool Workflow

	4 MontiCore Grammar for Language and AST Definitions
	4.1 Lexical Tokens for the Scanner
	4.1.1 Definition of Tokens using Regular Expressions
	4.1.2 Actions to Process a Token
	4.1.3 Predefined Tokens in Importable Grammars

	4.2 Productions in the Grammar
	4.2.1 Terminals
	4.2.2 Enumeration
	4.2.3 Nonterminals
	4.2.4 Interface Nonterminals: implements
	4.2.5 Extending Nonterminals: extends
	4.2.6 Abstract Nonterminals
	4.2.7 Starting Nonterminal
	4.2.8 Infix Operations and Priorities
	4.2.9 Restricting the Cardinality of a Nonterminal
	4.2.10 Symbols and Scopes
	4.2.11 Passing Code to the ANTLR Parser
	4.2.12 Annotations for Nonterminals and Grammars
	4.2.13 Predefined Nonterminals in Importable Grammars

	4.3 Additional Control Directives in the MCG Language
	4.3.1 Splitting Tokens
	4.3.2 Local Keywords: Avoid handling Keywords as Tokens

	4.4 Context Conditions for the MCG Language
	4.5 Semantic Predicates and Actions
	4.6 EBNF of the MCG Language

	5 Abstract Syntax Tree
	5.1 Mapping Nonterminals to the AST
	5.2 Interface and Abstract Nonterminals
	5.3 Extending Nonterminals: astimplements, astextends
	5.4 Extending the Abstract Syntax Implementation
	5.5 Terminals in the AST
	5.6 Enumerations
	5.7 ASTNode: A Base Interface for AST Classes
	5.8 Generated ASTNode Subclasses
	5.9 Node Construction Using the Node Builder Mill
	5.10 Handwritten Extension of AST Classes and Node Builders
	5.10.1 Handwritten Extension of AST Classes: TOP-Mechanism
	5.10.2 Handwritten Extension of AST Builders and Mills

	6 Parser Generation and Use
	6.1 Generating a Parser and a Lexer, as done in MontiCore
	6.2 Interface of the Generated Parser Classes
	6.3 Executing a Generated Parser

	7 Language Composition
	7.1 Introduction to Language Composition
	7.2 Language Composition at a Glance
	7.3 Grammar Constructs for Language Composition
	7.3.1 Component Grammar
	7.3.2 External Nonterminals
	7.3.3 Importing and Extending Grammars

	7.4 Language Inheritance
	7.4.1 Redefining / Overriding Productions of Grammars
	7.4.2 Extending the Implementation Structure of a Nonterminal
	7.4.3 Extending Multiple Inherited Grammars

	7.5 Language Embedding
	7.6 Composing the Builder Infrastructure
	7.7 Composing Parsers
	7.8 Composition of Visitors and Context Conditions
	7.9 Conservative Extension
	7.9.1 Conservative Extension of the Concrete Syntax
	7.9.2 Access-Conservative Extension of the Abstract Syntax
	7.9.3 Modification-Conservative Extension of the Abstract Syntax
	7.9.4 AST Signatures Causing Java Type Errors

	8 Visitors for AST Traversal
	8.1 Visitor Infrastructure for a Language
	8.1.1 Traverser Interface and Implementing Class
	8.1.2 Visitor2 Interface
	8.1.3 Handler Interface
	8.1.4 Inheritance Handler for Explicit Visit of Supertypes

	8.2 Visitors for Composed Languages
	8.2.1 Visitor Infrastructure for Language Inheritance and Extension
	8.2.2 Visitor for Language Inheritance with Overriding Nonterminal
	8.2.3 Visitors for Compositional Language Embedding

	9 Symbol Management Infrastructure
	9.1 Introduction to Symbol Table Concepts
	9.1.1 Symbols
	9.1.2 Scopes

	9.2 Defining Symbols
	9.2.1 Runtime (RTE) Classes For Symbols
	9.2.2 Generated Classes For Symbols
	9.2.3 Defining Additional Symbol Attributes via symbolrule

	9.3 Defining Scopes
	9.3.1 Artifact Scope and Global Scope
	9.3.2 Runtime Environment Classes for Scopes
	9.3.3 Generated Classes For Scopes
	9.3.4 Defining Scope Attributes and Methods via scoperule

	9.4 Collaboration between AST, Symbol, and Scope
	9.5 Using Symbols
	9.6 Instantiating Symbol Tables
	9.6.1 Phase 1: Symbols and Scope Skeletons
	9.6.2 Phase 2+: Filling Symbols with Value

	9.7 Loading and Storing Symbol Tables
	9.7.1 Stored Symbol Tables
	9.7.2 RTE Classes For Symbol Table Persistence
	9.7.3 Generated Classes for Symbol Storage and Their Adaptation
	9.7.4 Loading Symbol Tables
	9.7.5 Storing Symbol Tables
	9.7.6 Realizing Custom Serialization Strategies

	9.8 Resolving Symbols in Scopes
	9.8.1 How to Use Symbol Resolution
	9.8.2 Concept Of Symbol Resolution
	9.8.3 Generated Implementation for Symbol Resolution
	9.8.4 Customizing Symbol Resolution

	9.9 Visitors Also Handle Symbol Tables
	9.10 Symbol Tables in Composed Languages
	9.10.1 Symbol Management Infrastructure for Language Inheritance
	9.10.2 Symbol Management Infrastructure for Language Aggregation
	9.10.3 Symbol Adapters
	9.10.4 Resolving for Adapted Symbols

	10 Context Conditions
	10.1 Context Condition Infrastructure
	10.2 Implementation of Context Conditions
	10.3 Testing Context Conditions
	10.3.1 Testing a Context Condition on a Valid Model
	10.3.2 Testing a Context Condition on an Invalid Model

	11 Design Patterns Used and Invented for MontiCore
	11.1 Static Delegator Design Pattern
	11.2 RealThis Object Composition Pattern
	11.3 Attribute and Association Access Pattern
	11.3.1 Attribute Access Pattern
	11.3.2 Association Access Pattern
	11.3.3 The Extended Builder Pattern

	11.4 Template Hook Pattern
	11.5 Mill Pattern to Assist Composition
	11.6 Multiple Interface Composition Pattern

	12 FreeMarker
	12.1 The FreeMarker Template Languages
	12.2 Expressions in FreeMarker
	12.3 Control Directives in FreeMarker
	12.4 FreeMarker Add Ons

	13 Generator Engine using Flexible Templates
	13.1 Methodical Considerations
	13.2 Generator API
	13.3 Configuring the Generation Process
	13.4 MontiCore APIs for Templates
	13.4.1 Shortcuts: Aliases in Templates
	13.4.2 The TemplateController
	13.4.3 Logging within a Template
	13.4.4 Variables in the Templates with GlobalExtensionManagement

	13.5 Hook Points for Adaptation
	13.5.1 The Concept of Hook Points
	13.5.2 Forms of Hook Points
	13.5.3 Defining Explicit Hook Points in Templates
	13.5.4 Binding Hook Points
	13.5.5 Replacing and Decorating Hook Points
	13.5.6 HookPoint Replacement and Decoration Strategy
	13.5.7 A HookPoint Replacement and Decoration Example

	14 Integrating Handwritten Code
	14.1 Integration of Handwritten Code
	14.2 Adaptation of Generated Code by Subclassing
	14.3 Adaptation of Generated Code using the TOP Mechanism

	15 Error Handling, Logging and Reporting
	15.1 Where to find Concrete Help for an Error, Warning, or other Message
	15.2 Errors, Warnings and Log Messages
	15.2.1 Errors
	15.2.2 Warnings and Information
	15.2.3 Form of Errors, Warnings and Log Messages

	15.3 The Error and Logging Component
	15.4 Logging Configurations in MontiCore
	15.4.1 Selecting one of the given Configurations
	15.4.2 Using a Custom logback Configuration
	15.4.3 Initializing the Log within Java
	15.4.4 Providing a Custom Log Implementation

	15.5 Reports
	15.5.1 Where to Find Reports
	15.5.2 How to Configure Reporting
	15.5.3 Identifiers contained in the Reports
	15.5.4 List of the Reports

	15.6 For Developers: How to Deal with Errors and Warnings

	16 MontiCore Use and Configuration from CLI or Gradle
	16.1 MontiCore from Commandline
	16.1.1 How to Call the CLI
	16.1.2 Parameters of the CLI

	16.2 Embedding the CLI in a Makefile Build Process
	16.3 MontiCore Used via Gradle Plugin
	16.3.1 Defining a MontiCore Task
	16.3.2 Compilation and Packaging
	16.3.3 Defining external Dependencies
	16.3.4 Example Build Script

	16.4 MontiCore in Maven
	16.5 MontiCore Workflow Configuration with Groovy
	16.5.1 The Standard Groovy Generation Script
	16.5.2 MontiCore Base Class for Groovy Scripts
	16.5.3 Methods Available within Groovy Scripts
	16.5.4 Variables Available within Groovy Scripts
	16.5.5 Available preimported Classes within Groovy Scripts

	17 Example MontiCore Grammars
	17.1 Component Grammar MCBasics.mc4
	17.2 Component Grammar StringLiterals.mc4
	17.3 Component Grammars for Numbers
	17.3.1 Component Grammar MCNumbers.mc4
	17.3.2 Component Grammar MCHexNumbers.mc4

	17.4 Component Grammars for UML Languages
	17.4.1 Component Grammar UMLStereotype.mc4
	17.4.2 Component Grammar Cardinality.mc4
	17.4.3 Component Grammar UMLModifier.mc4
	17.4.4 Component Grammar Completeness.mc4
	17.4.5 Component Grammar MCCommon.mc4

	18 Expression and Type Language Components
	18.1 Literals as Basis for Expressions
	18.1.1 MCLiteralsBasis
	18.1.2 MCCommonLiterals
	18.1.3 MCJavaLiterals

	18.2 Expressions in various Variants
	18.2.1 ExpressionsBasis
	18.2.2 CommonExpressions
	18.2.3 BitExpressions
	18.2.4 AssignmentExpressions
	18.2.5 JavaClassExpressions

	18.3 Symbols
	18.3.1 BasicSymbols
	18.3.2 OOSymbols

	18.4 Types: From Simple To Generic
	18.4.1 MCBasicTypes
	18.4.2 MCCollectionTypes
	18.4.3 MCSimpleGenericTypes
	18.4.4 MCFullGenericTypes
	18.4.5 MCArrayTypes

	18.5 Using Base Grammars
	18.6 Type Checking in MontiCore Languages
	18.6.1 Types in a Symbol Table: SymTypes
	18.6.2 Using Type Checks: the Type Check API
	18.6.3 How the Type Check is Configuered

	19 Statement Language Components
	19.1 MCStatementsBasis
	19.2 MCVarDeclarationStatements
	19.3 MCArrayStatements
	19.4 MCCommonStatements
	19.5 MCReturnStatements
	19.6 MCAssertStatements
	19.7 MCSynchronizedStatements
	19.8 MCExceptionStatements
	19.9 MCLowLevelStatements
	19.10 MCFullJavaStatements

	20 The JavaLight Language
	20.1 Sublanguage Hierarchy of JavaLight
	20.2 Nonterminals of JavaLight
	20.2.1 Methods, Constructors, and Attributes
	20.2.2 Java Annotations
	20.2.3 Java-Specific Array Initialization

	21 Some Demonstrating Example Languages
	21.1 A Simple Automata Language
	21.2 Hierarchical Automata
	21.3 A Language for Automata with Invariants
	21.4 Scannerless Parsing to Handle Complex Tokens
	21.4.1 Parsing with Whitespaces
	21.4.2 Temporarily Parsing with Whitespaces
	21.4.3 Preventing Whitespaces between Tokens

	21.5 Tip: Testing Grammars and their Models
	21.6 ColoredGraph Language
	21.7 Questionnaire Language

	22 Developer's View on MontiCore
	22.1 MontiCore's GitHub Repository
	22.2 For External Developers: How to Contribute
	22.3 MontiCore's Gradle Projects
	22.4 Further Source Code Locations

	23 Further Reading and Related Work
	List of Figures
	Listings
	References
	Index

