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Foreword

MontiCore is a language workbench, which is developed since 2004. We have started its
development because at that time the available tools for model management where often
very poor in its functionalities and also not extensible, but closed shops. In 2004 the first
version of the UML/P was published (and is now available as [Rum16, Rum17]) demon-
strating that the conglomerate of languages that the UML is made of can be substantiated
with useful transformation, refinement and refactoring techniques. Code and test code
generation as well as flexible combination of language fragments, such as OCL within Stat-
echarts or Class Diagrams for typing in Component and Connector Diagrams, were the
techniques of primary interest. However, hard coded modeling tools where not helpful in
realizing these techniques. This was the original motivation for MontiCore that can also
be found in the foundational theses in [Kra10, Völ11].

Later, it became apparent that UML will be complemented by several domain specific
languages (DSLs) that will be connected to software development or execution in various
ways. The definition of DSLs encounters the same difficulties as the definition of the
UML faced, i.e., they are often built from scratch, reuse is pretty bad, the same concepts
get different syntactic shapes. Thus, combining DSLs is rather impossible. We therefore
extended the focus of MontiCore to become a general language workbench that allows
to define languages and language fragments and to derive as much as possible from an
integrated and therefore compact definition.

In this version of the MontiCore Tutorial and Reference Manual the core facilities of
MontiCore are described. Extensions are available through various projects either using
or enhancing MontiCore. We have a sophisticated technique to generate transformation
languages and their transformation engines based on DSLs [HRW15, AHRW17, RRW15,
HHRW15, Wei12], we have explored tagging languages [Loo17, MRRW16, GLRR15], vari-
ous forms of the UML and its derivatives [Sch12, Wor16, Hab16, Rei16, Rot17] and plenty
specific languages.

Despite MontiCore is an academic tool to explore modeling and meta-modeling techniques,
after 14 years of development, it has reached an extraordinary strength and is thus increas-
ingly used in industrial projects, like energy management [Pin14], as well as in scientific
projects of entirely different nature, such as simulation of city scenarios for autonomous
driving [Ber10] or human brain modeling [PBI+16]. MontiCore, however, does not pri-
marily focus comfort, e.g., graphical editing, but advanced functionality for model-based
analysis or synthesis of software intensive systems as well as quick textual editing for
experienced users.

We would like to thank all current and former members of our group as well as all students
and apprentices who helped to develop MontiCore in its current shape. Namely, we would
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like to thank Kai Adam, Professor Dr. Christian Berger, Vincent Bertram, Arvid Butting,
Anabel Derlam, Imke Drave, Robert Eikermann, Timo Greifenberg, Dr. Hans Grönniger,
Dr. Tim Gülke, Dr. Arne Haber, Guido Hansen, Olga Haubrich, Lars Hermerschmidt,
Dr. Christoph Herrmann, Gabi Heuschen, Steffen Hillemacher, Oliver Kautz, Carsten
Kolassa, Dr. Anne-Therese Körtgen, Thomas Kurpick, Evgeny Kusmenko, Dr. Holger
Krahn, Dr. Stefan Kriebel, Achim Lindt, Dr. Markus Look, Professor Dr. Shahar Maoz,
Matthias Markthaler, Dr. Klaus Müller, Dr. Pedram Mir Seyed Nazari, Antonio Navarro
Pérez, Nina Pichler, Dr. Claas Pinkernell, Dr. Dimitri Plotnikov, Deni Raco, Dr. Holger
Rendel, Dr. Dirk Reiss, Dr. Daniel Retkowitz, Dr. Alexander Roth, Dr. Martin Schindler,
David Schmalzing, Steffi Schrader, Dr. Frank Schroven, Christoph Schulze, Igor Shumeiko,
Brian Sinkovec, Simon Varga, Dr. Steven Völkel, Dr. Ingo Weisemöller, Michael von
Wenckstern, and Dr. Andreas Wortmann. The individual contributions to MontiCore and
its derivatives resulted in numerous publications1. Special thanks go to Marita Breuer and
Galina Volkova, who maintain and extend MontiCore, as well as to Sylvia Gunder, who
ensures that all financial and project activities supporting our language workbench project
MontiCore are running perfectly.

We also would like to thank the authors or co-authors of several chapters, who partially
described their contribution directly in this reference manual.

In addition, we would like to thank all reviewer for their intense reviews of certain chap-
ters (chapters are mentioned in brackets): Kai Adam (Ch. 1,9,14,19), Vincent Bertram
(Ch. 15,17), Arvid Butting (Ch. 7,9), Imke Drave (Ch. 1,2,3,4,12,16), Robert Eikermann
(Ch. 7,8,9,10), Timo Greifenberg (Ch. 3), Guido Hansen (Ch. 4,6,13), Olga Haubrich
(Ch. 2,17), Steffen Hillemacher (Ch. 5,12), Oliver Kautz (Ch. 3,6,9,11), Evgeny Kusmenko
(Ch. 7), Achim Lindt (Ch. 2,8), Nina Pichler (Ch. 18), Deni Raco (Ch. 7,10), David
Schmalzing (Ch. 3,6,11), Christoph Schulze (Ch. 15,19), Igor Shumeiko (Ch. 5,12), Brian
Sinkovec (Ch. 9,18), Simon Varga (Ch. 4,6,13), Michael von Wenckstern (Ch. 3,13,14) and
Dr. Andreas Wortmann (Ch. 7,9).

To all readers of this manual: We hope you enjoy reading this manual and trying out our
language workbench MontiCore as well as the tools generated with MontiCore. In case
you have any suggestions or questions do not hesitate to contact us.

Aachen, 23.12.2017

Katrin Hölldobler, Bernhard Rumpe

1www.se-rwth.de/publications/
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Chapter 1

Introduction

This reference manual describes how to generate tools that deal with language processing.

The tools are partially generated by the language workbench MontiCore and partially need
handcoded extensions. This reference manual explains how to do this.

However, we assume that the reader is familiar with a variety of computer science con-
cepts, such as grammars, UML and in particular their class diagrams and Java. If not,
[HMU06] is suggested for grammars, [Rum16] for UML, and [GJS05] for Java.

As we will further explain, MontiCore is a meta-tool: It generates tools. It may well be
that the generated tooling is itself a generator. That is fine, but in order to avoid confusion,
we should be clear that there are two levels. Furthermore, the generated tooling need not
only be a generator, but can be used for transformation, simple and complex analysis,
simulation or the connection of runtime data with the originating models.

All the tooling is about processing models in standard or domain specific languages (DSLs).
MontiCore generates infrastructure, such that many models as well as heterogeneous mod-
els, that means of different languages, can be processed. Modeling in the large is well
assisted.

MontiCore is not only about generation of tools, but in particular about reuse of tool
components that have been developed independently. In particular MontiCore provides a
number of techniques to systematically reuse language components by composing, extending
or inheriting them. MontiCore assists an easy development and extension of languages and
thus should be a good solution for tool development.

Tip 1.1 Where to find MontiCore

The MontiCore language workbench as well as a number of language components
is available as open source. More interesting information can be found at:

1 www.monticore.de // Newest info about MontiCore
2 // and MontiCore generator
3 https://github.com/MontiCore // Sources of the core project
4 // on GitHub



1. Introduction

MontiCore also includes a number of plug-ins for Eclipse and thus supposedly has a rather
comfortable development environment. We strongly encourage the reader to download and
install MontiCore.

1.1 MontiCore Language Workbench

The MontiCore language workbench can be used both as closed product out-of-the-box
for the generation of software as well as open, customizable framework for tool develop-
ment. MontiCore itself is a generator with the speciality that the products it produces are
generators themselves. As already said, MontiCore is therefore a meta-tool.

At a glimpse, the features of MontiCore are:

• Modular definition of languages and language fragments

• Explicit interfaces between models, allowing heterogeneous composition of models.

• Techniques for composition of languages, thus allowing:

– independent language development,

– language extension,

– language inheritance including concept replacement, and

– composition of language tools.

• Assistance for model analysis.

• Assistance for model transformation by reusing the concrete syntax of the modeling
language.

• Only a single source is necessary for definition of concrete syntax, abstract syntax,
parser and internal representation of models.

• Easy definition of Eclipse language specific editors.

• Explicit management of variability in both, languages and their generation tools.

Numerous tools for domain specific modeling languages as well as general purpose languages
have been developed by using MontiCore. Among them are MontiCore itself, a larger part
of the UML set of languages, the architectural description language MontiArc, Java, a
subset of Ansi-C++ and a feature diagram DSL (see e.g. Figure 1.2. Various applications
in engineering domains (AutoSar, autonomous driving simulation, flight control, building
facilities, energy management, cloud service configuration) and natural science (human
brain, control software for physical experiments) demonstrate the usability of MontiCore.

In addition to the above mentioned bullets this document also discusses:

• How a generator architecture looks like

• Out-of-the box use of MontiCore

2
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MontiCore: Selected Languages

� MontiCore
• Bootstrapping 

� UML
• Class diagrams
• Object diagrams
• Statecharts
• Activity diagrams
• Sequence diagrams
• OCL

� MontiArc
• Architectural models / 

ADL, function nets
• + automata + Java + views

� Java
• Java 5.0

� C++
• Ansi-C++

� MontiCore transformations

• Pattern matching

• Extended by Java 

� FeatureDSL

• Feature diagram & config.

� AutosarDSL

• Components, deployment, 
interfaces

� Flight control: constraint language

� Building facility specification

� Curriculum 

� Cloud Service Configurator  

• Management of Services

x x

x

Figure 1.2: Some languages MontiCore provides

• Language definition

• How an abstract syntax (AST) looks like

• Managing symbols and visibility of definitions

• Model composition

• Language components and their composition

• Navigation of the AST with visitors

• Generation using FreeMarker’s templates

• Integration of handwritten code

There is more to say about MontiCore. However, this document explicitly omits the
internal architecture of MontiCore, how to define and apply transformations in concrete
syntax, how to manage variability of languages, and various application languages, such
as UML, MontiArc etc. The MontiCore website provides additional information.

1.2 Notational Conventions

Although MontiCore mainly relies on textual models, a diagrammatic representation is
sometimes convenient. To be clear to what language the model, code snippet, etc. belongs
to, it will be marked with a flag. An example is shown in the upper right corner of
Listing 1.3, which is an excerpt of a Java class called Person.

3



1. Introduction

Java «gen» Person1 class Person {
2 private String firstname, surname;
3 Adress adr;
4 }

Listing 1.3: Example in Java

We use various abbreviations, such as CD for class diagrams, etc. Especially class diagrams
serve multiple purposes, therefore, it is necessary to understand precisely, what is modeled
by a CD. In several chapters we use the modeling language Class Diagrams for Analysis
(abbreviated: CD4A) as source for the generation process. But, we also use class diagrams
to exhibit concrete situations in the tool or product, such as for example the extension of
a generated class GroupImpl by handcoded class GroupEIMP, which are both present
in the product which is the final target of the development process. We show this like in
Figure 1.4
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Notational Conventions

GroupImpl

GroupEIMP

Product-CD

«hc»

«gen»

This is a class diagram that shows
classes in the product

This class is generated

… hand coded

class Person {  

private String firstname, surname;  

Adress adr;

}

Java

This is
Java code

Figure 1.4: Notational conventions

1.3 Textual Modeling

Many experts think that the mental model in the conscious human brain is the most im-
portant form of model. Thus, it is not so important how to represent the modeling infor-
mation on the screen or on paper, but that the model communicates the right information
and concepts. However, for easy understanding, quick adaptations, logical manipulations,
refactorings or similar purposes, it seems not so unimportant to use an appropriate repre-
sentation.

It is an ongoing debate, whether and where textual or graphical models are better for
software development. It also depends on the background of the reader, which model is
easier to be used. Both forms of models do have advantages. Experts for example are
quicker to produce the model in text form, because they are not distracted by "pushing
boxes around" to produce nice diagrams. And for tool developers it is easier to write a text
processor than a diagram processing tool, especially when using this reference manual.
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1.4. Methodical Considerations: Agile Modelling

Our experience is that computer scientists tend to textual models due to higher compact-
ness, more efficient use and less dealing with graphical layout.

Diagrams and text will coexist in the future and may be even closely integrated. MontiCore
4 currently focusses on text as the main form of input and output. Thus, the infrastructure
is easier for tool development.

1.4 Methodical Considerations: Agile Modelling

There are a variety of development processes, ranging from traditional document oriented
approaches, such as the V-Model, up to several incarnations of agile development, such as
Extreme Programming (XP) [BA04] and Scrum [SB01]. It would go beyond the scope of
this reference manual to talk about methodological issues. However, we would like to hint
towards discussions that a development job could well be assisted by models and high-level
modeling languages, if the generation process for code and tests is efficient and robust. In
[Rum11, Rum12, Rum16] this is discussed in detail.

[Rum12] for example suggests to combine the advantages of agile development with use
of models by concentrating on a set of complementing models with as little redundancy
as possible in order to represent each piece of information only once and as compact as
possible. Figure 1.5 depicts this idea in an abstract form, mainly focussing on the UML.
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Agile use of Models for Coding and Testing:

Usage of UML-Diagrams

consistency

analyser

“smells” &

errors

statecharts
class 

diagrams C++, 

Java ,

parameterized

code

generator

system

architecture

diagram

sequence 

diagrams

object 

diagrams

__:

__:

__:

OCL

test code

generator

tests

Figure 1.5: Agile use of models for coding and testing

Some generators concentrate on the system while other generators derive automatically
running testing code similar to JUnit tests [Bec15]. If the software to be developed is part
of a larger system, it would also be possible to derive automatically running simulations
for the complete product or some of its components to check the correctness of the system,
e.g. done in [BR12b].

As a consequence, we suggest to base larger parts of the development project on modeling
artifacts. Models can be used for
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• rapid prototyping,

• code generation,

• generation of automated tests,

• documentation,

• static analysis, and

• refactoring and evolution.

In a generative software development project, models serve as central artifacts. They are
used for programming, testing and specifying.

Tip 1.6 Agile Model-Based Development

Agile software development and model-based generation fit together.
First and foremost, generation obviously increases the speed of development.

However, this only becomes an advantage, when two important criteria are fulfilled:
(1) It is important to rerun the generator each time a slight change was made

in the models. A one-shot generation is not helpful, because it does not assist any
form of evolution, but only the waterfall model. So, it is best to not manually touch
generated code.

(2) To keep the pace of development, generation must be quick. In particular
when generating lots of code from lots of models, incremental generation based on
detected changes is necessary. So, it is optimal to use an intelligent dependency
management.

Then agile generative software development becomes possible.

Tip 1.7 Current Version of this Document is Online

MontiCore is an evolving tool. Therefore, more material describing the capabili-
ties and forms of usage will evolve over time.

Therefore, you might also have a look at MontiCore’s website.
However, your feedback will definitely be appreciated, e.g. by emails to

monticore@se-rwth.de or through sending a printout with comments.
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Chapter 2

Getting Started

There are three options to start MontiCore. All come with a larger set of configuration
options. For a quick peek as well as for an automatic execution, e.g., within nightly builds,
the command line version should be tried out, for example an exemplary automaton DSL.
MontiCore also supports different environments:

• MontiCore as command line tool

• MontiCore as Eclipse plugin

• MontiCore as IntelliJ plugin

In the following all three variants are shortly explained together with the most important
configuration options. However, a potentially newer explanation can be found at

Codeschnipsel

www.monticore.de
www.monticore.de/gettingstarted/

2.1 Prerequisites

• Install the latest JDK (at least version 8 required) provided by Oracle1.

• Make sure the environment variable JAVA_HOME points to the installed JDK, and
not to the JRE, e.g., the following would be good:

– /usr/lib/jvm/java-8-openjdk on UNIX or

– C:\Program Files\Java\jdk1.8.* on Windows.

You will need this in order to run the Java compiler for compiling the generated Java
source files.

• Also make sure that the PATH variable is set such that the Java compiler is available.
JDK installations on UNIX systems do this automatically. On Windows systems, the
bin directory of the JDK installation needs to be appended to the PATH variable,
e.g. %PATH%;%JAVA_HOME%\bin .

1http://www.oracle.com/technetwork/java/javase/downloads/index.html



2. Getting Started

Now we have the prerequisites to run MontiCore from the command line. MontiCore as
plugin, however, needs some more components installed, as you can see below.

2.2 How to Install MontiCore for Command Line

In a nutshell do the following first steps to use MontiCore as a command line tool:

Prerequisites Install the Java Development Kit and further preparation steps as described
in Section 2.1.

Installation Download the MontiCore distribution file, unzip it, and change to the ex-
tracted directory as described in Section 2.2.1.

Running MontiCore Execute MontiCore on the provided language definition
Automaton.mc4 as described in Section 2.2.2.

Compiling the Product Compile all the generated and supplied handwritten Java source
files as described in Section 2.2.3.

Running the Product Execute the automaton tool on an example model
example/PingPong.aut as described in Section 2.2.3.

2.2.1 Installation

1. Download the MontiCore zip distribution file2.

2. Unzip the distribution. It will unzip a directory called mc-workspace containing
the executable MontiCore CLI (short for command line interface) JAR along with
a directory src containing handwritten automaton DSL infrastructure, a directory
hwc containing handwritten code that will be incorporated into the generated code,
and a directory example containing an example automaton model.

2.2.2 Run MontiCore

1. Open a command line interface and change to the unzipped directory
(mc-workspace).

2. Execute the following command in order to generate the language infrastructure of
the specified automaton DSL:

shell

1 java -jar monticore-cli.jar Automaton.mc4 -hcp hwc/

The only required argument Automaton.mc4 denotes the input grammar for Mon-
tiCore to process and generate the language infrastructure. The second argument

2http://www.monticore.de/gettingstarted/
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denotes the path to look for handwritten code that is to be incorporated into the
generated infrastructure.

MontiCore will be launched and the following steps will be executed:

a) The specified grammar will be parsed and processed by MontiCore.

b) Java source files for the corresponding DSL infrastructure will be generated into
the default output directory out. This infrastructure consists of:

• out/automaton/_ast containing the abstract syntax representation of
the automaton DSL (cf. Chapter 5).

• out/automaton/_cocos containing infrastructure for context conditions
of the automaton DSL (cf. Chapter 10).

• out/automaton/_od containing infrastructure for printing object dia-
grams of the automaton DSL.

• out/automaton/_parser containing the generated parsers which are
based on ANTLR (cf. Chapter 6).

• out/automaton/_symboltable containing infrastructure for the sym-
bol table of the automaton DSL (cf. Chapter 6).

• out/automaton/_visitor containing infrastructure for visitors of the
automaton DSL (cf. Chapter 9).

• out/reports/Automaton containing reports created during the process-
ing of the automaton grammar.

c) The output directory will also contain a log file of the executed generation
process monticore.YYYY-MM-DD-HHmmss.log with the generation time in
its name.

2.2.3 Compile and Run the Target

1. Compiling the automaton DSL

• Execute the command:
shell

1 javac -cp monticore-cli.jar -sourcepath "src/;out/;hwc/" \
2 src/automaton/AutomatonTool.java

Please note: on Unix systems paths are separated using ":" (colon) instead of
semicolons.

This will compile all generated classes located in out and all handwritten classes
located in src and hwc. Please note that the structure of the handwritten
classes follows (though not necessarily) the package layout of the generated
code, i.e. there are the following sub directories (Java packages):

9



2. Getting Started

– src/automaton contains the top level language realization for us-
ing the generated DSL infrastructure. In this case the class
src/automaton/AutomatonTool.java constitutes a main class exe-
cutable for processing automaton models with the automaton DSL (inspect
the class and see below for how to execute it).

– src/automaton/cocos contains infrastructure for context condition of
the automaton DSL.

– src/automaton/prettyprint contains an exemplary use of the gener-
ated visitor infrastructure for processing the parsed model. Here: for pretty
printing.

– src/automaton/visitors contains an exemplary analysis using the
visitor infrastructure. The exemplary analysis counts the states contained
in the parsed automaton model.

– hwc/automaton/_ast contains an exemplary usage of the handwritten
code integration mechanism for modifying the AST for the automaton DSL.

– hwc/automaton/_symboltable contains handwritten extensions of the
generated symbol table infrastructure.

• Running the automaton DSL tool

– Execute the command:
shell

1 java -cp "src/;out/;hwc/;monticore-cli.jar" \
2 automaton.AutomatonTool example/PingPong.aut

Please note again the Unix paths separation with colons.

This will run the automaton DSL tool. The argument example/
PingPong.aut is passed to the automaton DSL tool as input file. Ex-
amine the output on the command line which shows the processing of the
example automaton model.

A simple Experiment

The shipped example automaton DSL (all sources contained in mc-workspace/src and
mc-workspace/hwc) can be used as a starting point. It can easily be altered to specify
your own DSL by adjusting the grammar and the handwritten Java sources and rerunning
MontiCore as described above.

2.2.4 MontiCore Commandline Arguments

The MontiCore generator can be adapted in various ways. For that purpose, MontiCore
accepts a number of parameters:

10
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grammar1 grammar2 . . . the input grammar(s), like Automaton.mc4

-o path Optional output directory for all generated code; defaults to out

-mp path1 path2 . . . Optional list of directories or files to be included for reference res-
olution (equivalent: -modelPath)

-hcp path1 path2 . . . Optional list of directories to look for handwritten code to integrate
(equivalent: -handcodedPath)

-s file.groovy Optional Groovy script to control the generation workflow (equivalent:
-script). For further explanation on how to develop a custom Groovy script see
Chapter 16.

-g path1 path2 handle all grammars found in that path (equivalent: -grammars)

-fp path1 path2 Optional list of directories to look for handwritten templates to integrate
(equivalent: -templatePath)

-f Optional parameter that specifies whether the code generation should be enforced, i.e.
disable incremental code generation (default is false; equivalent: -force)

-d Optional parameter that specifies whether developer level logging should be used (de-
fault is false; equivalent: -dev). This option selects a different predefined Groovy
script leading to a different Log configuration.

-cl file.xml Optional logback configuration file to customize the logger, e.g. log level,
message format (equivalent: -customLog). An explanation on how to write such a
logback.xml is available here: https://logback.qos.ch/manual/

-h help (equivalent: -help)

When composing grammars, dependent grammars need to be located in the model path
using the -mp option. The -g option is used, when you want to generate code from all
grammars that can be found in that directory.

Only the most important parameters can be directly given by arguments. For a deeper
control of the generation workflow, including various configuration options, it is possible
to use a Groovy script. For example, Groovy can be used to adapt the generation process
in such a form, that the generated classes are EMF compatible and then fully integrated
with any EMF tool (cf. Chapter 16).

2.3 Using MontiCore in Eclipse

It is possible to use MontiCore as a Maven plugin. For getting started with MontiCore as
a Maven plugin using Eclipse, the following is to do:

2.3.1 Setting up Eclipse

Before importing the example project and executing MontiCore as a Maven plugin, please
make sure Eclipse is configured properly or configure it as follows:

11
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1. Download and install Eclipse (or use an existing one)

2. Open Eclipse

3. Install needed Plugins

• Help > Install new Software

• Make sure the M2E (Maven 2 Eclipse) Plugin3 is installed

• Install the following MontiCore M2E Extension4

– Install MontiCore 4 (or higher) extension

– Install SE Groovy extension

• For the Compiler:

– Install the M2E connector for the Eclipse JDT Compiler5

4. Make sure to configure Eclipse to use a JDK instead of an JRE

• Window > Preferences > Java > Installed JREs

2.3.2 Importing the Example

The shipped example automaton DSL6 can be used as a starting point. Once imported
into Ecplise, it can easily be altered to specify your own DSL by adjusting the grammar
and the handwritten Java sources and rerunning MontiCore as described in Section 2.3.3.
To import the example do the following:

1. Download and unzip the Automaton example6

2. Open Eclipse and select

• File > Import > Maven > Existing Maven Projects > next

• Click on the Browse.. button and use the folder holding the pom.xml from the
automaton example.

2.3.3 Running MontiCore

To execute the MontiCore Maven plugin and thus process a given grammar and generate
the Java code for the DSL infrastructure, do the following:

• Right click on the project

• Run as > Maven install
3http://download.eclipse.org/technology/m2e/releases
4 https://nexus.se.rwth-aachen.de/update-site/
5 http://download.jboss.org/jbosstools/updates/m2e-extensions/

m2e-jdt-compiler/
6http://www.monticore.de/gettingstarted/Automaton-4.5.3.zip
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MontiCore will be launched and the following steps will be executed:

1. The grammar specified in the pom.xml will be parsed and processed by MontiCore.

2. Java source files for the corresponding DSL infrastructure will be generated
into the default output directory ../target/generated-sources/monticore
/sourcecode. This infrastructure consists of:

• /automaton/_ast containing the abstract syntax representation of the au-
tomaton DSL (cf. Chapter 5).

• /automaton/_cocos containing infrastructure for context conditions of the
automaton DSL (cf. Chapter 10).

• /automaton/_od containing infrastructure for printing object diagrams of the
automaton DSL.

• /automaton/_parser containing the generated parsers which are based on
ANTLR (cf. Chapter 6).

• /automaton/_symboltable containing infrastructure for the symbol table
of the automaton DSL (cf. Chapter 6).

• /automaton/_visitor containing infrastructure for visitors of the automa-
ton DSL (cf. Chapter 9).

• /reports/Automaton containing reports created during the processing of the
automaton grammar.

3. The output directory will also contain a log file of the executed generation process
monticore.YYYY-MM-DD-HHmmss.log.

After installing and executing MontiCore in Eclipse, your workspace should look similar
to Figure 2.1.

2.4 Using MontiCore in IntelliJ IDEA

For getting started with MontiCore as a Maven plugin using IntelliJ do the following:

2.4.1 Setting up IntelliJ IDEA

1. Download and install IntelliJ IDEA (or use your existing installation)

• Hint for Students: You get the Ultimate version of IntelliJ for free

2. Open IntelliJ IDEA
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Eclipse

Figure 2.1: Eclipse after importing the example project and executing MontiCore

2.4.2 Importing the Example

The shipped example automaton DSL6 can be used as a starting point. Once imported
into IntelliJ, it can easily be altered to specify your own DSL by adjusting the grammar
and the handwritten Java sources and rerunning MontiCore as described in Section 2.4.3.
To import the example do the following:

1. Download and unzip the Automaton Example6

2. In the IDE select: File > Open

3. Select the folder holding the pom.xml

2.4.3 Running MontiCore

To execute the MontiCore Maven plugin and thus process a given grammar and generate
the Java code for the DSL infrastructure, do the following:

From the Maven Projects menu on the right select Automaton > Lifecycle > install (double
click). MontiCore will be launched and the following steps will be executed:

1. The grammar specified in the pom.xml will be parsed and processed by MontiCore.

2. Java source files for the corresponding DSL infrastructure will be generated
into the default output directory ../target/generated-sources/monticore
/sourcecode. This infrastructure consists of:

• /automaton/_ast containing the abstract syntax representation of the au-
tomaton DSL (cf. Chapter 5).

14
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• /automaton/_cocos containing infrastructure for context conditions of the
automaton DSL (cf. Chapter 10).

• /automaton/_od containing infrastructure for printing object diagrams of the
automaton DSL.

• /automaton/_parser containing the generated parsers which are based on
ANTLR (cf. Chapter 6).

• /automaton/_symboltable containing infrastructure for the symbol table
of the automaton DSL (cf. Chapter 6).

• /automaton/_visitor containing infrastructure for visitors of the automa-
ton DSL (cf. Chapter 9).

• /reports/Automaton containing reports created during the processing of the
automaton grammar.

3. The output directory will also contain a log file of the executed generation process
monticore.YYYY-MM-DD-HHmmss.log.

After installing and executing MontiCore in IntelliJ IDEA, your workspace should look
similar to Figure 2.2.

Prof. Dr. B. Rumpe

Lehrstuhl für 

Software Engineering

RWTH Aachen

Page 2

IntelliJ IDEA

Figure 2.2: IntelliJ IDEA after importing the example project and executing MontiCore

This chapter explained the technical setup for using MontiCore. After installing MontiCore
as described above it can be used to develop new modeling languages and generators as
described in subsequent chapters. One possibility is of course to start with one of the
provided examples and modify it for your own purposes.
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Chapter 3

Architecture of a Model Processor

This chapter overviews the standard architecture of MontiCore tool. It shows how the
architecture structures the features and capabilities such a tool offers. This is a prerequisite
to understand the usage of model-based tool processors, as well as how to define and adapt
the processing.

It is noteable that MontiCore as well as its components and derivates cannot only be
used for generation, but also for deep analysis, transformation in general or also for inter-
pretation at runtime, but in the following, we concentrate on the widely used generative
aspect.

Familiarity with the concepts of model, modelling language, model transformation and
generator, as discussed in [CFJ+16, Rum16, Rum17], is a prerequisite to understand this
chapter.

3.1 Structure of a Model Processor - External View

There are many forms of model processing. Each first step processes one or more models,
then applies some internal transformations and finally produces artifacts. Often, these are
partial or even completely executable programs written in a GPL. It is also possible to
produce models of another language, documentation, proof obligations to be handled by a
model checker or a verifier, websites in html, or overview drawings.

The generated code typically uses some existing frameworks, the operating system and
other platform specific code. However, generators need high flexibility and smartness
enable incorporation of handwritten code, platform specific adaptations of the generated
code, predefined components, and possibly project or even user specific preferences.

Classical compilers embed concepts to manage this within a programming language through
imports of external frameworks, compiler pragmas or a macro preprocessor. This is in con-
trast to model-based generation where the model typically only carries the domain knowl-
edge, while the parameterized generator adds technical details and allows to fill adaptation
points in form of generator scripts and templates.

Figure 3.1 shows the external view on such a generator and the artifacts used and produced.
Different persons may adopt different roles providing and using parts of the artifacts that
occur in a model-based generative project.
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Figure 3.1: Structure of a generator - external view

The tool provider develops the generator as well as the runtime system that cooperates
with the generated code.

The tool smith customizes the generator. The tool smith can add many and project-specific
scripts to orchestrate the generator or introduce templates that provide code snippets to be
copied into the generated code. Both, scripts and templates, are usually dependent on the
target platform, the operating system, hardware, the frameworks, and external components
included into the system, etc. In contrast to scripts and templates, models only contain
application or domain specific information, but is target technology independent.

3.2 Internal Architecture of a Generator

A generator is typically decomposed into several components as shown in Figure 3.2.
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Figure 3.2: Internal architecture of a generator
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3.3. Tool Workflow On The Top Level

A model loader handles the loading of all needed models and their transformation in an
internal accessible structure. The MontiCore language workbench mainly uses parsers,
assuming that the models are stored textually in individual file artifacts. This assumption
may be violated if the models are stored in a data base or only one large file is used to
store all models.

Parsers produce the internal representation, called abstract syntax (AST)1 of the loaded
models. The second part of the frontend contains a library of data structures and functions
to check the context conditions on the input models, or load further needed models, to
ensure the resulting input AST is well formed.

The central part of a generator transforms the input AST into an output AST. That
may be a rather complex transformational mapping from one kind of models into another
kind, or a relatively simple augmentation by additional information. MontiCore provides
the capability to translate between different kinds of ASTs including, for example, the
translation from any source language to Java. MontiCore also supports to attach specific
templates to AST nodes, such that parts of the generator intelligence can be deferred to
the templates while selection of the appropriate templates is part of the augmentation of
the output AST and decided in the transformation part.

The backend of a generator fokusses on the generation of artifacts, such as code, analysis
results, documentation or other forms of models. It consists of a template engine that pro-
cesses the output AST together with a number of standardized as well as project-specific
templates, which describe the concrete shape of the resulting artifacts. This process is
highly configurable and adaptive, e.g. using a hook point mechanism provided by Monti-
Core.

The three processing steps are connected via a main control as shown in Section 3.3 or a
workflow written in a Groovy script that controls the transformations and generation as well
as a larger function library that facilitates to build symbol tables, arrange transformations,
set specific template configurations, etc.

Figure 3.3 overviews the chapters containing the appropriate information about how to
develop each component for your own model parser.

3.3 Tool Workflow On The Top Level

Listing 3.4 shows a Java main method that puts the different modules of a DSL tool in
a linear workflow. It defines the tool’s main control structure and serves as blueprint for
other DSL processing tools. This example uses the Automaton DSL which is also used
in larger parts of this report. Details, e.g. on the methods used, can be found in the
corresponding chapters respectively the complete example in the MontiCore project.

Line 4 identifies the file of an automaton model from the arguments. In lines 7-10 the
parser AutomatonParser (s. Chapter 6) is used to parse the automaton model. Based

1"AST" traditionally also stands for abstract syntax tree, but our ASTs often are full graphs, because
they consist of a spanning sub-tree plus useful extra information and links.
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on the resulting AST, the symbol table (s. Chapter 9) is created (l. 13). Lines 16-22 show
an example resolution of a state symbol.

Since the parser can only identify context-free parsing errors (s. Chapter 10) additional
context sensitive constraints have to be validated (e.g., there must exist at least one initial
and one final state). For this purpose, an AutomatonCoCoChecker object is created,
which can be configured with concrete context conditions (ll. 25-30). The checkAll
method checks all registered context conditions (l. 33). Next, the model is analyzed. Visi-
tors provide a decent infrastructure to traverse the AST and operate on it (s. Chapter 8).
Here, the number of states is calculated (l. 38).

Finally, the model is pretty printed (l. 42). It uses MontiCore’s generator engine (cf. Chap-
ter 13). Pretty printing serves several purposes: On the one hand, the resulting model may
be easier maintainable or simply stored as documentation. One the other hand, the pretty
printing process helps to check, whether the parsing and AST construction was complete
and correct. Usually, but not in this example, an executable implementation of the au-
tomaton model would also be generated.

This example only covers the essence of working with an implemented DSL. There are
many other possibilities which are covered in the corresponding chapters.
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3.3. Tool Workflow On The Top Level

Java «hw» AutomatonTool1 public class AutomatonTool {
2 public static void main(String[] args) {
3 // Retrieve the model name
4 String model = args[0];
5

6 // setup the language infrastructure
7 AutomatonLanguage lang = new AutomatonLanguage();
8

9 // parse the model and create the AST representation
10 ASTAutomaton ast = parse(model);
11

12 // setup the symbol table
13 Scope modelTopScope = createSymbolTable(lang, ast);
14

15 // can be used for resolving names in the model
16 Optional<Symbol> aSymbol =
17 modelTopScope.resolve("Ping", StateSymbol.KIND);
18 if (aSymbol.isPresent()) {
19 Log.info("Resolved state symbol \"Ping\"; FQN = "
20 + aSymbol.get().toString(),
21 AutomatonTool.class.getName());
22 }
23

24 // setup context condition insfrastructure
25 AutomatonCoCoChecker checker = new AutomatonCoCoChecker();
26

27 // add a custom set of context conditions
28 checker.addCoCo(new StateNameStartsWithCapitalLetter());
29 checker.addCoCo(new AtLeastOneInitialAndFinalState());
30 checker.addCoCo(new TransitionSourceExists());
31

32 // check the CoCos
33 checker.checkAll(ast);
34

35 // Now we know the model is well-formed
36

37 // analyze the model with a visitor
38 CountStates cs = new CountStates();
39 cs.handle(ast);
40

41 // execute a pretty printer
42 PrettyPrinter pp = new PrettyPrinter();
43 pp.handle(ast);
44 System.out.println(pp.getResult());
45 }
46 }

Listing 3.4: Example tool for the Automaton DSL
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Chapter 4

MontiCore Grammar for Language and
AST Definitions

In MontiCore, grammars are the central notation from where a lot of infrastructure in-
cluding the language parser and the internal representation of a model (called the abstract
syntax, short AST) are derived.

This chapter explains the MontiCore grammar format. It discusses productions defining
the different types of nonterminals and their relations, context conditions that define the
well-formedness of a grammar, and additional concepts that allow to further configure the
processing of or code generation from MontiCore grammars.

MontiCore grammars describe the context-free syntax of languages in a notation based
on the Extended Backus Naur Form (EBNF, [ASU86]) and the ANTLR tool [Par13]. In
addition, a MontiCore grammar provides convenient constructs for the specification of
commonly used options and additional context-sensitive concepts of languages. As Mon-
tiCore creates Adaptive LL(*) parsers, it also supports semantic predicates, which make
it possible to describe common context free parsable languages. However, MontiCore’s
main purpose of is to develop DSLs, most of which have a rather straightforward syntax.
Therefore, MontiCore has been developed with comfort and agility as primary goals.

A MontiCore grammar defines the concrete syntax and the abstract syntax of a language
in one artifact. That is, from a grammar MontiCore derives

• the parser for the concrete syntax (cf. Chapter 6),

• the data structure for the abstract syntax (AST, cf. Chapter 5),

• the transformation filling the AST when parsing a model, and

• infrastructure to manage symbols and scopes.

The major part of the frontend of a generator tool is generated using a MontiCore grammar.
Furthermore, MontiCore provides inheritance, extension and overriding mechanisms for
productions allowing an improved reuse of sublanguages (cf. Chapter 7). However, this
chapter focuses on syntax and semantics MontiCore grammars.

Each grammar in MontiCore consists of a head and a body. The head comprises the
package declaration, import statements as well as the name of the grammar. Furthermore,
it may mark a grammar as a component or define super-grammars which will be explained
in Chapter 7.



4. MontiCore Grammar for Language and AST Definitions

MCG1 grammar MinimalExample extends de.monticore.MCBasics {
2 A = "Hello" B ;
3 B = Name "!";
4 }

Listing 4.1: Minimal grammar example

A grammar’s body comprises four kinds of statements that may be specified in arbitrary
order:

• productions (like A and B) are the main elements of a grammar and constitute the
syntactic specification of the language

• lexer productions help describing the small tokens, such as names, values, keywords
that are the atoms, which the grammar reads

• grammar options which allow to configure the grammar

• specific grammar concepts which further extend the capabilities of language specifi-
cation in the grammar

For reference purposes we have included an EBNF version of the MontiCore grammar in
Section 4.6. It describes the MontiCore grammar using itself a MontiCore grammar. To
avoid confusion when describing grammars with grammars, we avoid the direct reference
to the EBNF-nonterminals in the following explanations, but use examples only.

4.1 Lexical Tokens

The first step to process a model it the lexical analysis which is done by a lexer. The
lexer (also called scanner) segments the sequence of input characters describing a model
into a sequence of tokens. These tokens are passed to the parser to create AST objects
[Völ11, ASU86].

Typical forms of tokens are

• keywords, like "if"

• operators, like "++", ">>", "*",

• delimiters, like "(", ",",

• values, like 3.2, 42,

• names, like Person and age,

• qualified names, like de.monticore.dex.Person or

• whitespaces that are ignored by the grammar.
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4.1. Lexical Tokens

Individual tokens can be included as terminals (like "if") directly in the productions and
thus need no explicit rules. On the other hand, it is possible to introduce nonterminals that
stand for a single token or a class of tokens, such as for all numbers, strings or names. The
nonterminals defined via lexical productions thus will contribute to the abstract syntax in
form of attributes, but not introduce new AST classes.

4.1.1 Definition of Tokens using Regular Expressions

Lexical productions are a simplified form of production and consist of a left-hand side,
i.e. the name of the token, and a right-hand side, i.e. the body of the production. The
production body defines the structure of a token by a regular expression. If not specified
through an explicit type in the production (see below), a token results in a value of type
String. The token is later stored as an attribute of the resulting type in the AST named
like the token. If the input matches the regular expression defining this token, the lexer
recognizes a nonterminal and produces a token.

MCG1 token SimpleName = ('a'..'z'|'A'..'Z')+ ;
2

3 token SimpleString = '\"' ('a'..'z'|'A'..'Z')* '\"';

Listing 4.2: Lexical productions for SimpleName and SimpleString

Listing 4.2 shows a standard definition of two nonterminals as tokens called SimpleName
and SimpleString. SimpleName is defined as a sequence of upper and lower case letters
requiring at least one letter to be present. The second lexical production introduces the
nonterminal SimpleString defined as a sequence of upper and lower case letters, which
are embedded in quotation marks. In this case, the sequence may be empty.

The definition of lexical rules corresponds to regular expressions, which have the following
constituents:

• Constant strings surrounded by single or double quotes, like 'st' or "st".

• A range of characters given by lowerChar..upperChar.

• The | separates alternatives.

• Grouping uses parentheses ( and ).

• The character ~ negates, that means the expression matches what is not part of the
not negated expression, i.e., the expression without ~, for example ~(’a’|’b’).

• The + sign denotes repetition of one or more times and can be added to nonterminals
or groups.

• * is interpreted as zero or more times.

• ? specifies zero or one-time.
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4. MontiCore Grammar for Language and AST Definitions

MCG1 token NUM_INT =
2 ('0'..'9')+ (EXPONENT)? (SUFFIX)? ;
3

4 fragment token SUFFIX =
5 'f'|'F'|'d'|'D' ;
6

7 fragment token EXPONENT =
8 ('e'|'E') ('+'|'-')? ('0'..'9')+ ;

Listing 4.3: Lexical productions for Numbers using token fragments

Lexical definitions may be reused in other definitions to make definitions more readable and
allow reuse of definitions at several places. Lexical productions marked as fragments, as
it is the case for SUFFIX and EXPONENT in Listing 4.3, can only be used in other lexical
productions and cannot be nested recursively. Fragments are not passed to the parser but
allow a modular definition of lexicals. Therefore, only NUM_INT results in a String that
is stored in the AST, but the string will contain the fragments.

4.1.2 Actions to Process a Token

Actions (i.e., Java code) can be embedded into lexical definitions to modify the lexer result
directly. So actions don’t contribute to the definition of the concrete syntax, but extend
the parser by mapping concrete syntax to elements stored in the abstract syntax or for
completely different things.

MCG1 token WS =
2 (' '
3 | '\t'
4 | '\r' // Macintosh
5 | '\n' // Unix
6 ) :{_channel = HIDDEN;};

Listing 4.4: Lexical productions for white spaces

To allow an arbitrary number of white spaces and line breaks in a model, MontiCore has
a predefined nonterminal WS (cf. Listing 4.4). The last line encloses Java code and avoids
that this token is passed to the parser. Thus, it is not necessary to explicitly place the
nonterminal WS in the grammars. We also refer to ANTLR for a detailed discussion.

In the example in Listing 4.5, the embedding quotation marks are removed from the token
before it is passed to the parser. It is allowed to add actions at the end of a lexical
production for a free computation of the result.

Listing 4.6 shows how to adapt the types for the generated attributes in the AST. If the
right side of a production is a lexical production like Name, the corresponding attribute is
of type String. We can change the default attribute type by adding a predefined type
like float separated by a colon. The supported predefined types are for example float,
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4.1. Lexical Tokens

MCG1 token STRING = '"'
2 ( ESC
3 | ~('"' | '\\' | '\n' | '\r' )
4 )*
5 '"'
6 :{setText(getText().substring(1, getText().length() - 1));};

Listing 4.5: Lexical production for strings without quotation marks, which are removed in
a Java action

int and char. The corresponding default conversion methods translate the parsed value
of type String to the derived type.

MCG1 // token results can be converted
2 // here NUMBER becomes type float
3 token NUMBER = ('0'..'9')* '.' ('0'..'9')* 'f': float;
4 A2 = b:NUMBER c:NUMBER*;
5

6 // while Name is stored as a String
7 A1 = b:Name c:Name;

Listing 4.6: Changing the result type of lexicals

If the default methods do not work, we can implement our own conversion method as
shown in Listing 4.7. The token Cardinality should be adapted by the type int. The
declared variable x has the default type String and we can add a Java-Block to convert
the String to the desired type int.

MCG1 // token results get adapted:
2 // type conversion to int
3 // by Java code that does the conversion
4 token
5 CARDINALITY = ('0'..'9')+ | '*' :
6 x -> int : { // Java code:
7 if (x.equals("*"))
8 return -1;
9 else
10 return Integer.parseInt(x.getText());
11 };

Listing 4.7: Add a conversion method for lexical types

4.1.3 Predefined Tokens

MontiCore is shipped with some basic grammars meant for reuse as described in Section 7.4.
These are, among others:
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4. MontiCore Grammar for Language and AST Definitions

• MCBasics,

• MCLiterals and

• Types

Tip 4.8 Predefined Tokens

Predefined tokens can be found in the MontiCore repository, for example in the
following component grammars:

Files1 Repository: MontiCore/monticore github
2 Directory: monticore-grammar/src/main/grammars/
3 Files: de.monticore.MCBasics.mc4
4 de.monticore.MCLiterals.mc4
5 de.monticore.Cardinality.mc4
6 de.monticore.Completeness.mc4
7 de.monticore.MCNumbers.mc4
8 de.monticore.MCHexNumbers.mc4
9 de.monticore.StringLiterals.mc4

For an inclusion in a grammar use, e.g., de.monticore.MCBasics or include
the directory in the grammar path. A detailed description can be found in Chap-
ter 17.

Table 4.9: Predefined tokens of the MCBasics and MCLiterals component grammars.
Token Value Type Defined in
WS - MCBasics
SL_COMMENT - MCBasics
ML_COMMENT - MCBasics
NEWLINE -1 MCBasics
Name String MCBasics

Num_Long long MCLiterals
DecimalIntegerLiteral long MCLiterals
HexIntegerLiteral long MCLiterals
DecimalDoublePointLiteral float MCLiterals
DecimalFloatingPointLiteral double MCLiterals
Char char MCLiterals
String String2 MCLiterals

When including the available basic grammars MCBasics and MCLiterals, we can use
a number of predefined tokens given as described in Table 4.9.3 All tokens (cf. Table 4.9,

1fragment, not a complete token
2delimiters are removed
3Please note that Types does not define tokens, but only parser nonterminals. MCLiterals also

defines additional parser nonterminals.
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4.2. Productions

column 1) are stored as String but the MCLiterals grammar also provides nonterminals
(cf. Table 4.9, column 2) that use these tokens, but their AST classes also provide a method
getValue() that converts the stored String to a better usable type. See Chapter 17
for details.

Furthermore, there are four token nonterminals defined in the MCBasics grammar that
are not passed to the parser:

NEWLINE tokens are not stored, but used as token separator

WS tokens are not stored, but used as token separator

SL_COMMENT describes single line comments in Java style, like //.... Those comments
are not passed to the parser, instead they are attached to the AST object which is
created by the parser and therefore can be retrieved if necessary (cf. Section 5.7)

ML_COMMENT like /* ... */ do the very same, but can span over several lines.

Multi line comments are not nested like in Java (and opposed to C++). In case this form
of comments is not desired, the MCBasics grammar should not be used.

The Types grammar defines nonterminals that provide different kinds of data types. For
example, primitive ones such as int or boolean, and reference types, arrays, generics or
the definitions for widely reusable types ImportStatement and QualifiedName. See
Table 4.10 for the list of the most interesting nonterminals.

Table 4.10: Predefined nonterminals of Types grammar.
Nonterminal Meaning
Type Interface for all forms of types
ReferenceType Interface
QualifiedName Sequence of Names, sparated by "."
PrimitiveType "boolean", etc.
WildcardType Single type argument, using wildcard "?"

4.2 Productions

A production consists of a left-hand side that defines a new nonterminal (e.g. A) and the
right-hand side, i.e., the body of a production describing how the nonterminal is defined.
Listing 4.11 shows some simple examples for productions. They are rather similar to lexical
productions. In addition, productions support recursion (thus becoming really context-free
and not just regular) and a number of techniques to control how to map the productions
to the AST classes. The mapping is discussed in Chapter 5 and partially introduced here.

The body of a production is composed of terminals and nonterminals, both of which can be
part of alternatives, be optional or occur multiple times. The MontiCore grammar allows

• constant strings surrounded by double quotes, e.g., "st",
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4. MontiCore Grammar for Language and AST Definitions

MCG1 A = "Hello" "World" "." ;
2 B = ("Good Morning" Name ) | A ;
3 C = "Hello" (Name || ",")+ ;
4 D = A B* (C | D)
5 | B* A ;

Listing 4.11: Some production examples

• a range of characters given by lowerChar..upperChar (cf. Listing 4.7),

• the | separates alternatives,

• grouping uses parentheses ( and ),

• + to express repetition, i.e., one or more times and can be added to nonterminals
and groups,

• *, which means zero or more times,

• ?, which means zero or one-time,

• [ C1 |...| Cn ] to express an alternate group of constants (terminals), where
exactly one occurs,

• shorthand notations (NT || T)* and (NT || T)+ to define repetition of the left
nonterminal NT being separated by the right terminal T.

Furthermore, nonterminals allow to structure parsing including mutual recursion (and
only a slight restriction on mutual left recursion). The main differences to the lexical
productions are the possibility to use arbitrary other nonterminals, but also the absence
of negation ~.

Several elements on the right-hand side can be decorated to control the AST:

• Names such as n:NT and n:"st" can be attached to nonterminals and terminals
describing the attributes where they will be stored in the AST.

• The ampersand & can be attached to name-nonterminals like Name& to allow using
keywords as names. For example, this is useful for qualified names in package dec-
larations to allow keywords such as "abstract" within a package declaration. Thus,
package de.mc.abstract is a valid package within a class diagram even though
abstract is also a keyword in the class diagram language.

• References to other nonterminals can be attached using @, like NT1@NT2. For Ex-
ample, Name@State expresses that the name references an entity that is defined by
a State nonterminal, i.e., elsewhere there will be a State defined with this name.

The following describes further details.
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4.2. Productions

4.2.1 Terminals

Terminals are enclosed in quotation marks (e.g. "if" or "!") and are usually not part of
the abstract syntax (cf. Chapter 5). In case a terminal is semantically relevant, e.g. like
a terminal in an alternative, there are two options to mark it as relevant: Naming it or
surrounding it with square brackets (cf. Listing 4.12). In the first case, the given name of
the terminal is used as attribute. In the latter case, a boolean stores whether the terminal
occurred in the model. The mapping of relevant terminals to the AST is discussed in
Chapter 5.

MCG1 E = "Hello"
2 (who: "World" | who: "Tom")
3 "!";
4

5 F = ["initial"]?;

Listing 4.12: Augmentation of terminals for storage in the AST

4.2.2 Enumeration

If the language describes an alternative of multiple terminals resulting in boolean at-
tributes, there is a possible alternative for the abstract syntax. Instead of mapping each
terminal to a boolean attribute, an Integer with constants mimicking an enumeration can
be used. To use this variant, the alternatives are enclosed in square brackets (Listing 4.13).
In this case it is necessary to add a name in front of the square brackets. As shown, each
terminal can be named, e.g., PRIVATE:"-", which will result in a constant of the chosen
name. However, as described in Chapter 5, MontiCore will derive a name automatically if
none is given explicitly, such as public for "public". In case the default derivation is
not desirable, e.g. "-" by default results in minus, an explicit name can be added. Please
note that it is allowed to add a name that is equivalent to the one that would be derived
automatically.

MCG1 G = vis:[ PUBLIC:"+" | "public" |
2 PRIVATE:"-" | "private"];

Listing 4.13: A choice of alternate terminals is stored as integer

Instead of using a list of keywords (i.e. relevant terminals), it is also possible to use an
enumeration nonterminal. As shown in Listing 4.14, the MontiCore grammar language
allows to define enumerations directly by using the keyword enum followed by a name
and a body consisting of a list of constants seperated as alternatives. This enumeration
nonterminal can be used like any other nonterminal.
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MCG1 enum VISIBILITY =
2 PUBLIC:"+" | "public" |
3 PRIVATE:"-" | "private" ;
4 H = vis:VISIBILITY;

Listing 4.14: Explicit definition of an enumeration

4.2.3 Nonterminals

A nonterminal is defined using a production, where the nonterminal on the left-hand side
is replaced by the body of the production on the right-hand side. A nonterminal can be
part of an alternative (A|B), be optional A? or occur multiple times indicated by * or +
(at least one). Nonterminals are always mapped to the AST (cf. Chapter 5). For every
nonterminal there is a class generated for the AST. Nonterminals on the right-hand side
of a production result in compositions stored as attributes with access methods.

MCG1 Automaton =
2 "automaton" Name "{"
3 ( State | Transition )*
4 "}";

Listing 4.15: Automatic naming of unnamed nonterminals

Both, nonterminals and terminals, can be explicitly named by adding a name and a colon.
In case no explicit name is given, the name of the composition is derived from the nonter-
minal name by lower casing the first letter. Thus, state:State is equivalent to State
in Listing 4.15 which reduces the developer’s writing effort.

There is also a convenient way of defining comma separated lists. This is a frequently
occurring pattern for which MontiCore provides the following construct y:(A || ",")+
that is equivalent to y:A("," y:A)*. On the left (i.e. the A), there must be a single
nonterminal, while on the right a terminal is needed. The definition of the nontermi-
nal QualifiedName is given as (Name || ".")+ and demonstrates the usage of this
feature. Accordingly, y:(A || ",")* is equivalent to (y:A("," y:A)*)?, that also
allows an empty repetition.

4.2.4 Interface Nonterminals

A unique feature is the possibility to define interface nonterminals. An example of an
interface nonterminal is given in Listing 4.17. Here, the production I defines an interface
nonterminal and the productions A and B implement the interface I. In the production
C, interface I is used like a normal nonterminal on the production’s right-hand side. Se-
mantically, an interface production is equivalent to a production having its implementing
productions as alternatives on the right-hand side as shown in Listing 4.18. Interfaces can
be used to extend languages and thus are one of the core concepts of language composition
(cf. Chapter 7). The main and really important advantage here is that interface I does not
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refer to the implementation nonterminal A, but in the opposite direction. This is especially
interesting for language extension.

Tip 4.16 When to use an Interface Nonterminal

Interface nonterminals share a lot of the characteristics of interfaces in program-
ming languages. Using an interface nonterminal allows to decouple the definition of
certain structures of a language, while leaving open "holes" (extension points).

It is worth introducing an interface nonterminal for important language elements,
such as Expression or Statement, especially when it is intended to extend the
language later. Interfaces therefore serve as extension points or potentially also
variation points, in case future language extension or embedding is planned.

An interface does not prescribe the possible concrete syntax, while abstract non-
terminals (described below) do.

MCG1 interface I ;
2 A implements I = "...1" ;
3 B implements I = "...2" ;
4 C = I "..." ;

Listing 4.17: An interface nonterminal and several nonterminals implementing it

MCG1 I = A | B ;
2 A = "...1" ;
3 B = "...2" ;
4 C = I "..." ;

Listing 4.18: Alternative to interface nonterminal in Listing 4.17 accepting the same con-
crete syntax, but I knows A and B

Furthermore, productions of interface nonterminals can have a body defining a signature for
all nonterminals implementing the interface nonterminal. That is, an interface nonterminal
I can define the nonterminals and relevant terminals that all nonterminals implementing I
have to be a valid implementation. Considering the example in Listing 4.19, the interface
I defines the signature x:Integer and y:Name* for all nonterminals implementing I.
Thus, both entities need to be part of the body of A and B that implement I. However,
as demonstrated, the concrete syntax and order of the elements is not prescribed by I,
which allows flexible adaptation of the concrete syntax of nonterminals implementing an
interface. So, interface bodies are mainly a mechanism to add functionality to the abstract
syntax nodes described in Chapter 5.

4.2.5 Extending Nonterminals

The MontiCore grammar format allows to extend the production of an already defined non-
terminal by additional alternatives without modifying the original definition. Listing 4.20
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MCG1 interface I = x:Integer y:Name* ;
2 A implements I = x:Integer "...1" y:(Name || ",")* ;
3 B implements I = y:Name* "...2" x:Integer "..." ;
4 C = I "..." ;

Listing 4.19: Interface nonterminal defining its signature

shows nonterminal B extending the already defined nonterminal A. The production of the
nonterminal C uses A on its right-hand side and thus also includes the alternative of B. For
parsing, extension B is equivalent to adding the extending nonterminal B as new alternative
to the extended nonterminal A. We chose a definition inverse to EBNF in order to provide
an object-oriented solution, where subclasses can extend their superclasses without any
changes in the definition of the superclass. This is a second core mechanism to extend lan-
guages and reuse grammars. Listing 4.21 shows an equivalent alternative to Listing 4.20
that accepts the same concrete syntax.

MCG1 A = "...1";
2 B extends A = "...2";
3 C = A;

Listing 4.20: Extending the production of a nonterminal

MCG1 A = "...1" | B;
2 B = "...2";
3 C = A;

Listing 4.21: Equivalent alternative to extension in Listing 4.20accepting the same concrete
syntax, but A knows and thus is coupled to B

4.2.6 Abstract Nonterminals

An abstract nonterminal is similar to an interface nonterminal, but it is introduced by
the keyword abstract. Abstract nonterminals can bundle nonterminals as shown in the
example in Listing 4.23. Here, AutomatonElement is an abstract nonterminal. The
nonterminals State and Transition extend the nonterminal AutomatonElement,
meaning that both states and transitions are elements of an automaton. The nonterminal
AutomatonElement can now be used on a production’s right-hand side to allow both,
states and transitions. Listing 4.24 shows an alternative to Listing 4.23 that accepts the
same concrete syntax.

Abstract nonterminals can be extended by other (abstract) nonterminals by using the key-
word extends. This mechanism can be used to bundle other productions as alternatives
and can be used to mark extension points more clearly. That means, the grammar is
designed to be extended later by the addition of further nonterminals that extend the
abstract ones. In contrast to interface productions, it is possible to add methods using
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Tip 4.22 When to use Nonterminal Extension

Extension on nonterminals (like A in Listing 4.20) shares characteristics with
class extension. On the concrete syntax that means that an already implemented
nonterminal A gets additional alternatives (so to say "subclasses" like B). This can
also occur, if the original nonterminal is extended.

The newly introduced nonterminal B is usually not used explicitly in the concrete
syntax at all, but plays a role in the abstract syntax.

If A is meant for extension, it is usually better to make it an interface, but when
a default version of the concrete syntax exists, then this needs to be defined in an
ordinary nonterminal and then extended in sub-nonterminals.

MCG1 abstract AutomatonElement;
2

3 State extends AutomatonElement = "...1" ;
4

5 Transition extends AutomatonElement = "...2" ;

Listing 4.23: Abstract production in a grammar

AST rules (cf. Chapter 5). As abstract nonterminals are mapped to abstract classes, a
production can only extend one abstract production but implement many interfaces.

MCG1 AutomatonElement = State | Transition;
2

3 State = "...1" ;
4

5 Transition = "...1" ;

Listing 4.24: Alternative to abstract nonterminal in Listing 4.23 accepting the same con-
crete syntax

4.2.7 Starting Nonterminal

The start (axiom) of a MontiCore grammar is by default the first nonterminal defined
within the grammar. However, in case a different nonterminal should act as the starting
nonterminal of the language, this can be explicitly stated. To mark a nonterminal as the
start, it is introduced by the keyword start, as shown in Listing 4.25. This is especially
helpful, when the starting nonterminal is inherited.

4.2.8 Infix Operations and Priorities

MontiCore can of course define an expression language that uses infix operations. For their
convenient description, MontiCore provides a possibility to attach priorities to infix opera-
tions and if necessary also the keyword <rightassoc>, which marks the infix operation
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MCG1 grammar Automaton3 extends InvAutomaton, Expression {
2

3 start Automaton;
4

5 // ...
6 }

Listing 4.25: Explicitly setting a top-level nonterminal that is inherited with start

as a right associative. Figure 4.26 shows an example of a typical expression language using
an excerpt of Java.

MCG1 interface Expression;
2

3 CallExpression implements Expression <240> =
4 Expression Arguments;
5

6 MultExpression implements Expression <180> =
7 leftExpression:Expression
8 ( multiplicativeOp:"*"
9 | multiplicativeOp:"/"
10 | multiplicativeOp:"%"
11 )
12 rightExpression:Expression;
13

14 AddExpression implements Expression <170> =
15 leftExpression:Expression
16 ( additiveOp:"+"
17 | additiveOp:"-"
18 )
19 rightExpression:Expression;
20

21 AssignmentExpression implements Expression <60> = <rightassoc>
22 leftExpression:Expression
23 ( assignment:"="
24 | assignment:"+=" // more alternatives ...
25 )
26 rightExpression:Expression;

Listing 4.26: Example for an expression language using priorities for its infix operations

MontiCore allows to define the Expression nonterminal as an interface and then allows
to subsequently add alternatives. Usually many alternatives are infix, but by far not all of
them and thus should get a priority in the form of a enclosed integer <170>. In our example
a+b*c would parse as a+(b*c), because 180>170. Many of the non-infix alternatives
do not need such a priority, but it may be helpful for extension. However, the priority
of prefix operators, like "!" also influences the parsing order. For example "!a && b"
would wrongly be parsed as "!(a && b)", if "!" has lower precedence than "&&".

The advantage of this way of writing down expressions is twofold: (1) the grammar is small
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and simple and thus fairly readable. (2) As discussed in Chapter 5, the abstract syntax will
also appear in its natural form. For a deeper discussion of how to deal with parsing of infix
expressions, that naturally occur to be left recursive, we refer to the standard literature. In
former approaches, left recursion had to be reformulated as a right recursion, which would
lead to a strange AST (the need for its rearrangement after parsing it, respectively).

MontiCore is designed for extensibility and thus iteratively allows to extend the
Expression language by basically adding more and more alternatives. To be able to
add alternatives with priorities in the middle of already existing alternatives, MontiCore
uses explicit numbers as priorities instead of approaches like ANTLR, which use the order
occurrence in the grammar. We also defined our Expression language with larger pri-
ority numbers in steps of 10, allowing to add additional infix alternatives where desired.
This is even possible when extending languages through composition.

The good news is that MontiCore can handle left recursion within its productions. ANTLR
can already handle direct left recursion. MontiCore has expanded this feature for left
recursions that include an interface and implement this interface through many alternatives
as shown in Figure 4.26. This is not general mutual left recursion, but sufficient to allow
extensibility at the fine-grained level MontiCore is designed for.

Tip 4.27 Left-Recursion is Possible

The good news is that MontiCore can handle left recursion within its productions.
ANTLR can already handle direct left recursion.

MontiCore has expanded this feature for left recursion that include an interface
nonterminal and many implementing alternatives.

This is an important advantage in MontiCore, because language embedding and
extension sometimes introduce mutual recursion only across several language com-
ponents, i.e. when an already defined nonterminal Expression shall be extended
with more variants of expressions in an extending grammar.

4.2.9 Restricting the Cardinality of a Nonterminal

In the next Chapter 5, we generally introduce the ast rules. Normally, they do not affect
the concrete syntax, but there is an exception that we want to mention here already. With
a statement like the one given in Listing 4.29 (see Fig. 4.28) it is possible to constrain the
number of occurrences of the nonterminal on the right-hand side by having a minimum
and maximum number. Line 6 shows such a constraint. Any natural numbers are allowed.

4.2.10 Symbols and Scopes

Textual languages use explicit names for referencing any kind of language entities (methods,
classes, attributes, states, signals, etc.) that have been defined elsewhere. For an efficient
management of names and the referenced entities, symbols and a symbol management
infrastructure is helpful.
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Constraining the Cardinality

MG AST-CD

S A
S = y:A*;

A = "...";

ast S = y:A min=2 max=4;

2..4

y

nonterminals result into 
compositions

Figure 4.28: Constraining the cardinality of a nonterminal, when parsing

MCG1 // nonterminals for the concrete syntax
2 S = y:A*;
3 A = "...";
4

5 // constraining occurrences of A in S:
6 ast S = y:A min=2 max=4;

Listing 4.29: Constraining the cardinality of a nonterminal

For a detailed explanation of the definition and usage of symbols and scopes using Monti-
Core’s grammar see Chapter 9.

In order to generate a symbol management infrastructure (cf. Chapter 9), which is usually
not complete, productions can be marked as symbol definitions or visibility restrictions.
With the keyword symbol attached to a production, there has to be a nonterminal Name
on the right-hand side, which introduces a new symbol. The keyword scope attached to
a production indicates that the nonterminal introduces a new scope that includes exactly
that AST node and all its subnodes. All symbols defined in these subnodes are restricted
in their visibility to this scope.

Furthermore, a nonterminal like Name on the right-hand side of a production can be marked
as a reference to another nonterminal by appending @ plus the name of the nonterminal
that is referenced (e.g. Name@State). See Chapter 9 for details.

4.2.11 Passing Code to the ANTLR

Rarely, it is necessary to directly specify additional Java code for the underlying ANTLR
parser. For this purpose, the MontiCore grammar allows to add Java code as shown in the
following example (Listing 4.30).

It is possible to add any piece of code (methods, variables etc.) to the generated parser
class. Sometimes it is necessary to add variables or methods to be used by the actions
defined in the grammar. The variable ltCounter defined in Listing 4.30 counts the
number of LT (<) of type parameters or type arguments and can be used for checking the
correct number of brackets. The method incCounter() allows to increase the counter
by the value passed to the method.

Similar to the extension of the parser shown above, the lexer can be extended with custom
Java code. An example for a lexer extension is shown in Listing 4.31. An additional
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MCG1 concept antlr {
2 parserjava {
3 public int ltCounter = 0;
4

5 public void incCounter(int i){
6 this.ltCounter = this.ltCounter + i;
7 }
8 }
9 }

Listing 4.30: Add Java code to the parser

method capitalize() is added to the lexer. A String passed to this method is returned
with its first letter capitalized.

MCG1 concept antlr {
2 lexerjava {
3 public String capitalize(String s){
4 return de.se_rwth.commons.StringTransformations.capitalize(s);
5 }
6 }
7 }

Listing 4.31: Add Java code to the lexer

These insertions have some restrictions. In particular, it is not possible to extend the list
of imports, which means that all references to external classes need to be fully qualified.
Furthermore, it has proven useful to keep the Java code in the grammars as little as possible
and e.g. delegate all more complex functions to other Java classes.

The parserjava and lexerjava statements will be mapped to two different classes
respectively objects and therefore cannot directly be called from each other. However,
the function getCompiler() can be used from the lexer code to access the parser code.
Please note, however, that the lexer uses a lookahead and thus may have progressed much
further that the parser knows. So controlling the lexer to switch modes for lexing is not
easy / possible from the parser.

4.3 Context Conditions for the MCG Language

As in any other language, a number of context conditions apply for grammars. For the
MontiCore grammar language these rules mainly deal with nonterminals extending or im-
plementing other nonterminals, existence and naming conflicts. The following descriptions
provide details on the actual context conditions (i.e., error codes and messages). The
following notation is used to explain the error messages:

• [A] A is a placeholder for a concrete value during runtime
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• [A]? optional output of A

• [A|B] alternative A or B

• [placeholder=A|B] named alternative

Naming

CoCo 0xA4003 (error)
Expl. The grammar name [grammarName] must not differ from the file name of

the grammar (without its file extension).

CoCo 0xA4004 (error)
Expl. The package declaration [package] of the grammar must not differ from the

package of the grammar file.

CoCo 0xA4005 (warning)
Expl. The name [name] used for the nonterminal [nonterminalName] refer-

enced by the production [productionName] should start with a lower-case
letter.

CoCo 0xA4006 (error)
Expl. The production [productionName] must not use the attribute name

[attributeName] for different nonterminals.

CoCo 0xA4018 (error)
Expl. The production [productionName] must not use the keyword [keyword]

without naming it.
Hint Keywords may only be used without explicit naming whenever there could be

a valid attribute name derived from it.

CoCo 0xA4019 (error)
Expl. The production [productionName]must not use an alternative of keywords

without naming it.

CoCo 0xA4024 (error)
Expl. The production [productionName] extending the pro-

duction [extendedProductionName] must not use the
name [name] for the nonterminal [nonterminalName] as
[extendedProductionName] already uses this name for the nonter-
minal [extendedProductionsNonterminalName].

CoCo 0xA4025 (error)
Expl. The overriding production [productionName] must not use

the name [name] for the nonterminal [nonterminalName] as
the overridden production uses this name for the nonterminal
[overriddenProductionsNonterminalName].
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Implements/Extends

CoCo 0xA2106 (error)
Expl. The abstract nonterminal [name] must not implement the nonterminal

[typeName]. Abstract nonterminals may only implement interface nonter-
minals.

CoCo 0xA2107 (error)
Expl. The abstract nonterminal [name] must not extend the interface nonterminal

[typeName]. Abstract nonterminals may only extend (abstract) nontermi-
nals.

CoCo 0xA2102 (error)
Expl. The nonterminal [name]must not implement the nonterminal [typeName].

Nonterminals may only implement interface nonterminals.

CoCo 0xA2103 (error)
Expl. The nonterminal [name] must not extend the interface nonterminal

[typeName]. Nonterminals may only extend (abstract) nonterminals.

CoCo 0xA2116 (error)
Expl. The interface nonterminal [name] must not extended the [abstract]?

nonterminal [typeName]. Interface nonterminals may only extend interface
nonterminals.

CoCo 0xA4001 (error)
Expl. The production [productionName] overriding a production of a super

grammar must not extend the production [extendedProductionName].
Hint Overriding productions can only implement interfaces.

CoCo 0xA4002 (error)
Expl. The abstract production [productionName] overriding a pro-

duction of a super grammar must not extend the production
[extendedProductionName].

Hint Overriding productions can only implement interfaces.

CoCo 0xA4011 (error)
Expl. The nonterminal [name] must not [extend|astextend] more than one

nonterminal.

CoCo 0xA4012 (error)
Expl. The abstract nonterminal [name] must not [extend|astextend] more

than one nonterminal.

CoCo 0xA4013 (error)
Expl. The AST rule for [nonterminalName] must not [extend] the type

[typeName] because the production already extends a type.
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Existence

CoCo 0xA2025 (error)
Expl. The nonterminal [nonterminalName] must not be defined by more than

one production.

CoCo 0xA2030 (error)
Expl. The production [productionName] must not reference the

[nonterminal|interface nonterminal] [referencedName]
because there exists no defining production for [referencedName].

CoCo 0xA2031 (error)
Expl. The production [productionName] must not use the nontermi-

nal [referencedName] because there exists no production defining
[referencedName].

CoCo 0xA0276 (error)
Expl. The external nonterminal [name] must not be used in a grammar not marked

as a grammar component.

CoCo 0xA0277 (error)
Expl. The abstract nonterminal [name] must not be used without nonterminals

extending it in a grammar not marked as a grammar component.

CoCo 0xA0278 (error)
Expl. The interface nonterminal [name] must not be used without nonterminals

implementing it in a grammar not marked as a grammar component.

CoCo 0xA4014 (error)
Expl. Duplicate enum constant: [enumConstant].
Hint The constants of enumerations must be unique within an enumeration.

CoCo 0xA4015 (error)
Expl. The lexical production [productionName]must not allow the empty token.

CoCo 0xA4016 (error)
Expl. The lexical production [productionName] must not reference the non-

terminal [tokenName] because there exists no lexical production defining
[tokenName].

CoCo 0xA4017 (error)
Expl. The lexical production [productionName] must not reference the nonter-

minal [tokenName] because [tokenName] is defined by a production of
another type than lexical. Lexical productions may only reference nontermi-
nals defined by lexical productions.

CoCo 0xA4020 (error)
Expl. There must not exist more than one AST rule for the nonterminal

[nonterminalName].
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CoCo 0xA4021 (error)
Expl. There must not exist an AST rule for the nonterminal [nonterminalName]

because there exists no production defining [referencedName].

CoCo 0xA4021 (error)
Expl. There must not exist an AST rule for the enum nonterminal

[nonterminalName].

CoCo 0xA4028 (error)
Expl. The AST rule for the nonterminal [nonterminalName] must not use the

same attribute name [attributeName] as the corresponding production
with the type [typeNameInASTRule] as [typeNameInASTRule] is not
identical to or a super type of [typeNameInProduction].

Overriding

CoCo 0xA4007 (error)
Expl. The production for the interface nonterminal [name] must not be overridden.

CoCo 0xA4008 (error)
Expl. The production for the abstract nonterminal [name] must not be overridden

by a production for an interface nonterminal.

CoCo 0xA4009 (error)
Expl. The production for the nonterminal [name] must not be overridden by a

production for an abstract nonterminal.

CoCo 0xA4010 (error)
Expl. The production [productionName] must not be overridden because there

already exist productions extending it.

CoCo 0xA4026 (error)
Expl. The lexical production [productionName] must not use a different type to

store the token than the overridden production.

CoCo 0xA4027 (error)
Expl. The enum production [productionName] must not be overridden.

References

CoCo 0xA4022 (error)
Expl. The production [name] introduces an inheritance cycle. Inheritance may not

be cyclic.

CoCo 0xA4023 (error)
Expl. The grammar [name] introduces an inheritance cycle. Inheritance may not

be cyclic.
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The unique error identifier, like 0xA4023, can also be used to find the source code where
the context condition is checked. Most of the context conditions for MCG can be found
under the following Java package:

Files1 Repository: MontiCore/monticore github
2 Directory: monticore-generator/src/main/java/
3 Package: de.monticore.grammar.cocos

4.4 Semantic Predicates and Actions

Semantic predicates and actions are Java expressions embedded in curly braces and fol-
lowed by a question mark. They allow to check constraints on passed model elements or
inject Java code into the parser, e.g. counters to count opening and closing brackets. The
syntax and semantics of semantic predicates and actions have been adopted from ANTLR,
therefore we don’t include an example here and refer to the ANTLR documentation avail-
able at [Par13] instead. This construct is not very often necessary and potentially only
needs to be used by experts.

Due to the restricted capabilities of the token lexer to read its input and select the right
token, it is, however, sometimes useful to use semantic predicates to help MontiCore to
select the correct parsing form. See Section 18.4.3 for examples.

4.5 Editor assistance for the MCG Language

The MontiCore language is a purely ASCII (UTF-8) based language and thus, grammars
can be modified by any editor. However, MontiCore also provides a specific editor with the
usual assistance, such as highlighting, auto completion and an integration into the Eclipse
and IntelliJ platforms. The editor can be used out of the box.

Tip 4.32 The MontiCore Grammar Editor

A syntax assisting editor including syntax highlighting, auto completion, etc. for
the grammar language can be found here:

Files1 Repository: MontiCore/monticore github
2 Directory: monticore-editor

4.6 EBNF for the MCG Language

This section contains the EBNF form of the context free syntax of the MCG language. It
is usable for understanding the concrete syntax, but not meant for parsing.
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EBNF MCG

1 /*
2 EBNF MCG, Version June, 22nd, 2017.
3 */
4

5 MCGrammar ::=
6 ('package' QualifiedName ';' )?
7 (MCImportStatement )* ('component')?
8 'grammar' Name ('extends' (GrammarReference || ',' )+ )?
9 '{'
10 (Prod | ASTRule | GrammarOption | Concept | StartRule)*
11 '}' ;
12

13 MCImportStatement ::=
14 'import' QualifiedName ('.' '*')? ';' ;
15

16 GrammarReference ::= QualifiedName ;
17

18 Prod ::=
19 LexProd
20 | ClassProd
21 | InterfaceProd
22 | AbstractProd
23 | ExternalProd
24 | EnumProd
25 ;
26

27 StartRule =
28 'start' RuleReference ';';
29

30 //#################### Productions
31

32 LexProd ::=
33 ('fragment')?
34 ('token' ) Name
35 '=' (LexAlt || '|' )+
36 (':' ('{' Action '}' )?
37 (Name ('->' QualifiedName (':' '{' Action '}' )? )? )? )? ';' ;
38

39 ClassProd ::=
40 SymbolDefinition* Name
41 (
42 'extends' (RuleReference ||',' )+
43 |'implements' (RuleReference ||',' )+
44 |'astextends' (GenericType || ',')+
45 |'astimplements' (GenericType || ',')+
46 )*
47 ('{' Action '}' )?
48 ('=' (Alt ('|' Alt )* ) )? ';' ;
49

50 InterfaceProd ::=
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51 'interface' SymbolDefinition* Name
52 (
53 'extends' (RuleReferenceWithPredicates || ',' )+
54 |'astextends' (GenericType || ',')+
55 )* ('=' (Alt || '|')+ )? ';' ;
56

57 AbstractProd ::=
58 'abstract' SymbolDefinition* Name
59 (
60 'extends' (RuleReferenceWithPredicates || ',' )+
61 |'implements' (RuleReferenceWithPredicates || ',' )+
62 |'astextends' (GenericType || ',')+
63 |'astimplements' (GenericType || ',')+
64 )* ('=' (Alt || '|')+ )? ';' ;
65

66 ExternalProd ::=
67 'external' SymbolDefinition* Name GenericType? ';' ;
68

69 EnumProd ::=
70 'enum' Name '=' (Constant || '|')+ ';' ;
71

72 Alt ::= "<rightassoc>"? RuleComponent* ;
73

74 RuleComponent =
75 NonTerminalSeparator
76 | Block
77 | NonTerminal
78 | Terminal
79 | ConstantGroup
80 | SemanticpredicateOrAction
81 ;
82

83 NonTerminalSeparator ::=
84 (Name ':')? '(' Name ('&')? '||' String ')' ('*'|'+');
85

86 Block ::=
87 '(' (Alt ('|' Alt )* ) ')' (('?'|'*'|'+'))? ;
88

89 Option ::=
90 'options' '{' OptionValue '}' ;
91

92 OptionValue ::=
93 Name '=' Name ';' ;
94

95 NonTerminal ::=
96 (Name ':')? Name ('@' Name)? ('&'| ('?'|'*'|'+'))* ;
97

98 Terminal ::=
99 (Name ':')? String (('?'|'*'|'+'))* ;
100

101 Constant ::=
102 (Name ':')? String ;
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103

104 ConstantGroup ::=
105 (Name ':')? '[' (Constant || '|')+ ']' (('?'|'*'|'+'))? ;
106

107 SemanticpredicateOrAction ::=
108 ('{' ExpressionPredicate '}' '?'
109 |
110 '{' Action '}' ) ;
111

112 LexAlt ::=
113 (LexComponent )* ;
114

115 LexComponent ::=
116 LexBlock
117 | LexCharRange
118 | LexChar
119 | LexString
120 | LexActionOrPredicate
121 | LexNonTerminal
122 | LexSimpleIteration
123 ;
124

125 LexBlock ::=
126 ('~')? '(' (LexAlt || '|' )+ ')' (('?'|'*'|'+'))? ;
127

128 LexCharRange ::=
129 ('~')? Char '..' Char ;
130

131 LexChar ::= ('~')? Char ;
132

133 LexString ::= String ;
134

135 LexActionOrPredicate ::=
136 ('{' ExpressionPredicate '}' '?') ;
137

138 LexNonTerminal ::= Name ;
139

140 LexSimpleIteration ::=
141 (LexString | LexChar ) ('?'|'*'|'+');
142

143 LexOption ::=
144 'options' '{' Name '=' Name ';' '}' ;
145

146

147 //#################### AST Rules
148

149 ASTRule ::=
150 'astrule' Name
151 (
152 'astextends' (GenericType || ',')+
153 |'astimplements' (GenericType || ',')+
154 )*
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155 ('='
156 (Method | AttributeInAST )*
157 )? ';' ;
158

159 Method ::=
160 'method' ('public'| 'private'| 'protected')?
161 ('final')? ('static')?
162 GenericType Name '(' (MethodParameter || ',' )* ')'
163 ('throws' (GenericType || ',')+ )?
164 '{'
165 Action
166 '}' ;
167

168 MethodParameter ::= GenericType Name ;
169

170 AttributeInAST ::=
171 (Name ':' )? GenericType Card? ;
172

173 Card ::=
174 ('*'
175 |
176 'min' '=' Num_Int ('max' '=' (Num_Int | '*' ) )?
177 |
178 'max' '=' (Num_Int | '*' ) ) ;
179

180 //#################### Grammar Options
181

182 GrammarOption ::=
183 'options' '{' (FollowOption | AntlrOption )* '}' ;
184

185 FollowOption ::=
186 'follow' Name Alt ';' ;
187

188 AntlrOption ::=
189 Name ('=' (Name | String) )? ;
190

191 //#################### Concepts
192

193 Concept ::=
194 'concept' Name MCConcept ;
195

196

197 // #################### External Productions
198

199 Action ::= ... ;
200

201 ExpressionPredicate ::= ... ;
202

203 MCConcept ::= ... ;
204

205 // #################### Types and References
206
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207 GenericType ::=
208 QualifiedName ('<' (GenericType || ',')+ '>' )? ( '[' ']' )* ;
209

210 RuleReference ::= Name ("<"Num_Int">")? ;
211

212 RuleReferenceWithPredicates ::= SemanticpredicateOrAction Name ;
213

214 QualifiedName ::= (Name ||'.')+ ;
215

216 // #################### Symbol Infrastructure
217

218 SymbolDefinition ::=
219 "symbol" ( "("Name")" )? | "scope" ;

Listing 4.33: EBNF of the MontiCore grammar MCG

Tip 4.34 The MontiCore Grammar

The full and reusable MontiCore grammar can be found in the MontiCore repos-
itory here:

Files1 Repository: MontiCore/monticore github
2 Directory: monticore-generator/src/main/grammars/
3 Files: de.monticore.grammar.Grammar.mc4
4 de.monticore.grammar.Grammar_WithConcepts.mc4

The latter grammar also includes several additional concepts that help to control
the parsing process and related issues.
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Chapter 5

Abstract Syntax Tree

A MontiCore grammar defines the concrete and abstract syntax (AST) of a language in
an integrated fashion. Thus, a lexer, a parser and the classes for the abstract syntax can
be automatically derived. This chapter explains the structure of the AST classes derived
from a MontiCore grammar.

Besides the AST classes and the parser, MontiCore generates also builders and other helpful
classes derived from a grammar. For a given grammar all generated files are summarized
in Table 5.1. They can be found in the output folder located in the target package plus
the subpackage given in Table 5.1.

Table 5.1: Files generated from a grammar
File(s) for Explanation Subpackage
AST Classes Classes are generated by MontiCore _ast

and instantiated during parsing
Parser and Lexer Read the file and produce AST _parser
Node Builders Used to create AST objects (must _ast

also be used to create AST objects
by hand). They can be modified to
inject handcoded AST classes.

Visitor For traversing the AST _visitor
(see Chapter 8)

Context Condition Environment to implement
Infrastructure Context Conditions _cocos

(See Chapter 10)
EBNF and CD Help understanding the grammar _report
Representation of and AST structure
the Grammar

5.1 Mapping Nonterminals to the AST

As described in Chapter 4 a production defines a nonterminal. It comprises a nonterminal
on the left-hand side and the production body on its right-hand side. For every nonterminal
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defined in a grammar an AST class is generated. Nonterminals on the right-hand side of a
production result in compositions (cf. Figure 5.2). If a nonterminal occurs more than once
or has a cardinality greater than 1, there is an s added to the derived name, i.e. State*
is equivalent to states:State*. In the AST nonterminals that are marked with a *
or + result in lists. Furthermore, several equally named nonterminals are grouped and
result in one single list (cf. Figure 5.2). As a consequence, nonterminals that should be
distinguishable need to be named explicitly with different names.
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Sequences of Nonterminals in the AST

MG AST-CD

S = x:A "::=" 

y:A "--" (y:A | "," )*;
S Ax

*

y

1

S A
S = x:A y:A*;

A = "...";

x

*
y

1

Figure 5.2: Sequences of nonterminals in the AST

Optional nonterminals, i.e., nonterminals marked with a question mark or within an alter-
native, are mapped to Java Optionals of the type of the nonterminal (cf. Figure 5.3). If
the Optional is present the nonterminals occurred in the parsed model. If a nonterminal
occurs several times (even optionally), e.g. A? A?, it is also stored in a list.
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Optional Nonterminals

MG

A = B?;

B = "x";

C = (D | E);

is marked as optional

are optional due to the alternative

AST-CD

C
Optional<D> d

Optional<E> e

A
Optional<B> b

Figure 5.3: Optional nonterminals

The storage in lists is efficient, but abstracts from certain information that might still be
relevant. In pathological cases like (A|A), or (A|B)* the alternative taken respectively
the order in which As and Bs occur cannot be fully reconstructed from the AST. In this
case, restructuring the grammar helps.

Finally, tokens defined by regular expressions over characters are mapped to Strings. Con-
sidering the predefined Name token for example, it does not map to an AST class ASTName
and thus is mapped to a String attribute, when used within a production body.

5.2 Interface and Abstract Nonterminals

Interface and abstract nonterminals are mapped differently to the AST. In the AST an
interface nonterminal Imaps to a Java interface I (actually ASTI). If there is a nonterminal
A that implements I (cf. Figure 5.4), ASTA will implement ASTI. Hence, although the
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grammars in Listing 4.17 and 4.18 are equivalent for the concrete syntax, their AST differs
significantly.

Similarly, an abstract nonterminal B maps to an abstract Java class B (actually ASTB).
Thus, the nonterminal AutomatonElement in Figure 5.5 is mapped to an abstract class
AutomatonElement in Java (cf. Figure 5.5). Usually other nonterminals implement or
extend those nonterminals, which will be explained in Section 5.3.
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Inheritance: Abstract Syntax

«interface»
I A

A

S A

A = "...";

interface I;

A implements I = "...";

S = "...";

A extends S = "...";

«interface»

I

«interface»

J

interface J extends I;

interface I;

MG AST-CD

Figure 5.4: How interfaces in a grammar map to the abstract syntax
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Abstract Nonterminals

Parser

«abstract»

AutomatonElement

MGabstract AutomatonElement;

State extends AutomatonElement = "..." ;

Transition extends AutomatonElement = "..." ;

TransitionState

State = "..." ;

Transition = "..." ;

AutomatonElement = 

State | Transition;

mapped to
an abstract
class

AST-CD

Figure 5.5: How abstract nonterminals in a grammar map to abstract classes

Tip 5.6 Interface and Abstract Nonterminals

Interfaces and abstract nonterminals help to structure the grammar to keep it
readable and manageable.

Even more important is that they are excellent mechanisms to extend a language
(cf. Section 5.3 and Chapter 7).

And they help to structure the abstract syntax, represented in a set of classes
and interfaces. So a good structure of the AST is based on a good structure of the
grammar.
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5.3 Extending Nonterminals

On the AST the extension mechanism for nonterminals is straightforward, as it directly
maps to extension of the according AST classes (cf. Figure 5.7 and 5.4). Interface nonter-
minals map to Java interfaces. AST classes created for nonterminals that implement an
interface nonterminal, implement the corresponding Java interface. Therefore, the AST
differs from its concrete syntax equivalent, i.e., an alternative (cf. Section 4.2.4). Nor-
mal productions (cf. Section 4.2.6) can only be extended by normal productions, while
abstract productions can be extended by normal and abstract productions. Interfaces (cf.
Section 4.2.4) can only be extended by interfaces (cf. Section 4.3), but implemented by
normal and abstract nonterminals.
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Subclassing in the AST

MG AST-CD

S B

A = "foo" ;

S extends A = "bar" y:B* ;
*

y

S inherits all productions of form
„A = …“ (in addition to those 
defined explicitly for S)

A

Figure 5.7: Productions extending other productions

The MCG grammar format allows to add interfaces or super classes to the AST classes
without any impact on the concrete syntax. To add an interface to an AST class the
keyword astimplements is used. Keyword astextends to extend AST classes (i.e.
derived from normal nonterminals) by other Java classes and AST interfaces by other Java
interfaces.

astimplements and astextends can only be used followed by a Java class respectively
Java interface on the right. They are directly realized in the structure in the generated
AST (cf. Figure 5.8 and 5.9).
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Implements in Abstract and Concrete Syntax

ParserMG AST-CD

«interface»

I

Ainterface I;

A implements I = "x";

B implements I =  "y";

B

A = "x";

B = "y";

I = A | B

«interface»

I

Ainterface I;

A implements I = "x";

B astimplements Observer = "y";
B

A = "x";

B = "y";

I = A«interface»

Observer
Java interface
(i.e. any Java interface, incl. a 
generated one, like “ASTA”)

Figure 5.8: Implements in abstract and concrete syntax

In the astimplements statement any Java interface, e.g. Observer, but also interfaces
derived from the grammar, eg. ASTI, can be used. However, some restrictions apply.
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For instance, given B astimplements IF, the Java interface IF enforces its methods
to be implemented by the class ASTB (cf. Figure 5.8). There are three options: (1) the
nonterminal B is declared as abstract, (2) the missing methods are added using the ast
statement or (3) a handwritten version of class ASTB is provided that implements these
methods (see Section 5.10).
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Inheritance in Abstract and Concrete Syntax

A = "x";

B extends A = "y";

A = "x" | B;

B = "y";

A = "x";

B astextends CL = "y";

A = "x";

B = "y";

A B

CL B

ParserMG AST-CD

Java class

Figure 5.9: Inheritance in abstract and concrete syntax

The Java class CL in statement B astextends CL also obeys restrictions. Because Java
only allows single inheritance, then the astextend statement lets CL replace the normal
superclass, which is directly or transitively a subclass of ASTNode. Therefore, CL must be
a subclass of ASTNode or at least implement interface ASTNode. Thus, it is not possible
to use foreign classes, such as Observable.

Please note, that the attributes inherited from CL are ignored by the MontiCore standard
functionality, e.g. when parsing. Therefore, the developer is responsible for completing the
object data. Again, this can be done by (1) declaring nonterminal B abstract, (2) using
the ast statement for B, or (3) providing a handwritten version of ASTB.

If B is declared as interface, it is allowed to use arbitrary Java interfaces for IF. For example
in interface B astextends IF, Java interface IF can free be chosen.
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Extending the AST Structure

«interface»

I
BB = "...";

interface I;

ast I =

y:B*;

*

y

ast-statement
adds element to signature of 
class I

Figure 5.10: Extending the AST structure

AST rules start with the keyword ast and enable the definition of additional attributes
and methods for the generated AST classes, but do not have an impact on the concrete
syntax of the language. The notation is aligned to the grammar format, i.e. AST rules are
defined similar to productions but start with the keyword ast (cf. Figure 5.10).
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The extensions defined with ast will result in additional method signatures in the AST
interface and corresponding attributes and methods implementations in the AST classes
for all implementing productions.
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Additional Attributes

grammar Automaton {

Automaton = "automaton" Name

"{" ( State | Transition )* "}" ;

State = "state" Name

("<<" ["initial"] ">>" | "<<" ["final"] ">>" )* ";" ;

Transition = from:Name "-" input:Name ">" to:Name ";" ;

ast State =

reachableState:State*;

}

MG

State

boolean initial

boolean final

String name

List<State> reachableStates

Automaton

String name

Transition

String from

String input

String to

* *

additional attribute
in the abstract syntax
(not part of the 
concrete syntax)

AST-CD

Figure 5.11: Adding attributes in the AST with the ast statement
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Additional Methods

grammar Automaton {

State = "..." ;

ast State =

reachableStates:State*

method public boolean isReachable(ASTState s) {

return reachableStates.contains(s);

};

}

MG

State

List<State> reachableStates

public boolean isReachable(ASTState s)

Automaton

*

AST-CD

...

...

additional method
(including implementation)

Figure 5.12: Adding methods in the AST with the ast statement

In AST rules, nonterminals can be used the same way as they are in productions (cf.
Figure 5.11). They result in additional attributes in the generated class. However, this
does not affect the concrete syntax and when the parsing is complete, any newly defined
attributes, like reachableStates, will not have a defined value directly after parsing.

Additional methods are introduced by the keyword method followed by the usual Java
syntax for method declarations (cf. Figure 5.12). If an attribute n (derived e.g. from
nonterminal n:A) was already present within the normal production, the type (e.g. n:B)
specified in the AST rule has precedence. This allows to override the type chosen by the
attribute derivation.

Please note that the mechanism for a handcoded extension of the AST allows roughly the
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Tip 5.13 AST Rules, like astextends and ast

When the resulting abstract syntax (which results in a tree of nodes) does not
fully accommodate the developers needs, additional attributes may be added directly
in the grammar.

After parsing, the AST objects then, however, need to be completed, for example
by using a visitor (see Chapter 8) that fills all the additional attributes.

Methods can also be added using the ast statement, but for complex methods
there is a more comfortable approach, using handcoded extensions (see Chapter 14).

Both, methods and getters/setters for attributes that are added using ast are
visible in the public signature of a generated AST class.

same effects and is usually more comfortable, because the handcoded extension can be
written directly within a comfortable Java IDE of your choice.

5.5 Terminals in the AST

As stated before, terminals are usually not part of the abstract syntax. In case a terminal is
semantically relevant, e.g. like a terminal in an alternative, there are two options to mark
it as relevant: (1) Adding an explicit name or (2) surrounding it with square brackets
(cf. Figure 5.14). In the first case there will be an attribute with the given name of type
String in the abstract syntax holding the terminal as value (cf. Figure 5.14). The second
variant is usually preferable, as it results in a boolean attribute named like the terminal.
In this case the name of the attribute is derived from the terminal. In Figure 5.14 the
terminal "Hello" is not reflected by the AST, but the attribute who is. If the terminal in
square brackets is not a suitable attribute name, but e.g. an operator like "++", a name
can be added explicitly within the square brackets.
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Terminals

MG AST-CD

A = "Hello" 

(who: "World" | who:"Tom") 

"!";

A

String who

MG AST-CD

B = ["initial"]?; B

boolean initial

Figure 5.14: Terminals included in the AST

Please note that terminals marked as relevant are usually optional or part of an alternative.
Otherwise, these terminals are mandatory in the model and thus the attribute will always
hold the same value, providing no information.
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5.6 Enumerations

A list of terminals within square brackets mimics an enumeration and results in an at-
tribute of type int in the abstract syntax as shown in Figure 5.15. Furthermore, for
each terminal in the alternative there is a constant stored in an extra class created for
such constants (e.g. ASTConstantsGr for a grammar called Gr). If an explicit keyword
name is omitted it is derived automatically from the keyword e.g. public from PUBLIC.
Letters are decapitalized. For other symbols, such as "+", there are default names used
, e.g., plus. It is possible to choose the same name for different keywords meaning that
they are semantically equivalent as shown in Figure 5.15 for "+" and "public".
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Multiple Alternate Keywords

MG AST-CD

grammar Example {

A =

vis:[ PUBLIC:"+" | "public" |

PRIVATE:"-" | "private"];

}

ConstantsExample

DEFAULT = 0;

PUBLIC =1;

PRIVATE = 2

A

int visIf several values can be 
chosen, they are represented 
by int constants

Figure 5.15: Choice of one of several values stored as int

In the grammar an enumeration introduced by the enum keyword results in an explicit
Java enumeration holding the corresponding constants (cf. Figure 5.16). Enumeration
nonterminals are used in productions like other nonterminals. Again, it is possible to use a
keyword in an enumeration repeatedly, because alternatives with equal names are mapped
to the same constant.
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Keyword Enumeration

MG AST-CD

enum VISIBILITY =

PUBLIC:"+" | "public" |

PRIVATE:"-" | "private" ;

A = vis:VISIBILITY;

«enum»

VISIBILITY

PUBLIC

PRIVATE

A

VISIBILITY vis
enumerations

Figure 5.16: Explicit definition of an enumeration

5.7 ASTNode: A Base Interface for AST Classes

All AST classes implement a common interface called ASTNode (cf. Figure 5.18). This
interface, respectively the default implementations behind it, allows to compare AST nodes,
stores comments from the original file and the source position, from where the AST node
and its substructure has been parsed. Furthermore, it provides functions that allow to deal
with the symbol and scope structure. This will be discussed in Chapter 9.
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The ASTNode interface shown in Figure 5.17 provides the common signature of all AST
classes.

Java «RTE» ASTNode1 public interface ASTNode {
2 // Cloning
3 ASTNode deepClone(ASTNode result);
4 ASTNode deepClone();
5

6 // Forms of equalities
7 boolean equalAttributes(Object o);
8 boolean equalsWithComments(Object o);
9 boolean deepEquals(Object o);
10 boolean deepEqualsWithComments(Object o);
11 boolean deepEquals(Object o, boolean forceSameOrder);
12 boolean deepEqualsWithComments(Object o, boolean forceSameOrder);
13

14 // Managing the attached source position (start)
15 boolean isPresent_SourcePositionStart();
16 SourcePosition get_SourcePositionStart();
17 Optional<SourcePosition> get_SourcePositionStartOpt();
18 void set_SourcePositionStart(SourcePosition start);
19 void set_SourcePositionStartAbsent();
20 void set_SourcePositionStartOpt(Optional<SourcePosition> value);
21

22 // Managing the attached source position (end)
23 boolean isPresent_SourcePositionEnd();
24 SourcePosition get_SourcePositionEnd();
25 Optional<SourcePosition> get_SourcePositionEndOpt();
26 void set_SourcePositionEnd(SourcePosition end);
27 void set_SourcePositionEndAbsent();
28 void set_SourcePositionEndOpt(Optional<SourcePosition> value);
29

30 // Managing attached comments
31 boolean add_PreComments(Comment precomment);
32 // in total ~30 methods for managing List<Comment> pre
33

34 boolean add_PostComments(Comment postcomment);
35 // in total ~30 methods for managing List<Comment> post
36

37 // Symbol infrastructure management
38 // When the node is embedded in a scope:
39 boolean isPresentEnclosingScope();
40 Scope getEnclosingScope();
41 Optional<? extends Scope> getEnclosingScopeOpt();
42 void setEnclosingScope(Scope scope);
43 void setEnclosingScopeAbsent();
44 void setEnclosingScopeOpt(Optional<Scope> value);
45

46 // When the node defines a symbol:
47 boolean isPresentSymbol();
48 Symbol getSymbol();
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49 Optional<Symbol> getSymbolOpt();
50 void setSymbol(Symbol s);
51 void setSymbolAbsent();
52 void setSymbolOpt(Optional<Symbol> value);
53

54 // When the node itself defines a new scope for its children:
55 boolean isPresentSpannedScope();
56 Scope getSpannedScope();
57 Optional<? extends Scope> getSpannedScopeOpt();
58 void setSpannedScope(Scope scope);
59 void setSpannedScopeAbsent();
60 void setSpannedScopeOpt(Optional<Scope> value);
61 }

Listing 5.17: Signature of the ASTNode superclass of all AST nodes

There are several groups of methods available in the interface ASTNode: There are methods
for cloning and checking the quality of two nodes respectively node hierarchies (ll. 3f and
ll. 7ff). By default the deepEquals methods ignore the order of children occurring in the
AST, but the comparison with a precise check of the order can also be used.

The source position is internally stored as an optional and thus the usual six methods for
their management are provided. Because it consists of start and end, we have in total
12 methods (ll. 15ff and ll. 23ff). The source position is usually only set by the parser,
which knows where the AST node comes from. The AST also stores comments before
and after an AST node. Both may be a list with more that one element. ASTNode thus
provides over 30 methods for list management for the comments before and after a node.
Furthermore, ASTNode objects contain the necessary infrastructure to manage symbols
and scopes that the nodes are potentially defining or enclosed in (ll. 39ff, ll. 47ff, and
ll. 55ff). See Chapter 9 for details.

Figure 5.18 shows a part of the signature and data structure of all ASTNodes.
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MontiCore AST: Common Base Classes

AST-CD

«interface»

ASTNode

ASTNode deepClone()

boolean deepEquals(Object o)

boolean deepEquals(Object o, boolean considerOrder)

boolean deepEqualsWithComments(Object o)

boolean deepEqualsWithComments(Object o,

boolean considerOrder)

0

Comment

SourcePosition

pre

post *

*

start

end 0..1

0..1

Scope Symbol

0..10..10..1

definesspansisEnclosedIn

(Scopes and symbols 
discussed later)

Figure 5.18: Common interfaces of AST classes

For a default implementation of several functions provided by ASTNode objects, the Mon-
tiCore runtime environment also provides an abstract subclass ASTCNode that implements
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also Cloneable. While it is helpful to know that this standard functionality is provided
by all AST objects, in concrete projects they need not be implemented by hand, but the
generated subclasses that are derived from the grammar provide already complete imple-
mentations.

Files1 Repository: MontiCore/monticore github
2 Directory: monticore-runtime/src/main/java/
3 Files: de.monticore.ast.ASTNode.java
4 de.monticore.ast.ASTCNode.java

5.8 Generated ASTNode Subclasses

Given a production, one can schematically infer the interface provided by the subclass of
ASTNode that is created. We demonstrate this on the ASTState class derived from the
State production (from an enhanced automaton, where states can have sub-states and
transitions enclosed in curly brackets):

MCG Automaton31 State = "state" Name prio:NatLiteral?
2 ( ["initial"] | ["final"] )*
3 ( ("{" (State | Transition)* "}") | ";") ;

The signature of the generated class ASTState directly implements all functions to assess
the parsed information, that is retrieved from the right-hand side of the production. The
class furthermore implements all methods from ASTNode and it also provides functions
that allow to deal with the symbol and scope structure. This will be discussed in Chapter 9.
Listing 5.19 and 5.20 show the (beautified) signature without the method bodies.

Java «gen» ASTState1 package automaton3._ast;
2

3 public class ASTState extends ASTCNode implements ASTAutomaton3Node
4 {
5 // Storing the parsing result:
6 protected String name;
7 protected Optional<ASTNatLiteral> prio = Optional.empty();
8 protected List<ASTState> states = new ArrayList<>();
9 protected List<ASTTransition> transitions = new ArrayList<>();
10 protected boolean initial;
11 protected boolean r__final;
12

13 // Constructors (but we use builders):
14 protected ASTState();
15 protected ASTState(
16 String name,
17 Optional<ASTNatLiteral> prio,
18 List<ASTState> states,
19 List<ASTTransition> transitions,
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20 boolean initial,
21 boolean r__final);
22

23 // Visitor management:
24 void accept(Automaton3Visitor visitor);
25 void accept(MCBasicsVisitor visitor);
26 void accept(MCLiteralsVisitor visitor);

Listing 5.19: Signature of the generated AST class to represent states: part 1

Like any other nonterminal ASTState extends the MontiCore RTE class ASTCNode.
Furthermore, each grammar generates an abstract interface ASTAutomaton3Node named
after the grammar. While this interface is empty it can be used by visitors that want to
visit exactly all nodes defined in a certain grammar.

The attributes defined in ll. 5ff. of Listing 5.19 are protected, only accessible and manip-
ulatable through the below described get and set functions. Two constructors (l. 13ff.)
exist, but are also protected, because any object of that class is to be defined using the
also generated builders (see Section 5.9).

For each directly or indirectly included grammar the node also provides an appropriate
accept method (l. 23ff.), which allows the object to participate in the visitor pattern (see
Chapter 8) and also to reuse visitors of the imported languages within the new composed
language. Here, the Automaton grammar relies on MCBasics and MCLiterals.

When a nonterminal is marked as interface or abstract, then the resulting class
is also an interface or abstract. In case of an interface, only the signature of methods
is provided, but the attributes are obviously deferred to the implementing classes. In
Listing 5.20 the second part of class ASTState is shown.

Java «gen» ASTState1

2 // Treatment of children and semantically relevant terminals:
3 String getName();
4 void setName(String name);
5

6 // Optional attributes have six methods:
7 boolean isPresentPrio();
8 ASTNatLiteral getPrio();
9 Optional<ASTNatLiteral> getPrioOpt();
10 void setPrio(ASTNatLiteral prio);
11 void setPrioAbsent();
12 void setPrioOpt(Optional<ASTNatLiteral> value);
13

14 boolean isInitial();
15 void setInitial(boolean initial);
16

17 boolean isFinal();
18 void setFinal(boolean r__final);
19 }

Listing 5.20: Attribute management signature of a generated AST class: part 2
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For each nonterminal with a mandatory occurrence 1 a get and set method are generated
to allow access to the attribute. Lines 3f show this for nonterminal Name. The set function
is based on the general principle, that null is never used as a value.

For all nonterminals that may occur in cardinality different from 1, a number of additional
methods are generated that directly reflect the functionality of the implementation. That
means all functions for Lists and Optionals are directly available within the ASTNode
preventing that direct access would be necessary. Optional attributes have six methods
and List attributes more than 30 methods in total (see Java’s List methods).

If the attribute is optional, like prio (marked with a "?"), then a method allows to
question the presence (l. 7 in Listing 5.20) and another method allows to set the value to
absent (l. 11). Please also note that there are two get methods for an optional attribute:
getPrioOpt to retrieve the optional value and the partial method getPrio, which issues
an error message and raises an exception, if the value is absent. getPrio thus must be
guarded by isPresentPrio.

Line 14 shows, how optional, but semantically relevant terminals are managed. And line 17
demonstrates how MontiCore wraps a Java keyword that coincidentally also occurred in
the grammar as keyword: it maps "final" to "r__final".

For a nonterminal with cardinality greater than one, MontiCore uses a List for imple-
mentation and provides the full List signature consisting of about 30 methods to access
and manipulate the list, without having developers to explicitly handle the list. For each
attribute a full set of List methods is generated. To distinguish the methods they are
attached with the nonterminal name and if several objects are involved also with an ad-
ditional "s". The advantages of these methods are that, on the one hand, writing code
against the AST is more efficient and on the other hand, each of these methods can easily
be adapted with handwritten code, e.g. disallowing certain manipulations or enforcing
consistency vs. additional objects or back-links that create redundancy.

We show the signature for the Transition* attributes in Listing 5.21.

Java «gen» ASTState1 void clearTransitions();
2 boolean addTransition(ASTTransition element);
3 boolean addAllTransitions
4 (Collection<? extends ASTTransition> collection);
5 boolean removeTransition(Object element);
6 boolean removeAllTransitions(Collection<Object> collection);
7 boolean retainAllTransitions(Collection<Object> collection);
8

9 boolean containsTransition(Object element);
10 boolean containsAllTransitions(Collection<Object> collection);
11 boolean isEmptyTransitions();
12 int sizeTransitions();
13

14 void addTransition(int index, ASTTransition element);
15 boolean addAllTransitions(int index,
16 Collection<? extends ASTTransition> collection);
17 ASTTransition setTransition(int index, ASTTransition element)
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18 ASTTransition getTransition(int index);
19 int indexOfTransition(Object element);
20 int lastIndexOfTransition(Object element);
21 ASTTransition removeTransition(int index);
22 List<ASTTransition> subListTransitions(int start, int end);
23

24 Iterator<ASTTransition> iteratorTransitions();
25 ListIterator<ASTTransition> listIteratorTransitions();
26 ListIterator<ASTTransition> listIteratorTransitions(int index);
27 void forEachTransitions(Consumer<? super ASTTransition> action);
28 Spliterator<ASTTransition> spliteratorTransitions();
29 boolean removeIfTransition
30 (Predicate<? super ASTTransition> filter);
31 void replaceAllTransitions(UnaryOperator<ASTTransition> operator);
32 void sortTransitions
33 (Comparator<? super ASTTransition> comparator);
34

35 ASTTransition[] toArrayTransitions(ASTTransition[] array);
36 Object[] toArrayTransitions();
37 Stream<ASTTransition> streamTransitions();
38 Stream<ASTTransition> parallelStreamTransitions();
39

40 boolean equalsTransition(Object o);
41 int hashCodeTransitions();
42

43 List<ASTTransition> getTransitionList();
44 void setTransitionList(List<ASTTransition> transitions);

Listing 5.21: Signature for a List attribute in a generated AST class: part 3

Almost all methods are direct delegators to the internally used List. Only the last two
(l. 43ff. in Listing 5.21) allow to retrieve the complete list or set a new list. We include
the last two methods, because we generally assume that users are experienced, but would
suggest to use the first 29 methods only and refer to Java’s List implementation to
understand their effect. Finally, each AST object implements the mechanisms to compare
and clone it (cf. Listing 5.22).

Java «gen» ASTState1

2 boolean deepEquals(Object o);
3 boolean deepEquals(Object o, boolean forceSameOrder);
4 boolean deepEqualsWithComments(Object o);
5 boolean deepEqualsWithComments(Object o, boolean forceSameOrder);
6

7 boolean equalAttributes(Object o);
8 boolean equalsWithComments(Object o);
9

10 ASTState deepClone();
11 ASTState deepClone(ASTState result);
12 }

Listing 5.22: Comparison and cloning in a generated AST class: part 4
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The set of deepEquals in ll. 2f of Listing 5.22 allows to compare entire AST trees
including all subobjects. Its variants allow to control, whether orders in list are relevant,
which is the default in deepEquals(o). Variant deepEqualsWithComments also
checks comments, but none of the variant checks source code positions.

The deepClone function in l. 10 of Listing 5.22 produces a copy of the com-
plete AST structure including copies of all sub-objects within the AST. The method
equalAttributes only checks the attributes with cardinality one, enumerations and
simple types, but omits comparison of nonterminal types, Lists and Optionals.

Tip 5.23 EMF (Eclipse Modelling Framework) Integration is Available

MontiCore is a standalone tool infrastructure.
But if desired, the MontiCore generator can generate signatures for the AST node

classes in such a from that they conveniently integrate into the Eclipse Modeling
Framework (EMF) [SBPM08] infrastructure.

Among others, this changes the storage of object lists to use
EObjectContainmentEList, defines functions such as eGet, eSet, eUnset,
eIsSet, eBaseStructuralFeatureID, eDerivedStructuralFeatureID
and adds notifications using eNotify when something changes in the AST e.g.
through a setter method.

The following example in Listing 5.24 shows the methods and their signature provided in
addition to the extended generation of AST classes, generated to be EMF compatible:

Java «gen» ASTState (EMF-Version)1 package automaton3._ast;
2

3 public class ASTState extends de.monticore.emf._ast.ASTECNode
4 implements ASTAutomaton3Node
5 {
6 // Storing the parsing result:
7 protected String name;
8 protected Optional<ASTNatLiteral> prio = Optional.empty();
9 protected List<ASTState> states =
10 new EObjectContainmentEList<ASTState>(
11 ASTState.class, this,
12 Automaton3Package.ASTState_States);
13 protected List<ASTTransition> transitions =
14 new EObjectContainmentEList<ASTTransition>(
15 ASTTransition.class, this,
16 Automaton3Package.ASTState_Transitions);
17 protected boolean initial;
18 protected boolean r__final;
19

20 // other methods omitted, because they are not changed
21

22 // EMF ;
23 Object eGet(int featureID, boolean resolve, boolean coreType);
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24 void eSet(int featureID, Object newValue);
25 void eUnset(int featureID);
26 boolean eIsSet(int featureID);
27 int eBaseStructuralFeatureID(int featureID, Class<?> baseClass);
28 int eDerivedStructuralFeatureID(int featureID, Class<?> baseClass

);
29 }

Listing 5.24: EMF version of the ASTState class signature

5.9 Node Construction Using the Node Builder Mill

New AST nodes are constructed using builders that are available through a static delegator
pattern (cf. Section 11.1). A node builder mill provides builders for each nonterminal that
is defined in the grammar of a language. Therefore, the concrete signature varies depending
on the nonterminals of a language and their structure.

The following Listing 5.25 shows the signature of the AutomatonMill created for the
example language for finite automata (cf. Section 18.1). A node builder mill provides a set
of static create methods that delegate to internal builder create methods. The two staged
builder process is necessary to allow builders to be adaptable in a language composition.
That means methods relying on the builder mill of a sublanguage can be applied in a
composed language without modification.

Java «gen» AutomatonMill1 package automaton._ast;
2

3 public class AutomatonMill {
4

5 static ASTAutomatonBuilder automatonBuilder();
6

7 static ASTStateBuilder stateBuilder();
8

9 static ASTTransitionBuilder transitionBuilder();
10 }

Listing 5.25: Signature of the builder mill for all Automaton AST classes

A method, like stateBuilder, creates a builder object that is finally responsible to
create a state object, i.e., from class ASTState or a subclass thereof.

As usual, the builder class itself provides methods to set the attributes individually before
the object is finally created. Please note that an AST node always has attributes for
comments, source position, and potential links to a scope and a symbol that the AST
node defines. Therefore, an AST node builder provides methods to manage these as well.
Listing 5.26 demonstrates this on a builder for nonterminal State.

In general, these methods do not differ from the methods generated for class ASTState,
but have one important difference: Where the method in class ASTState has return type
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void or is the boolean result of an add operation, the corresponding builder method
returns the builder itself. This is helpful for a chaining of calls for a builder b, such as
b.setName("Ping").setInitial(true).addTransition(x)1.

A comparison of the ASTStateBuilder in Listing 5.26 and the node ASTState in
Figures 5.20 and 5.21 shows the large overlap of these signatures. Therefore, only the most
important methods are repeated in Listing 5.26.

Java «gen» ASTStateBuilder1 package automaton3._ast;
2

3 public class ASTStateBuilder extends
4 ASTNodeBuilder<ASTStateBuilder> {
5 // Setting an attribute
6 ASTStateBuilder setName(String s);
7

8 // Setting a boolean attribute
9 ASTStateBuilder setInitial(boolean initial);
10 ASTStateBuilder setFinal(boolean r__final);
11

12 // Setting an Optional attribute
13 ASTStateBuilder setPrio(ASTNatLiteral prio);
14 ASTStateBuilder setPrioAbsent();
15 ASTStateBuilder setPrioOpt(Optional<ASTNatLiteral> value);
16

17 // Setting a List valued attribute
18 ASTStateBuilder setTransitionList(
19 List<ASTTransition> transitions);
20 ASTStateBuilder clearTransitions();
21 ASTStateBuilder addTransition(ASTTransition element);
22 ASTStateBuilder addAllTransitions(
23 Collection<? extends ASTTransition> collection);
24 ASTStateBuilder removeTransition(Object element);
25 ASTStateBuilder addTransition(int index,ASTTransition element);
26 // ... in total ~30 methods to handle the transition list
27

28 ASTStateBuilder setStateList(List<ASTState> states);
29 ASTStateBuilder addState(ASTState element);
30 // ... in total ~30 methods to handle the state list
31

32 // Inherited methods for attributes from ASTNodeBuilder
33 // (first for the Optionals)
34 ASTStateBuilder set_SourcePositionStart(SourcePosition start);
35 ASTStateBuilder set_SourcePositionStartAbsent();
36 ASTStateBuilder set_SourcePositionStartOpt(
37 Optional<SourcePosition> value);
38

39 ASTStateBuilder set_SourcePositionEnd(SourcePosition end);
40 ASTStateBuilder set_SourcePositionEndAbsent();
41 ASTStateBuilder set_SourcePositionEndOpt(

1To enable this chaining, we also had to us a generic superclass ASTNodeBuilder, which embodies
the return type of each setter as realBuilder object with the correct type.
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42 Optional<SourcePosition> value);
43

44 ASTStateBuilder setEnclosingScope(Scope enclosingScope);
45 ASTStateBuilder setEnclosingScopeAbsent();
46 ASTStateBuilder setEnclosingScopeOpt(Optional<Scope> value);
47

48 ASTStateBuilder setSpannedScope(Scope spannedScope);
49 ASTStateBuilder setSpannedScopeAbsent();
50 ASTStateBuilder setSpannedScopeOpt(Optional<Scope> value);
51

52 ASTStateBuilder setSymbol(Symbol symbol);
53 ASTStateBuilder setSymbolAbsent();
54 ASTStateBuilder setSymbolOpt(Optional<Symbol> value);
55

56 // Inherited methods for attributes from ASTNodeBuilder
57 // (the Lists of Comments)
58 ASTStateBuilder set_PreCommentList(List<Comment> comments);
59 ASTStateBuilder add_PreComment(Comment element);
60 // ... in total ~30 methods to handle the pre comments
61

62 ASTStateBuilder set_PostCommentList(List<Comment> comments);
63 ASTStateBuilder add_PostComment(Comment element);
64 // ... in total ~30 methods to handle the post comments
65

66

67 // Finally constructing the object
68 ASTState build();
69 }

Listing 5.26: Signature of the Builder for State objects: part 1

Line 6 of Listing 5.26 shows how a normal attribute defined by the production is treated.
Boolean attributes are handled in a similar way (ll. 9f). For optional attributes, such as
prio, several methods exist (ll. 13f).

List valued attributes, derived from nonterminals with multiplicity higher than 1, can be
set as list, but also through the about 30 methods allowing to manipulate the list, e.g. by
adding individual new elements. Beginning with l. 18 Listing 5.26 shows an excerpt of the
more than 30 methods per list. In the ASTStateBuilder case, each attribute State*
and Transition* have their own 30 methods.

Starting in l. 34 the signature for setting and manipulating the inherited attributes is
shown. To avoid name clashes, the inherited methods partially have an underscore in their
name.

At the end of each building activity the AST object is created using the build method.
Please note, that it is possible to use this method several times. Each time a new object
is created, but (if not changed) all objects are containing the same attribute values. In
particular, the children of such objects are shared. When you want to get a complete copy,
please use the deepclone method.
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Please also note, that the builder may fail with an exception if not all mandatory attributes
are provided.

For all optional and list attributes and especially those inherited from ASTCNode, the AST
builder sets defaults. An Optional value is by default absent a List is empty and a
boolean is false.

While the set and add methods are the most important, it is also possible to retrieve data
stored in the builder. Listing 5.27 shows a small excerpt of the builder for ASTState with
some get methods.

Java «gen» ASTStateBuilder1

2 // Retrieving attribute values
3 String getName();
4 boolean isInitial();
5 boolean isFinal();
6

7 // Retrieving an Optional value
8 Optional<ASTNatLiteral> getPrioOpt();
9 ASTNatLiteral getPrio(); // partial
10 boolean isPresentPrio();
11

12 // Some inherited retrieval methods for
13 // attributes from ASTNodeBuilder
14 Optional<Symbol> getSymbolOpt();
15 Symbol getSymbol(); // partial
16 boolean isPresentSymbol();
17

18 // Some retrievers for the Transition* attribute
19 boolean containsTransitions(Object element);
20 boolean isEmptyTransitions();
21 int sizeTransitions();
22 ASTTransition getTransition(int index);
23 int indexOfTransition(Object element);
24 List<ASTTransition> subListTransitions(int start, int end);
25

26 Iterator<ASTTransition> iteratorTransitions();
27 ListIterator<ASTTransition> listIteratorTransitions();
28

29 // get for the full Transition* list
30 List<ASTTransition> getTransitionList();

Listing 5.27: Retrieving methods for a Builder class: part 2

Builder functions for deconstructing an unfinished AST object will rarely be used, but
retrieving already added elements or checking, whether an element is already in a list is
sometimes helpful.

In general, tool developers are responsible to ensure that the attributes of the created nodes
will always have correct values. Many MontiCore functions rely on a syntactically correct
AST. In particular, MontiCore functions very rarely deal with null values, because they
assume that absent values are explicitly defined as Optionals.
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Tool developers are strongly encouraged to use builders to create new AST objects to
ensure that the creation process can be replaced, e.g., to use custom node classes. No
initialization is needed for a builder mill; direct call is possible and encouraged.

However, if a completely new AST is to be built from scratch, then it is sometimes more
efficient to define a string that contains the concrete model and use a parser to build the
ast.

Tip 5.28 Use Node Builders to Enable Reuse

When you manipulate the AST and create new nodes, then you are strongly
advised to use the provided node builders.

This greatly helps to keep the actual implementation of the nodes hidden from
the usage. This is a prerequisite for reusing handwritten code and for a language
component to be embedded in the composite language.

Also when you want to provide your own handwritten extension and do not
want to use the mechanism described in Section 5.10, then you can adapt the node
builder mill for producing your own version of nodes and others can use your extra
functionality without having to notice. But new functions could also take advantage
of the extra functionality.

5.10 Handwritten Extension of AST Classes and Node
Builders

If the generated AST node classes and builders do not completely fulfill the needs and,
therefore, often should be extended or overridden with a handwritten implementation, the
following approach (similar but not exactly equal to the approach described in Chapter 14)
is the best.

5.10.1 Handwritten Extension of AST Classes

To extend a class ASTState (that would be generated):

1. Create (empty) class ASTState in an arbitrary directory dir (but not in a directory
where generated classes are).

2. Add dir to handcodedPath (of the MontiCore generator).

3. Run the MontiCore generator (again).

4. Let your own class ASTState extend the now existing and newly generated
ASTStateTOP.

5. Adapt ASTState at will.

• Don’t forget to initialize additional attributes and to adapt cloning and com-
parison methods.
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6. If necessary, also adapt the classes that rely on the changed signature such as builders
or mills, e.g., by using the same TOP mechanism. This usually is necessary, when
attributes have been added.

MontiCore uses a trick here: During generation, it checks in the handcodedPath, whether
the class ASTState that should be generated, has been defined by a developer by hand
and therefore already exists. If so, MontiCore does not produce the class ASTState,
but an abstract superclass called ASTStateTOP (cf. Figure 5.29). Figure 5.29 shows an
example of a handwritten AST class State with manually added attribute _reachable
and a method isReachable.
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Example: Handwritten AST Class State

«gen»

«hc»

ASTStateTOP

boolean initial

boolean final

String name

ASTState

boolean _reachable

public boolean isReachable(State s)

ASTState.StateBuilder

ASTState build()

StateBuilder initial(boolean initial)

StateBuilder r__final(boolean r__final)

StateBuilder name(String name)

creates

«gen»

creates AST objects,
instantiates handwritten classes if present

default implementation

handwritten extension
of default implementation

Tool-CD

AutomatonMill

AutomatonBuilder automatonBuilder()

StateBuilder stateBuilder()

TransitionBuilder transitionBuilder()

«gen»

creates  (and others…)

Provides Builders

Figure 5.29: Example: Handwritten AST class ASTState injected into the parsing process

Tip 5.30 Handcoded Extension is easy Using the TOP Mechanism

All generated classes Cls, including AST classes, node builder mills, etc., can
be easily extended with handwritten code using the TOP mechanism. When a class
shall be handcoded, then we add it in the handCoded path to tell MontiCore to
include it and also to generate an abstract superclass of the handcoded class instead.

The handcoded class Cls replaces the generated class C, which now becomes
generated as ClsTOP. Cls should inherit from ClsTOP, but also could ignore the
generated class.

There is nothing more to do. See Section 14.3 for details.

This approach brings numerous advantages:

• The generated code is still available and can be used.

• The handwritten code is directly integrated into the generated parts, because for
example the node builder mill was not changed and still creates ASTState objects.

• The handwritten code can inject both, new attributes and method implementations,
but also extend the signature of that class making additional functionality externally
usable.

• The AST classes that use ASTState also need not be changed, but interact with
the handwritten class.
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• The parser directly uses the handwritten class to construct the AST when parsing.

There is a limitation of this approach: After a new handwritten class has been added to the
project, a re-generation is necessary. Incremental approaches do not easily detect that, but
MontiCore keeps track of the classes it has been looking up when generating. If necessary,
cleaning up all generated code before re-generating is radical, but robust.

Please note that we strictly separate generated and handwritten classes in different direc-
tory substructures. This also holds when they belong to the same package. This gives us
the serious advantage of being able to clean up generated code, or re-generate as often as
desired. See also our considerations about agile methodology in Section 1.4.

5.10.2 Handwritten Extension of AST Builders and Mills

For adjusting the AST classes created, it is possible to create a subclass of a node builder
mill and override the instance methods to register different (handcoded) mills for specific
kinds of nonterminals. This enables using adaptive mills for the creation of AST objects.
A builder mill uses the static delegator pattern Section 11.1. That means it has a protected
static variable containing an instance of itself to realize the delegation. There is one builder
mill attribute for each nonterminal defined in the grammar and one general builder mill
attribute that is used for all missing specialized mills. Therefore, a coarse-grained and also
a fine-grained overriding for each type of node is possible. During standard initialization
of a node builder mill all these attributes are initialized with the same instance, but a
replacement by a custom version is possible. For completeness, we include the protected
elements a builder mill provides and that can be used for overriding:

Java «gen» AutomatonMill1 package automaton._ast;
2

3 public class AutomatonMill {
4 // ... only the protected elements
5

6 // attributes store individual builder mills for each node
7 // (but all may be the same instance)
8 protected static AutomatonMill mill;
9 protected static AutomatonMill millASTAutomaton;
10 protected static AutomatonMill millASTState;
11 protected static AutomatonMill millASTTransition;
12 protected AutomatonMill();
13

14 protected ASTAutomatonBuilder _automatonBuilder();
15

16 protected ASTStateBuilder _stateBuilder();
17

18 protected ASTTransitionBuilder _transitionBuilder();
19

20 }

Listing 5.31: Internal structure of the AutomatonMill
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The same approach can also be applied in combination with the TOP generation mecha-
nism, i.e., the developer provides a handwritten class AutomatonMill inheriting from
the then generated AutomatonMillTOP (cf. Listing 5.31 and 5.32). In such a handcoded
AutomatonMill class, only the creator methods need to be overriden. In Listing 5.32,
we assume that MyTransitionBuilder has been implemented accordingly.

Java «hw» AutomatonMill1 package automaton._ast;
2

3 public class AutomatonMill extends AutomatonMillTOP {
4

5 @Override
6 protected ASTTransitionBuilder _transitionBuilder() {
7 return new MyTransitionBuilder();
8 }
9

10 }

Listing 5.32: Handcoded extension of the AutomatonMill

Please note, that a manually created static AST mill can still be used by developers, when
the language it has been written for is embedded in another language. In a language
composition, the concrete mill is internally used and adapted in such a way, that it creates
objects of appropriate subclasses from the composed language. Hence, the user of an
AST from a sublanguage is not affected. This is a core technique to enable reuse of
functionality of sublanguages on composed languages, because the reused algorithm itself
needs no adaptation, not even when creating objects.
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Chapter 6

Parser Generation and Use

This chapter explains how to derive a parser from a given grammar and how to integrate
the resulting parser into a DSL tool to read in models. This is mainly done by

1. defining a MontiCore grammar as described in Chapter 4,

2. running the MontiCore generator to generate the parser for the language (cf. Sec-
tion 6.1) and

3. using the resulting code, which includes the generated parser, AST, builders, visitors
etc. and the MontiCore runtime in your DSL tool (cf. Section 6.3).

The parser generated for a language contains a general method for parsing models of the
language, i.e. starting with the dedicated start nonterminal (cf. Section 6.3). Furthermore,
it also provides specific methods to parse each of the sublanguages defined by the other
nonterminals. If not explicitly stated otherwise, the first nonterminal defined in a grammar
is the start nonterminal.

6.1 Generating a Parser and a Lexer

The MontiCore parser generator (see Listing 6.1) is used to generate a parser for a given
language. It can be used as a black box tool as described in Chapter 2. However, the
generation can also be tailored to individual needs. The rest of this section addresses
experienced developers interested in understanding or even adapting the MontiCore meta-
meta-tool itself.

For generating a complete parser for a given grammar, that is already available as an
internal AST, the class ParserGenerator is used (see Listing 6.1).

Files1 Repository: MontiCore/monticore github
2 Directory: monticore-generator/src/main/java/
3 File: de.monticore.codegen.parser.ParserGenerator.java

Listing 6.1: Location of the MontiCore parser generator
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Java «MontiCore» ParserGenerator1

2 public static void generateFullParser(ASTMCGrammar astGrammar,
3 IterablePath handcodedPath,
4 File targetDir)

Listing 6.2: Method signature used to generate a parser

If the parser generator is used within Java, the method generateFullParser of the
class ParserGenerator is applicable. It generates a complete parser for the defined
language. The method signature is depicted in Listing 6.2. The method accepts the
following parameters:

1. the AST representation of the grammar that describes a modeling language whose
models should be parsed (see Tip 6.7),

2. a list of paths where handwritten files are located, e.g., handwritten AST and other
classes (see Section 5.10) meant to be integrated into the generated code, and

3. the directory in which the generated parser will be created, which is freely selectable.
For instance, it can be "gen/" or "out/".

The parser generator is an important part of the MontiCore language workbench. The
listing below demonstrates how the parser generator can be executed.

Java «hw» GenerateAutomatonParser1 // Create the AST
2 String filename = "Automaton.mc4";
3 ASTMCGrammar ast;
4 ast = new Grammar_WithConceptsParser()
5 .parseMCGrammar(filename).get();
6

7 // Initialize symbol table
8 // (using imported grammars from the model path)
9 ModelPath modelPath = new ModelPath(Paths.get("monticore-cli.jar"));
10 MCGrammarSymbolTableHelper.initializeSymbolTable(ast, modelPath);
11

12 // Hand coded path
13 IterablePath handcodedPath = IterablePath.empty();
14

15 // Target directory
16 File outputDir = new File("gen");
17

18 // Generate the parser
19 ParserGenerator.generateFullParser(ast, handcodedPath, outputDir);

Listing 6.3: Java code creates a parser for automata (using its grammar)

The code block in line 3ff. loads the grammar that describes the language. When the AST
is built, it represents only the currently processed grammar without its super grammars.
Super grammar information is added in subsequent steps.
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The statements in line 9 defines where additional grammars are located. In this example
only the MontiCore jar is used and thus only the standard grammars provided by Monti-
Core are available. As a next step, the symbol table is built in line 10. While constructing
the symbol table, all the dependent grammars are loaded and included.

The statement in line 19 produces the classes for the desired parser in a subdirectory of
the outputDir path. The execution of this block includes the generation of a grammar
in ANTLR [Par13] format (i.e., a .g4-file) and triggering the parser generator ANTLR
to create a parser for it. But only the created parse algorithm of ANTLR is used. The
generated parser constructs an AST by instantiating AST classes generated by MontiCore.
This is achieved by injecting corresponding Java code into the generated parser. This Java
code is complete; the created parser classes just need to be compiled. The .g4-grammar
and a .tokens-file1 are produced as input for ANTLR. They are just a byproduct of the
generation process and only serve as potential documentation.

The Parser and Lexer Generation Process

Generating a parser internally consists of three consecutive steps producing the files listed
in Listing 6.4. The output directory, gen in this example, is passed as a parameter while
the package (in this example: a.b.XY) is derived from the grammars package with the
grammars name appended.

Files1 Input parameters:
2 grammar file -- e.g. "a/b/XY.mc4"
3 handcoded path -- list of directories
4 output directory -- e.g. "gen"
5 Inputfile:
6 a/b/XY.mc4 -- a grammar for language XY
7 Output (excerpt):
8 gen/a/b/xy/_parser/
9 XYParser.java -- generated parser
10 XYAntlr.g4 -- intermediate file for ANTLR 4
11 XYAntlrParser.java -- internal parts of parser and lexer
12 XYAntlrLexer.java

Listing 6.4: List of files produced during the generation of a parser

The following three steps produce the parser:

Step one: In the first step an ANTLR4 file is created that is used in the following steps
as an input for the ANTLR4 tool to create a parser and a lexer.

Step two: In the second step the ANTLR4 tool is executed, which produces a parser and
a lexer consisting of two classes for parsing and lexical analysis. The parser uses the
lexer to tokenize the input (cf. Chapter 4).

1This file is not detailed here, please refer to [Par13] for further information
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Step three: The third step is the generation of a class that provides parser methods for
each nonterminal of the grammar. This class encapsulates the functionality of the
parser generated by ANTLR4 and should be used for parsing and constructing the
AST objects. It provides methods for the full language as well as for each sublanguage
defined by a nonterminal (cf. Section 6.3).

6.2 Interface of the Generated Parser Classes

The generated parser class XYParser contains three methods (cf. line 2-4 in Listing 6.5).
Those three methods are used for parsing a complete model. In addition three parsing
methods are created for each nonterminal (cf. line 7-9 in Listing 6.5). The methods for
nonterminals are recognizable by their suffix which corresponds to the nonterminal. The
methods for the start nonterminal are equivalent to the ones for the complete model (e.g.
called Ax).

Java «gen» XYParser1 // Parsers for the language:
2 Optional<ASTAx> parse(Reader r);
3 Optional<ASTAx> parse(String filename);
4 Optional<ASTAx> parse_String(String text);
5

6 // and for each nonterminal NT furthermore:
7 Optional<ASTNT> parseNT(Reader r);
8 Optional<ASTNT> parseNT(String filename);
9 Optional<ASTNT> parse_StringNT(String text);

Listing 6.5: Methods that can be used for parsing

The three types of parsing methods do the following:

1. Method parse(Reader reader) expects the input to be in form of a Reader
(e.g. StringReader). The method processes the reader content.

2. Method parse(String filename) expects an existing file given as the parameter
filename of type String. The file contains the model to be parsed.

3. Method parse_String(String text) parses the content of the given String
directly interpreting the string as a model.

Each of the methods returns an Optional AST representation. In case of parsing errors,
parsing either completely terminates or the method returns an empty Optional (see
Section 15.3 for error management).

The parse methods are called as normal methods. Internally a parser uses a factory to
create the AST objects. Thus, when composing languages in a conservative way, i.e.
extending the language such that all models of the old language are models of the new
language, the old parser can still be used, to parse the old models, but internally the AST
of the new, extended language is created. That means, in case the language XY is extended,
handwritten code that uses the XYParser for parsing will still be functional for the old
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XY models. It thus allows to process the old models with the old parser and delivers the
new AST through the old XYParser methods.

6.3 Executing a Generated Parser

Executing a generated parser usually happens on the meta-level, i.e., within the tool that
helps to create the product. The MontiCore parser generator is not needed, but instead
the MontiCore runtime environment (RTE, marked as «RTE») is. The MontiCore runtime
environment is packaged in the provided MontiCore jar as well.

Following the previous sections, we now use the generated parser for the language
Automaton language (cf. Chapter 4).

As a first example, the Automaton parser is applied to an input file in line 5. The parser
returns an Optional value holding the resulting AST if the model is parsed successfully,
or otherwise an absent optional. In line 11, the parser is used to parse another automaton
provided as a StringReader. Line 14 demonstrates how the parser can be used to parse
the content of a String. Finally, line 17 demonstrates how to parse a model part, e.g., a
State, only.

Java «hw» AutomatonParseDemo1 String filename = "example/PingPong.aut";
2 AutomatonParser p = new AutomatonParser();
3

4 // parse from a file
5 Optional<ASTAutomaton> at = p.parse(filename);
6

7 // parse from a Reader object
8 String aut = "automaton PingPong {"
9 + "state Ping;"
10 + "}";
11 at = p.parse(new StringReader(aut));
12

13 // another parse from a String
14 at = p.parse_String(aut);
15

16 // parse for a sublanguage, here: a State
17 Optional<ASTState> s = p.parse_StringState("state Ping;");

Listing 6.6: Various forms of parsing

The Automaton parser reads a file (or string) and constructs the AST corresponding
to the model of the Automaton language. As described before, if the input model was
not syntactically well-formed, the result is absent and at least one error message is issued
through the standard error message channel. See Section 15.3 for a detailed description
and an explanation on how to configure the error handler. In case of unexpected, internal
errors, an exception is thrown in addition to a message to the error handler and immediate,
erroneous exit of the tooling is triggered. Please note that the Automaton parser neither
checks context conditions nor resolves references to other models (see Chapter 9 and 10).
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Tip 6.7 MontiCore Grammar Parsing

Caution: Here we are entering circular meta-meta levels.
The MontiCore tool parses grammars. All grammars belong to the Grammar

language, which itself is defined as grammar. The MontiCore parser, therefore, is
itself a parser generated by MontiCore, using the grammar defined in

Files1 Repository: MontiCore/monticore github
2 Directory: monticore-generator/src/main/grammars/
3 File: -- grammar describing how MontiCore grammars look like
4 de.monticore.grammar.Grammar_WithConcepts.mc4
5 Directory: monticore-generator/target/generated-sources
6 /monticore/sourcecode
7 File: -- MontiCore uses this Parser
8 de.monticore.grammar.grammar_withconcepts._parser.
9 Grammar_WithConceptsParser.java

Listing 6.8: Where to find the MontiCore grammar grammar

One meta-level down: If needed, a grammar can be parsed as shown in the listing
below. We use the Automaton grammar as example (cf. Chapter 7).

Java «hw» GrammarParseDemo1

2 Optional<ASTMCGrammar> ast = Optional.empty();
3 String filename = "automaton/Automaton.mc4";
4 Grammar_WithConceptsParser p =
5 new Grammar_WithConceptsParser();
6

7 // Create the AST
8 ast = p.parseMCGrammar(filename);

The grammar parser reads the file (or String) and constructs the grammar AST
that contains all essential information present in the source. If the grammar was
not syntactically well-formed, the result is absent and at least one error message has
been issued through the standard error message channel.
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Chapter 7

Language Composition

Language composition is one of MontiCore’s key concepts. In this chapter we first discuss
the motivation for language composition and give a high-level overview of how MontiCore
achieves this. Then we discus in detail, how MontiCore composes grammars and which
effects this has on the concrete and the abstract syntax that the grammars define.

Further techniques for composition can be found in the respective chapters, namely visitors
(Chapter 8), symbol management infrastructure (Chapter 9), context conditions (Chap-
ter 10), and a generator backend (Chapter 13).

7.1 Introduction to Language Composition

From best practices in Software Engineering, we know that the monolithic definition of
large artifacts leads to many problems in maintaining, evolving, and reusing assets that
have been developed. Programming became more productive, when the languages started
to support encapsulated implementations and to provide these to other developers through
explicitly specified interfaces. Modularity is a key technique for reuse. In modern object-
oriented programming, it is a key technique to encapsulate a piece of data structure together
with the functions operating on it within classes. This considerably enhances black-box
reuse as well as evolution of programs where changes can be better localized within a
smaller part of the program.

It is generally predicted that a larger proliferation of software languages for many different
domains far beyond software development will appear. Domain specific languages (DSLs),
e.g., are used to model brains [PBI+16] as well as many other simulations of complex
domains with a multitude of different aspects being described in different languages. DSLs
are used to specify products, production workflows, scientific artifacts, economically usable
data sets, and much more.

To be able to effectively engineer an appropriate software language, reuse on the language
level is very important [CFJ+16, CBCR15]. Therefore, MontiCore offers an extensive set
of mechanisms to define modular artifacts and reuse these either as black-box or in an
enhanced and refined form within larger languages.

The MontiCore language workbench supports four language composition mechanisms –
details follow after this overview in the rest of the chapter:
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Language aggregation means that several artifacts of different languages are used to-
gether to describe aspects of the target domain. While the processed artifacts remain
separated and can thus individually be edited, compiled etc., they describe a com-
mon target and thus need to be consistent and sometimes also need to be mapped
to integrated simulation or code artifacts. This imposes restrictions on the artifacts,
which can only be understood if the tooling allows an integrated understanding on
the abstract syntax, context conditions, symbols, etc. (Example: class diagrams and
Java)

Language embedding combines the languages into integrated model artifacts in the fron-
tend, but is otherwise on the backend very similar to language aggregation. That
means one single model, which is stored in one artifact, may consist of several sublan-
guages, which have been developed independently, but now define the overall model
together. (Example: Expressions in automata). Language embedding composes the
languages even more tightly, because it also composes the concrete syntax, which
enforces a tighter composition of the tooling, including the editors.

Language inheritance is a technique to reuse a language while allowing to modify some
language elements. The amount of modifications within the reused language affects
reusability of the original models, etc. The new language is defined while reusing
knowledge and implementation of the old language.

Language extension is a conservative form of language inheritance, which leads to a higher
degree of black-box reuse. Basically, it abstains from dangerous forms of overriding of
existing nonterminals. Therefore, it is discussed in the forthcoming chapters together
with language inheritance. (Example: Java code also compiles with new versions of
the compilers.)

In a language aggregate and a language embedding, we also speak of sublanguages instead
of only language components that are embedded or participating in an aggregation.

It is important to notice that the key focus is to reuse languages and the functionalities
operating on these languages that have been developed and even compiled independently.
The reused languages are now embedded as components or aggregated with a minimal
set of external adaptations and no change of the language components themselves into a
composed language.

The focus on reusability is not only on the generated parts, but also on handcoded ex-
tensions of the generated language infrastructure and in particular on algorithms coded
against that language infrastructure. Algorithms transforming and extending the AST of
a language component can be fully reused on language aggregates, extensions and embed-
dings, because they still operate on the AST they know of, the builders are still operable,
and so on.

MontiCore achieves a most crucial aspect in language composition: the actual language
composition is deferred to a late binding point. This is very similar to object-oriented
programming techniques, where the composition of classes is intellectually (semantically)
understood at development time, but the compiler compiles independent artifacts and only
the compiled result needs to be shipped. This enables (1) incremental compilation and thus
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more efficiency and (2) a "market" of black-box reusable language components, similar to
the frameworks in today’s programming languages.

Hence, each language component can be mapped to code and compiled independently of
all other components. Neither a re-generation of the component is necessary, when the
component is embedded, nor need the sources of the component to be shipped together
with the language component implementation. Only the grammars need to be shipped
together with the class files of the generated implementation. This is a crucial prerequisite
for truly modular language composition and for building libraries of languages or even
families of language variants.

Tip 7.1 Composing Languages

We took much effort in the MontiCore language workbench to understand how
to define languages from modular components:

• Component grammars can be defined explicitly.

• Import of grammars allows to reuse languages as components.

• Language inheritance is achieved by import plus overriding of nonterminals.

• Language extension is a conservative form of language inheritance.

• Language embedding is a form of reuse of at least one language as a sublanguage
of a new one. The models of the new language comprise sub-models of the
embedded language.

• Language aggregation allows to compose multiple languages into a new lan-
guage, without embedding them into the same models.

These techniques for composition of languages in the large and a controlled modi-
fication of the reused languages are possible, because MontiCore’s grammar language
provides interface nonterminals, abstract nonterminals and external nonterminals.

The composition of languages does not only affect concrete syntax, but also ab-
stract syntax, builders, visitors, context conditions, and symbol management infras-
tructure can be composed.

Most important: The actual language composition is deferred to a late binding
point. That means each language component can be generated and compiled in-
dependently. Neither is a re-generation necessary, when a language component is
embedded, nor need the sources of a component to be shipped together with the
language component implementation. This is a crucial achievement for language
composition and for building libraries of languages.

The smart combination of these mechanisms allows us to address various forms of lan-
guage composition and modification of existing components. Some of the composition
forms are conservative (also called safe), while in general manipulations do allow to freely
modify nonterminals deeply integrated in the language. This corresponds to the situation
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in object-oriented programming, where inheritance provides some assistance for conserva-
tive modifications, but in general developers that modify inherited classes can do harmful
things. On the other hand a controlled, methodically careful form of inheritance is a key
power of modern object-oriented languages. In this spirit, the MontiCore language work-
bench offers powerful, to some extent conservative, but partially also dangerous techniques
transferring some of the burden to the developers.1

The four techniques for language composition mentioned above of course affect the concrete
syntax of the languages we define. However, language composition affects many aspects
that we need to take into consideration:

• concrete syntax,

• abstract syntax (AST),

• AST creation (e.g. through builders and their mills),

• navigation infrastructure (e.g. through visitors),

• symbol management infrastructure,

• context conditions,

• handcoded extensions of all these generated parts, and

• analytical or generative backend, implemented against all these generated parts.

This results into a two-dimensional list of issues to discuss, because many of the language
aspects need to be discussed together with most of the composition techniques. We do this
in the following chapters and sections, where each of these includes reuse of the generated
part as well as handcoded extensions:

Basics Inheritance Embedding Aggregation
Concrete Syntax 4 7.4 7.5 7.3-7.5
AST 5 7.4 7.5 7.3-7.5
Builder 5.9 7.6 7.6 7.6
Visitors 8 8.3.1 8.3.3 8.3
Symbol Management 9 - - -
Context Conditions 10 - - -
Backend (Generator) (13) - - -

More details can be found in the respective research results, such as [MSN17, Rot17, Wei12,
Sch12, Völ11, Kra10, HMSNRW16a, MSNRR16, HLMSN+15, RRRW15, HMSNR15].

7.2 Language Composition at a Glance

While the concepts, techniques and methods to deal with language composition are spread
over several chapters, we give an overview of the core mechanism in this section. The
following consequently is a high-level overview:

1How much power vs. restrictive guidance for a development tool is needed strongly depends on the
skills of the educated developer and can only be understood when using such a tool. This is ongoing
research.
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Concrete syntax: In language aggregation, concrete syntax is not affected at all. For
language embedding, e.g. Java expressions in automata, we define a new grammar that
simply imports all nonterminals from the embedded grammars. Then there are three
possibilities: (1) Use of the nonterminals allows us to directly reuse the sublanguages that
are available; (2) it is also possible to extend nonterminals of the original grammars; and
(3) to override productions that have been defined for the original nonterminals.

Extension (2) allows language developers to add additional alternatives, for example new
operators for expressions. Abstract nonterminals, interface nonterminals and external non-
terminals have especially been designed in the MontiCore grammar infrastructure to fa-
cilitate these forms of extensions. Depending on the choice of the new language starting
nonterminal, the original language may be extended (e.g. SQL statements in Java) or the
original language is embedded (e.g. Java expressions in automata).

Overriding (3) allows to freely modify the original language and is very powerful but also
dangerous and may reduce reusability of already existing software components operating
on a language.

The composition of the concrete syntax through grammars is also used for the development
of the new parser for the composed language. In an earlier version of MontiCore [Kra10],
we even developed compositional parsers, but in practice it turned out, that it is sufficient
and efficient enough to generate a complete new parser. As a drawback, however, it is
necessary to ship the grammar of the language component together with the language
component implementation. The grammar is composed on the source level (actually their
AST within MontiCore) and the parser is generated completely afresh from the composed
grammar, but all other language component constituents remain untouched.

Parser: The parser itself is generated completely from scratch. That means there is no
reuse of the parsers of the sublanguages. However, the parser facade of each sublanguage
can still be used, because a static delegator is silently redirecting to the parser of the
composed language. This leads to a parsing into the composed AST, but since both are
implemented using subtypes, all code written against the sublanguage parser is still usable.

Abstract syntax: From Chapter 5 we know that the definition of a grammar not only
describes the concrete syntax, but is also a blueprint for the abstract syntax. To be able
to use algorithms that have been defined on the abstract syntax classes, such as context
conditions, symbol infrastructure, and any form of constructive or analytical handwritten
code, it is important that the AST classes of the originally used grammars are directly
reusable and not generated anew.

This leads directly to a new composed AST that integrates all AST classes from the original
grammars. However, if the production for a nonterminal is modified, a new AST class is
generated that inherits from the original. Both classes then have the same name, as they
are derived from the same nonterminal, but reside in different packages.

Builder for the abstract syntax: The infrastructure to create new AST objects is
adapted accordingly, such that the builder mill (see Section 5.9) is also composed. From
a developers point of view, who only knows the new language there is one composed
builder mill creating objects for all AST nodes. However, for a reused functionality it is
still possible to rely on the old builder mill of the embedded language, which has now
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internally been modified in such a way, that it produces AST objects of the extended
language. This is done transparently, such that algorithms on the original embedded
language including functionality that creates new objects are completely reusable. For
that purpose, we invented the static delegator pattern (see Section 11.1) and designed it
in such a way that it can be adapted through subclassing.

Navigation infrastructure through visitors: Visitors are a core element to navigate
through an AST once it has been created through the parser. Because the AST classes
are completely reused and potentially only modified through subclassing, visitors on sub-
languages may also be reused. Therefore, it is possible to reuse a visitor of a sublanguage
out of the box as well as to modify the behavior of the visitor by building a handwritten
subclass and overriding certain visit methods.

However, when composing several languages, technically such a visitor can only be applied
to the elements of one sublanguage and runs into a type-induced matching problem, when
a node from a foreign language component appears in the AST. For that purpose, we have
created the DelegatorVisitor (see Chapter 8), which is available for each language
and allows to compose visitors that have been individually developed for sublanguages.
The DelegatorVisitor manages full traversal over the newly defined language nodes
and delegates only to appropriate sub-visitors, which it is composed of.

Symbols and Scopes: Symbols and their visibility within artifacts, but especially be-
tween artifacts that import each other, are the core binding mechanism to integrate sets of
artifacts into a consistent description. Therefore, it is inevitable to provide a compositional
infrastructure for symbol management.

Language aggregation, therefore, needs efficient mechanisms to define externally visible
symbols from one artifact and allow to use these symbols within another artifact. In
language embedding, symbols defined in one part of the artifact should be used in another
part of the artifact, even if defined in another sublanguage. So even within the same
artifact, symbols cross the borders of languages. The symbol management infrastructure
therefore provides a unified mechanism that allows to cross borders of languages as well as
of artifacts.

As a speciality in a heterogeneous modeling world, it is necessary to understand how
symbols are represented in different languages. This, for example, applies to the Unified
Modeling Language (UML), where over 13 languages have been aggregated and are used
to describe products together. For example, a method in a class can become a message in a
Statechart, or a state in the Statechart may be represented as enumeration value (standard
approach) or as subclass (state design pattern, [GHJV94]). Neither is the mapping always
the same, as the mappings of states show. Nor is the mapping always simple, because the
symbol may have restrictions or gets additional information along the mapping, e.g. Java
methods need a certain signature to be usable as messages in Statecharts.

To manage this heterogeneous set of symbols, the symbol management infrastructure on the
one side provides concepts for visibility, import, and export. But, on the other side, it also
provides infrastructure for heterogeneous mappings between different kinds of symbols,
which becomes relevant when a composition of the symbol management infrastructure
together with their languages is necessary.
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Context conditions are highly diverse. Therefore, a concrete context condition usually
only applies for an individual language. However, a context condition depends only on a
small part of the language respectively certain forms of symbols and if that part of the
language has not been modified during composition, the context condition conceptually still
applies. From a technical point of view, context conditions are usually defined using visitors
and as discussed above, visitors can directly be reused and composed in various forms. So
context conditions naturally compose. If the language is extended in a conservative way,
they can be reused easily.

It remains an open question, what happens with context conditions that are defined over a
composed language. However, we think that many of these conditions can be reformulated
in a decomposed form and then be implemented on the sublanguages. As a main technique
for this decomposition, we have developed our symbol management infrastructure in such a
way, that it allows to map symbols defined in one sublanguage into the symbols of another
sublanguage [MSN17, MSNRR16, HMSNR15, MSNRR15, Völ11], which naturally applies,
when aggregating or embedding languages.

The backend: The backend of a tool consists of a generator, an interpreter, or analytical
algorithms that retrieve interesting information of a larger and very detailed set of models
or associated data. These techniques are usually highly specific to the domain and the
intended use of the tools. We, therefore, don’t believe, that their composition is an easy
task. We do not even really know well at the moment, how to compose generators that
target the same platform. We have ideas, but this remains future research.

7.3 Grammar Constructs for Language Composition

Chapter 4 has introduced all grammar constructs that deal with monolithic definitions
of a grammar in a single artifact. Chapter 5 furthermore discusses the derivation of the
abstract syntax from a monolithic grammar. In this section, we discuss the following
additional grammar constructs and mechanisms, that allow language developers to build
language components that import each other:

component is a keyword that allows to mark a grammar as incomplete, which means
that no parser, but everything else, such as AST classes, visitors, or builder mills are
created.

external is a keyword that, attached to a nonterminal, marks that a nonterminal is not
defined here, but marks an extension point. This nonterminal needs to be bound,
when the grammar is used. Thus, external nonterminals are only allowed in compo-
nent grammars. An external nonterminal is therefore a mandatory extension point
of a grammar.

import allows to refer to other grammars and especially component grammars that are
imported.

interface nonterminals (and to some extent abstract nonterminals) enable to struc-
ture monolithic grammars, but can also be used to mark extension points of a gram-
mar component. When importing a grammar component, additional alternatives can
be added to interfaces.
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overriding of nonterminals is a technique to redefine a nonterminal that can also be ap-
plied to imported nonterminals and thus modify imported languages. It is possible
to override nonterminals of all forms, including tokens and fragment tokens.

extending nonterminals is technically an overriding of nonterminals, but when applied
carefully and conservatively, the nonterminals are just extended. Depending on the
form of overriding, the extension may affect only the concrete syntax or concrete and
abstract syntax.

7.3.1 Component Grammar

To assist component-based reusability of grammars, we can define grammar components
by using the keyword component as shown in Listing 7.2. A grammar component defines
a sublanguage, i.e., a yet incomplete language that is meant to be extended to form a
complete language. For a grammar component, MontiCore produces AST classes, node
builder mills, context condition infrastructure, and visitors, but does not produce the
parser for models of the defined language. Therefore, a grammar component is allowed to
use interface nonterminals, abstract nonterminals as well as external nonterminals without
any production body.

MCG InvAutomaton1 component grammar InvAutomaton
2 extends de.monticore.MCBasics {
3 external Invariant;
4

5 State = "state" Name
6 Invariant
7 ( "<<" ["initial"] ">>" | "<<" ["final"] ">>" )* ";" ;
8 }

Listing 7.2: Example of a grammar component with an external nonterminal

A grammar component either is a collection of basic nonterminals that are meant for reuse,
quite like a library, or it is an extensible – and therefore incomplete – language with ex-
plicitly marked extension points, namely external nonterminals, like a framework. The
concept of grammar components reflects the concepts that object-oriented programming
languages provide to extend classes.

7.3.2 External Nonterminals

An external nonterminal is introduced by the keyword external. It has a name but
no production body that defines its structure (cf. Listing 7.2). An external nonterminal
defines an extension point in the grammar, i.e., it can be used like all other nonterminals
in the body of a production, but its syntax is defined in another grammar. In fact, ex-
ternal nonterminals need to be bound when defining a complete grammar. In Listing 7.2,
Invariant is an external nonterminal and is used in the body of production for the
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nonterminal State. It essentially only introduces the nonterminal Invariant and ex-
plicitly defines an extension point in the grammar. This extension point has to be filled to
complete the language.

For the external nonterminal called Invariant, MontiCore creates an AST representation
as (empty) interface that needs to be implemented when the language is completed:

Java «gen» ASTInvariantExt1 package invautomaton._ast;
2

3 public interface ASTInvariantExt
4 extends ASTNode, ASTInvAutomatonNode {
5

6 // ... only clone and equals signatures are given
7 }

Listing 7.3: External nontermials are mapped to interfaces in the AST

Please note that for external nonterminals, we translate the nonterminal name into a
class by also attaching an "Ext" suffix. Therefore, Listing 7.2 leads to the Java interface
ASTInvariantExt shown in Listing 7.3.

External nonterminals can only be defined in component grammars, as explained in Sec-
tion 7.3.1. They cannot be combined with abstract or interface keywords, and
cannot have a right-hand side, but it is possible to bind them to any form of nonterminals
in a composition. It is also possible to declare an external nonterminal as scope.

If an extension point shall be bound, language embedding is used.

MCG Automaton21 grammar Automaton2 extends InvAutomaton {
2

3 start Automaton;
4

5 // use this production as Invariant in Automata
6 Invariant = LogicExpr | ["-"] ;
7

8 interface LogicExpr;
9 Truth implements LogicExpr = tt:["true"] | ff:["false"] ;
10 And implements LogicExpr = LogicExpr "&&" LogicExpr ;
11 Not implements LogicExpr = "!" LogicExpr ;
12 Var implements LogicExpr = Name ;
13 }

Listing 7.4: Language embedding with binding the external nonterminal

In line 6, the grammar combines the newly defined nonterminal LogicExpr with the
imported, but not yet bound nonterminal Invariant. The new grammar is complete
and a parser is generated. Furthermore, new AST classes are generated and Invariant
leads to an implementation as a class in Listing 7.5.
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Java «gen» ASTInvariant1 package automaton2._ast;
2

3 public class ASTInvariant extends ASTCNode
4 implements ASTInvariantExt, ASTAutomaton2Node {
5

6 protected Optional<ASTLogicExpr>
7 logicExpr = Optional.empty();
8 protected boolean mINUS;
9 }

Listing 7.5: Implementation of the Invariant nonterminal

The nonterminal Invariant is now mapped to a normal AST class with the speciality,
that it also has to implement the interface ASTInvariantExt which allows all of its
objects to be included in the AST from the original grammar and thus integrates ASTs on
the object level.

7.3.3 Importing and Extending Grammars

A modular definition of grammars is based on references between grammars. This can be
achieved either by explicit import statements and then using the unqualified grammar name
or by a fully qualified grammar name in the extends clause. This was, e.g., used for basic
grammar components that MontiCore provides, such as de.monticore.MCBasics.

When using the MontiCore command line interface, the source path of grammars are
specified using the "-g" or the "-mp" options.

Technical Info 7.6 How Grammars are Imported and Extended

When a grammar shall be extended, the compiler searches the grammar path
(specified with the "-g" or the "-mp" options). These paths need to contain all
imported (extended) grammars. No other files of the imported grammars need to
exist at the time MontiCore is executed.

The result is that all newly defined nonterminals are mapped to code accordingly
and a full parser is generated.

However, the imported grammars are not(!) mapped to code, because MontiCore
assumes that a generator management system, such as Maven [Fou17a] or make
will organize redundancy free, incremental generation more efficiently.

As a consequence, the order of processing grammars is not relevant, but each
grammar needs to be processed by MontiCore individually.

7.4 Language Inheritance

Language inheritance is a rather powerful feature of MontiCore grammars. Language in-
heritance allows to extend already existing languages by new nonterminals as well as to
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redefine existing nonterminals. This way it allows a modular definition of languages by
reusing language components. To extend a grammar, a new grammar is created that uses
the keyword extends after the name of the grammar followed by the name of the original
grammar (cf. Listing 7.7). In this example, the language HierarchicalAutomaton ex-
tends the language Automaton. This way, the new grammar HierarchicalAutomaton
inherits all productions defined in the original grammar Automaton. All nonterminals of
the original grammar can be used the same way as nonterminals defined directly in the
new grammar. Furthermore, inherited nonterminals can be redefined.

MCG HierarchicalAutomaton1 grammar HierarchicalAutomaton extends Automaton {
2

3 // keep the old start
4 start Automaton;
5

6 // redefine a nonterminal
7 State = "state" Name
8 ( "<<" ["initial"] ">>" | "<<" ["final"] ">>" )*
9 ( ";" | "{" (State | Transition)* "}" );
10 }

Listing 7.7: Language inheritance: One grammar extending another and redefining an in-
herited nonterminal

The new parser normally uses the first nonterminal that is defined in the grammar as start
and assumes that this is the starting point for describing the overall language. If we want
to preserve the original language, but modify it in some of its concepts, we have to repeat
the original nonterminal using the start statement as shown above.

7.4.1 Redefining Productions of Grammars

A production for nonterminal NT is redefined by (a) either defining a new production for
the same nonterminal NT (cf. Listing 7.7) or (b) by extending the nonterminal NT in a
production for a new nonterminal NT2. In the first case the new production for NT in the
new grammar shadows the original production for NT The original is completely replaced.
This is the case for the nonterminal State as the grammar Automaton already defined
the nonterminal State, but the grammar HierarchicalAutomaton has a production
redefining this nonterminal.

For the abstract syntax, there will be a new ASTState class defined that implements the
new production body. To be a useful replacement, the new class is a subclass of the old one.
Both classes have the same name, but are located in different packages (see Listing 7.8).
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Java «gen» ASTState1

2 package hierarchicalautomaton._ast;
3

4 public class ASTState extends automaton._ast.ASTState
5 implements ASTHierarchicalAutomatonNode {
6

7 protected String name;
8 protected java.util.List<ASTState> states;
9 protected java.util.List<ASTTransition> transitions;
10 protected boolean initial;
11 protected boolean r__final;
12 }

Listing 7.8: The new ASTState class extends the old ASTState class and serves as
substitute

Through the extension mechanism in the AST classes, it is ensured that the new ASTState
nodes can be used in all places, where the old ones are expected. This, however, also
imposes that the functionality of the new class subsumes the functionality of the old one.
This in particular means that the body of the production may be extended, but not
completely changed. We may introduce new language entities, but are not allowed to
remove nonterminals on the right-hand side nor change their cardinality. As a remark: it
is possible, but not recommended, to omit nonterminals or adapt their cardinalities. See
Section 7.8 for the discussion about conservative extension.

However, the abstract syntax is not affected by introducing additional terminals, rear-
ranging the order in the production and similar modifications. This of course affects the
concrete syntax and that leads to the situation that models of the original language are
not models of the adapted language.

We therefore distinguish these forms of redefinition of a nonterminal:

Free modification of the production with the risk that some of the functionality of the
original language does not work anymore.

Conservative extension of the AST preserves all nonterminals in their cardinalities as
well as semantically relevant terminals. It, however, is allowed to extend the AST
by additional semantically relevant entities.

The goal that is achieved by AST-conservation is that all functionalities for the old
AST still can be used on the new AST.

Conservative extension of the concrete syntax preserves and only extends the concrete
syntax. This means that basically the production needs to be preserved as is and
can only be extended by optional entities (A?) or lists (A*).

Goal of CS-conservation is that the old models are also models of the new language
and all models can be reused.

Concrete and abstract syntax compliance. It may be that both, concrete and abstract
syntax are preserved, but the AST representation of the same model differs in original
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and extended language. One minimal example would be a production A = n:Name
t:Name that is overridden by A = t:Name n:Name. CS-AST-compliance enforces
that the same model results in the same tree structure.

For the process of overriding productions a couple of context conditions apply (cf. Sec-
tion 4.3). For example, a nonterminal can only be overridden by a production of the same
kind (except external nonterminals). Thus, productions of abstract nonterminals can only
be overridden by productions of abstract nonterminals.
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Figure 7.9: Language inheritance

As a final remark, it should be noted that it is formally impossible to completely remove
a nonterminal, but overriding the nonterminal by a secret production has the same effect,
because when the user does not know this secret production, no instance of the respective
nonterminal is parsed anymore. For example:

MCG fragment1 Transition = "THIS-IS-A-SECRET-77616E636B";

would forbid transitions. However, this can only be applied to a nonterminal that occurs
only in lists, alternatives, or optional clauses, because if it would be mandatory, no valid
model would exist anymore. For example, certain nonterminals implementing an interface
such as Expression can be ruled out this way. While in principle this effect could also
be achieved by using the formally cleaner form of context conditions, the later does not
work, when at the same time a new and similar alternative should be added, because that
could lead to parsing problems.

7.4.2 Extending Multiple Grammars

It is possible to extend multiple grammars, which strongly corresponds to multiple inher-
itance in OOP. This is done by defining a comma separated list of grammars after the
extends keyword (cf. Listing 7.10). Here, the grammar Automaton3 extends the gram-
mars InvAutomaton and Expression. Different from the example in Listing 7.4, we
this time reuse an existing language for invariants.
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MCG Automaton31 grammar Automaton3 extends InvAutomaton, Expression {
2

3 // LogicExpr is defined in grammar Expression and now
4 // bound to the external NT
5 Invariant = LogicExpr;
6

7 }

Listing 7.10: Language embedding: Filling extension points

As before, all productions of the original grammars are inherited. If two nonterminals have
the same name in the original grammars the order in which the original grammars are
listed after the extend keyword is relevant. The definition of the first (leftmost) grammar
defining the nonterminal is taken as the valid definition, while all following ones are ignored.
In our example, if both grammars InvAutomaton and Expression define the same
nonterminal, the definition in grammar InvAutomaton would be taken.

If a grammar extends several other grammars, those grammars may share common sub-
grammars. Thus, diamond extension works. A nonterminal imported through two different
extension paths is imported only once. If a nonterminal is imported through different paths,
having different definitions, then the first imported definition takes precedence. This even
plays a role, when the body of the defining production is the same in both imported gram-
mars, because the objects that are instantiated are belonging to the package of the first
grammar.

7.5 Language Embedding

With the presented mechanisms of language extension and overriding of nonterminals, we
can achieve specific effects, such as embedding one language into another. This is especially
interesting, when both languages have been independently developed and there was no joint
definition of abstract syntax, context conditions or any other elements of these languages
before.

We can assume that this is the case for the languages Expression and InvAutomaton
already used and composed in Section 7.4. The nonterminals of both languages now co-
exist. Through the selection of the new starting nonterminal (using the start statement)
the master language can be defined. For a combination of the languages it would then be
necessary to either fill external nonterminals or override already implemented nonterminals
in such a way that nonterminals of both languages refer to each other.

Because language InvAutomaton (Listing 7.2) has an extension point Invariant, we
can embed the expression language for those invariants, by mapping the extension point
to the existing nonterminal. In line 5 of Listing 7.10, the extension point Invariant of
the imported grammar InvAutomaton is bound by the nonterminal LogicExpr of the
imported grammar Expression.

The above example has shown that it is possible to embed one language into another. It is
of course also possible to define a completely new start and reuse nonterminals from both
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sublanguages in its production body. Or we can also embed given languages in our newly
defined ones, what we regularly do, when importing MCBasics, etc.

There are, however, limitations that a developer should consider:

1. A keyword defined as token in one language remains a keyword in all parts of the
composed language, even if the other languages regarded that as normal name.

2. Whitespaces and forms of comments must be identical in all sublanguages, because
they are processed by the composed lexer in a uniform way.

3. Token definitions should also be shared, for instance, if two languages define the
same integers using different token nonterminal names then the parser generator has
to announce an ambiguity, because tokens are parsed free of the context of their use.

4. Grammars yield a flat namespace for nonterminals, which means that all nontermi-
nals of an imported grammar are merged into the new version. As already mentioned,
when a nonterminal is defined in two grammars, then the first one takes precedence.
This may lead to unintended changes of the languages, because this unintended form
of overriding could affect the second language, that normally also uses that nonter-
minal.

7.6 Composing the Builder Infrastructure

A builder for any AST object belonging to a grammar G1 is created using the builder
mill, called G1Mill, as discussed in Section 5.9. The builder mill uses the static delegator
pattern (see Section 11.1) to map the static call to retrieve a builder to an internal mill
object. This enables MontiCore to also compose the builder mills in all forms of language
composition, aggregation, and inheritance.

Consequently, for a developer knowing the composed grammar G2, for which we assume it
extends G1, builders for all nonterminals can be retrieved from G2Mill. However, for old
functionality, which was developed only for grammar G1, all G1Mill builders still work
and thus functionality can be reused without changes.

In case a nonterminal S of G1 has been redefined or extended, then G1Mill now produces
new g2._ast.ASTS objects instead of old g1._ast.ASTS objects. As g2._ast.ASTS
is a subclass of g1._ast.ASTS, the old functionality does not recognize anything.

To ensure this, the builder mill G1Mill has to be initialized accordingly. For thus purpose,
each builder mill is equipped with a static initialization method init that initializes
the mill (here G2) and all mills of the languages it depends on (here: G1) to deliver
objects of that language. So an G2Mill.init() statement ensures that all calls of form
G1Builder.sBuilder() deliver g2._ast.ASTSBuilder objects.

Please note that a mill initialization can be overridden by initializing another mill that
depends on the mill. So only one language mill should be initialized at program start.

If the extension of nonterminal S is AST-conservative (see Section 7.8), then the new
builder completes the build process with exactly the same attributes being set as by the
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old builder. This works, because in an AST-conservative extension new attributes are all
optional or lists.

If the extension is not AST-conservative, then either (1) the G1Mill methods may not be
used anymore or (2) the builder needs to predefine values for the new, hidden attributes.
In the latter case, handwritten extensions of the G1Mill class of the builders, e.g., using
the TOP mechanism are recommended.

To complete the picture, it is worth mentioning that overriding of nonterminals,
e.g., S, not only leads to a subclassing relationship between g2._ast.ASTS and
g1._ast.ASTS, but also the builder g2._ast.ASTSBuilder becomes a subclass of
g1._ast.ASTSBuilder. This is helpful and necessary, to inject the subclass builders
into the functionality knowing the superclass only.

7.7 Composing Parsers

A parser is either directly called or a parse object is created using the static methods
provided by a parser class. Each sublanguage G1 has its own parser in class G1Parser.
If G2 extends G1, then a class G2Parser exists that provides a G2 parser as well as a
parser for each nonterminal of G1 and G2.

When languages are composed or extended, MontiCore actually does not compose the
parsers, but creates a new complete parser for each composition of languages. G2Parser
is independent of G1Parser’s functionality. This is why language composition needs the
subgrammars as sources (i.e., the .mc4-files). But this is hidden from the developer of
functions for a sublanguage like G1.

In particular, MontiCore provides the parsing functions in such a way that all parsing
functions for a sublanguage G1 are still available in class G1Parser even when embedded
in a composed language G2. The static delegator that implements G1Parser, however,
is reconfigured in such a way that (1) internally the parsing functions of the composed
language G2 are used and (2) the resulting AST is also built from the AST classes of the
composed language G2, which, however, reuses G1 nonterminals if the nonterminals are
not redefined.

Consequently, for a nonterminal NT from a sublanguage G1 of a composed language G2,
the method G1Parser.parseNT has the same effect as using G2Parser.parseNT.
Furthermore, when restricting to standard use of visitors etc., functions developed against
the sublanguage G1 will never experience differences in the AST even though the resulting
AST may contain additional AST objects belonging to G2 only. This also holds if NT
itself is conservatively redefined. Hence, composition remains fully transparent and the
functionality using parser, builder, and the later discussed visitors of a sublanguage, need
not to be aware of its embedding in a composition. They can be fully reused and do not
even need to be recompiled.

There is, however, some caution necessary: The parsing only works well, if the concrete
syntax is conservatively extended (see Section 7.4.1). Section 7.4.1 also discusses some
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Figure 7.11: Composition of a language is executed as late as possible: late binding

precaution necessary to ensure that type incompatibilities do not prevent compilation of
the composed AST classes.

Figure 7.11 shows that both, the generation and the compile processes of sublanguages are
decoupled and, thus, it is possible to ship language components as pre-compiled libraries.
In MontiCore 3 even the parsers were compositional and decoupled. However, that didn’t
work too well because the scanners had limited capabilities for composition. We therefore
decided to early compose grammars and create monolithic parsers. This is acceptable for
several reasons (1) MontiCore leaves parser frontends intact, while allowing to use the
composed parser, (2) the parser does have a very limited signature (namely the parsing
methods) and a well encapsulated functionality, and (3) the parser is not supposed to be
manually adapted e.g. through subclassing.

7.8 Conservative Extension

It is worth examining the conservative extension properties defined in Section 7.4.1 for
ASTs as well as concrete syntax in greater detail. Conservative extension is generally
interesting, when a nonterminal already has a definition that shall be extended, but its
properties shall be conserved. This, therefore, does not apply to an external nonterminal,
which can be implemented freely, but to normal and abstract nonterminals.

Let us for the following discussion assume that we have a number of languages LG* ex-
tending language LG1 (where "*" stands for any number). For a better understanding, we
attach a suffix to each nonterminal, to describe where it comes from. Please be aware that
this suffix is not present in any grammar.
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MCG fragments1 grammar LG1 {
2 MLG1 = Decimal;
3 NLG1 = "one" MLG1;
4 PLG1 = "some" MLG1*;
5 QLG1 = "optional" MLG1?;
6 }
7 grammar LG* extends LG1 {
8 MLG∗ = ...
9 }

7.8.1 Conservative Extension of the Concrete Syntax

Conservative extension of the CS is a property of the set of models parsed by a grammar.
It means2: Sem(LG1)⊆Sem(LG2). Such a property on grammars is generally undecidable
[HMU06]. However, a set of sufficient criteria can be defined that ensures this property.
To assist the developer, we thus describe these criteria in the following.

MCG fragments1 grammar LG* extends LG1 {
2 // we describe a bunch of grammars LG* here,
3 // each grammar has one nonterminal M
4 MLG02 = Decimal; // CS-conservative
5 MLG03 = Decimal P?; // CS-conservative
6 MLG04 = "-"? Decimal; // CS-conservative
7 MLG05 = P* Decimal P?; // CS-conservative
8 MLG06 = Name; // not cons.
9 MLG07 = Decimal*; // CS-conservative
10 MLG08 = Decimal?; // CS-conservative
11 MLG09 = Decimal | Name; // CS-conservative
12 MLG10 = Decimal d:Decimal?; // CS-conservative
13 MLG11 = d:Decimal; // CS-conservative
14 }

The above examples of redefining nonterminal M demonstrate what is allowed. The
Decimal nonterminal needs to be retained, although it might be given another name
(LG11), which affects only the AST.

If Decimal changes its cardinality, the cardinality may only be widened. That means
from mandatory (N) to optional (N?) or nonempty list (N+), and from all three to list
(N*). Separators may be added, like in {N,","}. Alternatives like in LG09 count as a
switch to optional.

Before, between, and after the existing terminals and nonterminals it is allowed to add
optional and list nonterminals, because their omission is generally allowed (LG03-LG05).

It is, however, not allowed to omit nonterminals (LG06) or rearrange their order (LG21).
But, it is allowed to add more optional variants of an already existing nonterminal (LG22,
LG23).

2Let us denote the language, i.e. the set of words, of a grammar L by Sem(L)
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MCG fragments1 grammar LG* extends LG1 {
2 NLG20 = "one" M?; // CS-conservative
3 NLG21 = M "one"; // not cons.
4 NLG22 = M? "one" M; // CS-conservative
5 NLG23 = x:M? "one" M; // CS-conservative
6 }

Many of those conservative extensions on the CS are, however, no conservative extensions
on the AST.

Please note that obviously a conservative extension also needs to keep the original starting
nonterminal. By default, MontiCore takes the first explicitly defined nonterminal as start.
Thus, a start statement is usually needed to set the starting nonterminal correctly and
retain conservative extensions of the CS.

7.8.2 Access-Conservative Extension of the Abstract Syntax

Conservative extension of the AST is a property of the data structures and it comes in two
important variants:

• The AST data structures that a programmer expects under LG1 are still valid under
LG2. That means when navigating an AST, e.g. with a visitor and accessing children,
no surprises occur. We call that AST-access-conservation.

• All operations on an AST that a programmer might use to manipulate an LG1 AST
are having the same effect under LG2. We call that AST-modification-conservation.

Fortunately, some conservation properties are already ensured by the extensible OO type
system. Unfortunately, the Java type system is not powerful enough to fully support all
potentially interesting forms of language extension, such that the AST is conserved. We
discuss the problems and some workarounds with a few examples in Section 7.8.4.

AST-access-conservation basically means that given an AST object with a certain type
information, the object may be from a subtype, but behaves like the known type. That
means all getters and value retrievers work as from then known type, navigation to chil-
dren works as normal and applying a visitor works. This is generally the case, when the
cardinality of a nonterminal stays untouched. For the examples from above, this is as
follows:

MCG fragments1 grammar LG* extends LG1 {
2 MLG02 = Decimal; // AST-conservative
3 MLG03 = Decimal P?; // AST-conservative
4 MLG04 = "-"? Decimal; // AST-conservative
5 MLG05 = P* Decimal P?; // AST-conservative
6 MLG06 = Name; // not cons.
7 MLG07 = Decimal*; // not cons.
8 MLG08 = Decimal?; // not cons.
9 MLG09 = Decimal | Name; // not cons.
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10 MLG10 = Decimal d:Decimal?; // AST-conservative
11 MLG11 = d:Decimal; // not cons.
12

13 NLG20 = "one" M?; // not cons.
14 NLG21 = M "one"; // AST-conservative
15 NLG22 = M? "one" M; // not cons.
16 NLG23 = x:M? "one" M; // AST-conservative
17 }

The modifications of the languages LG02 to LG05 are AST-access-conservative, because
they basically leave the inherited nonterminal(s) unchanged. Any changes of the cardinality
of the nonterminal, such as in LG07 to LG09, LG20, LG22, omitting the nonterminal
(LG08), or renaming the nonterminal (LG11) is not AST-access-conservative.

LG22 ist not access-conservative, because it extends the cardinality of M to M* (even though
it is restricted to 1-2). In contrast, LG23 is access-conservative, because the new instance
of M has a different name x.

Relaxing the cardinality is generally not access-conservative, because the accessor could
rely on an assumption that there is exactly one, at most one, or potentially a nonempty
list. This also holds, but will in practice not necessarily be a problem, if the cardinality is
only relaxed through a different min and max definition (see Section 4.2.9).

On the other hand, strengthening the cardinality would in principle be access-conservative.
It works, when using the min/max definitions or restricting from M* to M+, but does not
generally work, when adapting the cardinality from M* to M? or M and also not when
restricting M? to M, because the access signature changes. See Section 7.8.4, how that can
be handled.

Changing the order of the nonterminals, like in LG21, also is generally access-conservative,
because the AST does not store the order.

7.8.3 Modification-Conservative Extension of the Abstract Syntax

Preserving all abilities of modification for an AST includes that it is allowed to freely
manipulate the AST nodes. This includes setting new children for single, mandatory
nonterminals (N) as well as full list and optional manipulation (for N* and N?). It, however,
also includes to create new AST nodes through the LG1 mill and builder interfaces.

Then functionality implemented against a language component LG1 can be reused as a
precompiled, black-box functionality for any language LG* that is based on LG1.

AST-modification-conservation is almost equivalent to AST-access-conservation, because
the appropriate sets of methods are generated und thus work closely together. However,
there are two important differences: Builders and cardinalities of nonterminals.

The builder for an overwritten nonterminal MLG02 is a subclass of the builder for the original
MLG01 and thus inherits all methods. Because optional nonterminals and list nonterminals
do have the defaults absent and empty list, if only nonterminals with these cardinalities are
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added in a redefined production, then the builder of MLG02 behaves like the one of MLG01

and delivers the appropriate AST object. It delivers always an instance of class MLG02, but
through the mill of LG1 it looks like a superclass object of type MLG01.

As a consequence: it is inevitable that all functionality uses builders for the AST instead
of the direct constructor.

If the language extension is not conservative, the builder needs to be adapted accordingly
by a handcoded version (e.g. using the TOP mechanism) to be reusable within functionality
of a sublanguage.

The second difference regards cardinalities: While access allows strengthening, manipu-
lation generally allows relaxation of cardinalities in subclasses to remain substitutabil-
ity. Together that means that a fully AST-conservative language extension may neither
strengthen nor relax cardinalities and thus not adapt the cardinalities at all. Otherwise,
some functions can not be used anymore, or special measurements need to be taken to
handle that.

7.8.4 AST Signatures Causing Java Type Errors

The considerations in Sections 7.8.1 and 7.8.2 do hold irrespectively, whether the nonter-
minal under consideration (e.g. M and N) itself is adapted. However, in some cases even
though the modification would be AST-access-conservative, the Java type system produces
a compilation error. These are in particular the following cases:

MCG fragments1 grammar LG2 extends LG1 {
2 MLG2 = Decimal;
3 NLG2 = "one" MLG2; // ok
4 PLG2 = "some" MLG2*; // does not compile
5 QLG2 = "optional" MLG2?; // does not compile
6 }

The problem is that when nonterminal M is modified, we actually get a second AST class
called lg2._ast.ASTM. This is a subclass of lg1._ast.ASTM that is fully behavioral
conform. The redefinition of N is fine, because it uses only a single, mandatory M.

But the adaptation of P does not compile, because some of the generated methods in
lg2._ast.ASTP return List<lg2._ast.ASTM>, but the inherited signature forces
them to return List<lg1._ast.ASTM> objects. Java does not accept these types as
compatible. While Java is correct in general, we have ensured through a consequent use
of builders and the configurable static delegator pattern that actually no object of class
lg1._ast.ASTM instantiated in the tool. All objects are of subclass lg2._ast.ASTM
and thus all list manipulations would be safe, even though the type system does not accept
that.

There are two circumventions to the problem: (1) If it is possible prevent redefinitions of
both nonterminals, M and N, in parallel, if M occurs in N’s body with a cardinality other
than one. This can, e.g., be achieved by adapting the base language LG1:

101



7. Language Composition

MCG fragments1 grammar LG1 {
2 M = Decimal;
3 N = "one" M;
4 P = "some" MStar;
5 MStar = M*;
6 Q = "optional" MOpt;
7 MOpt = M?;
8 }

As an alternative (2), which is especially suited, if the base language cannot be adapted,
we might give the nonterminal M a different name:

MCG fragments1 grammar LG2 extends LG1 {
2 M = Decimal;
3 P = "some" m2:M*;
4 Q = "optional" m2:M?;
5 }

Then everything compiles and is CS-conservative, but not AST-conservative, because the
methods to handle attribute m inherited from PLG1 (and also QLG1) are still there, but
do not provide a useful implementation, because the attribute m is not set anymore when
parsing. A handcoded adaptation might just delegate the methods for m to the methods
for attribute m2 (while adapting the types using casts).

Using handcoded adapters to integrate the ASTs generated from a base language LG1
and an extended language LG2 also can be applied if the inheritance for some reason
shall not be AST-conservative. This includes, e.g., omitting a nonterminal in LG2, which
leaves the inherited functions useless. One might still allow those in the AST, therefore
blending the AST of LG2 with LG1, which might be a helpful intermediate structure when
transforming from LG2 to LG1. There is much potential in this blending of AST structures,
when transforming between languages.

Blending also can be applied when the cardinality of a nonterminal has changed. Due
to the almost disjointness of the method sets generated for N, N? and N* these methods
can live together in an AST class. For access functions, narrowing of the cardinality is
feasible, e.g. a stored single object can be regarded a one element list. For manipulation
functions relaxing the cardinality is allowed, e.g., setting an optional to absent can lead
to an empty stored list. However, in both directions the opposite does not work and the
developer of the handwritten code can implement appropriate exceptions or handlers for
all the problems that arise if the language extension is not conservative.

In summary, a conservative extension, that means an extension that preserves concrete syn-
tax and abstract syntax is relatively restricted in the adaptation of inherited productions,
but allows developers to rely on a certain robustness that eases development.
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Chapter 8

Visitors for AST Traversal

co-authored by Robert Heim

Processing a model requires to implement operations on the AST of the model. Since
different operations often share the same traversal algorithm it is favorable to separate
the traversal algorithm and the actual operations on individual nodes. Thus, the traversal
algorithm becomes reusable.

The visitor pattern [GHJV94] separates operations on complex data structures from the
structure itself. It provides visit methods that act as hook points during predefined traver-
sal of the data structure. Thereby, it is easy to add new operations without touching the
implementation of the data structure itself or its traversal algorithm.

The original visitor pattern [GHJV94] describes the traversal algorithm as part of the data
structure. For AST processing this prohibits adjusting traversal in specific AST visitors
as they all share the same (generated) AST implementation. Hence, a variant of classical
internal visitors that define traversal within the data structure and external visitors that
define it in the visitors [Oli07]. Furthermore, the original visitor pattern is imperative since
it stores the result of a visitor run as state in the visitor. This approach is distinguished from
functional visitors [Oli07]. The latter approach utilizes return values of methods to prevent
stateful calculations. MontiCore’s visitor infrastructure is external and imperative1.

The following sections describe MontiCore’s visitor infrastructure and how it enables agile
development of concrete visitors to process ASTs.

8.1 Visitor Interface of a Language

Given a grammar, MontiCore generates the AST classes (cf. Chapter 5) and a parser
to translate a textual model into its AST representation (cf. Chapter 6). Additionally,
MontiCore generates a visitor interface that consists of a default traversal algorithm for
the AST and visit methods serving as hook points for custom processing of specific AST
nodes.

1The described visitor infrastructure bases on [HMSNRW16b] where a detailed elaboration can be
found.
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The visitor interface of a language L is an interface that defines a depth first traversal algo-
rithm on the AST of language L providing the following four methods for each nonterminal
C, which results in an AST class ASTC of L:

• handle(ASTC node) defines the iteration algorithm of ASTC (default: depth
first). By default handle calls visit, traverse (the children) and endVisit
on node.

• traverse(ASTC node) defines a climbdown strategy (i.e. order of children; no
order is guaranteed by the default implementation).

• visit(ASTC node) is called when entering node.

• endVisit(ASTC node) is called when leaving node.

Listing 8.1 shows an excerpt of the generated interface for language L with nonterminals
C and D:

Java «gen» LVisitor1 package l._visitor;
2

3 public interface LVisitor {
4 // ... simplified list of methods
5

6 // Hooks, to be adapted for concrete functionality:
7 default public void visit (ASTC node)
8 default public void endVisit(ASTC node)
9

10 // provides default implementation to handle a node
11 default public void handle (ASTC node)
12

13 // provides default implementation to
14 // manage traversal though all subnodes
15 default public void traverse(ASTC node)
16

17 // Same for each other type of nodes (here D):
18 default public void visit (ASTD node)
19 default public void endVisit(ASTD node)
20 default public void handle (ASTD node)
21 default public void traverse(ASTD node)
22 }

Listing 8.1: Signature of a Visitor for language L

Interface types as well as abstract classes of the AST usually do not specify their own
children in a complete form (only their specific realization classes do). Hence, the visitor
interfaces provides the same methods but omits the traverse method.

All methods introduced for the visitor interface define default implementations. Hence,
the language engineer only overrides the default implementations of interest to implement
a visitor. Most commonly these are some of the visit and endVisit methods. Their
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Tip 8.2 Standard Traversal of Language L

For a given language L, it is common to use the LVisitor or the (later explained)
LInheritanceVisitor to process the AST.

It is rarely required to adjust the default depth-first traversal. Usually, it is
sufficient to override the visit methods.

Tip 8.3 Four Visitors for each Language L

MontiCore generates four visitors for each language L. They are explained in the
following and are generated to these locations:

Files1 Directory: out/
2 Files: l._visitor.LVisitor.java
3 l._visitor.LInheritanceVisitor.java
4 l._visitor.LDelegatorVisitor.java
5 l._visitor.LParentAwareVisitor.java

All visitors are meant for extension by subclassing. If the visitor is an interface,
it provides default implementations for its methods.
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}
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Figure 8.5: Visitor for the Questionnaire language and an handcoded usage

default implementations do nothing while handle and traverse provide the default
traversal algorithm for the AST.

It is worth noticing that the standard visitor interface implements the handle method as
shown in Listing 8.6 (shown in a slighty simplified representation, ignoring composability
for now).

Figure 8.5 shows an example of the visitor for the Questionnaire language described
in Section 18.6. A concrete visitor (cf. QuestionnairePrettyPrinter at the bottom
of Figure 8.5) implements the visitor interface and inherits the default methods including
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Technical Info 8.4 Mechanisms used by the Visitor Pattern

The static type of a variable or parameter is the type information known at
compile time (i.e. the type written within the source code). The dynamic type is
the actual runtime type. For example, a variable could be typed by an interface
type, but its value might be of a class type that implements the interface. Here,
the static type is the interface type, but the dynamic type during runtime is the
concrete class that implements the interface.

Calling a method implementation based on the dynamic type of an argument is
called dynamic dispatching. Java is a single dispatch language since it only provides
dynamic dispatching on the this-reference. This means that the method imple-
mentation of the dynamic runtime type of this is selected (this enables overriding
methods since the more specific overriding version is executed during runtime). How-
ever, the method selection does not take into account the dynamic type of the other
arguments. This should not be confused with method overloading which describes
the method selection based on the static type information of arguments available
during compile time. The latter choice does not change even if at runtime an argu-
ment of a more specific type is given.

During traversal, a visitor gets a node to traverse. Here, the node does only
provide the static type information of its children (e.g., a child could be of an
interface type). However, the visitor requires knowledge about the dynamic node
type of the children to determine how to traverse them. It must call the appropriate
handle method for the dynamic type of each child. One solution is to use type
introspection (so called reflection), but it is (a) slow and (b) breaks the type-safety
of the implementation.

It is possible to simulate dynamic dispatching of one argument (in addition to
the this-reference) by adding accept(LVisitor) methods within each AST
node of language L. Instead of directly calling the handle method of a node’s
child, the child’s accept method is called with this (the visitor instance) as argu-
ment (cf. Figure 8.5). The accept method then simply calls back the appropriate
handle method by using the child’s specific type. This is possible since the child
itself does know its specific type. Note, that the actual handle method is selected
based on method overloading using the static type information available in the child.
This pattern falls short during language composition where children might be ex-
tended, but the original visitor interface does not statically provide handle methods
for the new child-types during (its former) compile time. This problem is known
as the expression problem and other infrastructure is required. More details can be
found in other literature (e.g., [HMSNRW16b]).

the traversal algorithms. By overriding visit or endVisit methods it can hook into
relevant parts during the traversal and implement operations. Executing a concrete visitor
is as simple as calling the handle method of the visitor for a given AST node. The default
implementation of the traversal is based on simulated double dispatching for determining
the dynamic runtime types of a node’s children (s. Technical Info 8.4).
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Java «gen» LVisitor1 public interface LVisitor {
2 // for each kind of nodes C:
3 default public void handle(ASTC node) {
4 visit(node);
5 traverse(node);
6 endVisit(node);
7 }
8 }

Listing 8.6: Simplified presentation of a handle operation (omitting composability)
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Figure 8.7: Generated visitors for language L extend/implement the default visitor

There exist several extensions to the default simple visitors with different options of re-
definition (and complexity). Figure 8.7 summarizes the variants. At the top is the simple
visitor interface and its extensions are described in the following.

8.2.1 Inheritance Visitor

Tip 8.8 Inheritance Visitors should be Preferred

It is common that a concrete visitor implements the LInheritanceVisitor
since a Language L often includes interfaces or abstract productions or at least some
productions that extend others. Even if those do not exist, the inheritance visitor
is generated and we recommend to use it. This is robust if the language evolves.

The default simple visitor visits nodes only in their most specific type. In case a language
definition includes productions that extend or implement others (especially when interface
or abstract productions occur) a more sophisticated traversal is required to enable hooking
into the intermediate node types. This, for example, enables implementing a common
operation for similar specific node types that share a super type (e.g., an interface) by
overriding the visit hook of the shared super type. This of course is only possible if
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the super type provides all relevant information for the operation. An example could be
counting occurrences of the super type.

To this effect, the inheritance visitor (s. Figure 8.10) does not only visit nodes in their most
specific type (here ASTRange) but also calls the visit methods of all their super types.
In Figure 8.10 and also the more complete Listing 8.9, the handle method for ASTRange
also visits the node in its super type ASTScaleType and the other supertypes as defined
by the derived AST of the language (top of the figure).

Java «gen» QuestionnaireInheritanceVisitor1

2 public interface QuestionnaireInheritanceVisitor {
3 // handle for ASTRange calls four visit methods, because
4 // ASTRange extends|implements
5 // ASTScaleType, ASTQuestionnaireNode, ASTNode:
6 default public void handle(ASTRange node) {
7 visit((ASTNode) node);
8 visit((ASTQuestionnaireNode) node);
9 visit((ASTScaleType) node);
10 visit(node);
11 traverse(node);
12 endVisit(node);
13 endVisit((ASTScaleType) node);
14 endVisit((ASTQuestionnaireNode) node);
15 endVisit((ASTNode) node);
16 }
17 }

Listing 8.9: Implementation of an inheritance visitor handle method
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Figure 8.10: Inheritance visitor calls visit hooks for all super types
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8.2.2 Delegator Visitor

For a language composition (s. Chapter 7) the delegator visitor enables reuse of existing
visitor implementations of the original languages. To provide such visitor composition all
visitors must implement the realThis pattern to support composition of control (cf. Sec-
tion 11.2 and [HMSNRW16b]). Because this leads to a complex interaction structure of
visitors and visited ASTs, this will be discussed on a detailed example in Section 8.3.

Tip 8.11 Delegator Visitors are used for Composed Languages

Because of the double dispatch that retains static typing, a visitor of an original
language needs to be mapped on an AST of a new language that inherits the original
language. This is required. The double dispatch cannot be added for new types that
are not part of the given (compiled) super languages.

When composing languages, a delegator visitor of the new language wraps the
original visitors of the original languages and composes several visitor objects.

As illustrated in Figure 8.7, for a language L the generated delegator visitor implementation
is given in class LDelegatorVisitor. This class includes all relevant implementations
for handling the delegation patterns and can be reused by subclassing. It also provides the
implementation for the realThis pattern used to compose several visitors. See Section 8.3
for composition details.

8.2.3 Parent Aware Visitor

When processing an AST node it is sometimes convenient to have information about its
parent and ancestor nodes available. Since the ASTNode’s API does not provide such
accessors, a dedicated parent aware visitor is generated for a given MontiCore grammar.
The ParentAwareVisitor is an abstract class implementing the language’s visitor in-
terface. It keeps track of the parent information and provides an extended API to access it:
getParent and getParents. Both are intended to be invoked from inside the visit
methods. While getParent returns the direct parent of the given node, the getParents
returns a list of all ancestors beginning with the direct parent. The getParent returns
an Optional value since the root node has no parent.

Figure 8.12 shows the generated LParentAwareVisitor for the grammar L. The
MyVisitor is an exemplary concrete visitor that makes use of the parent information
by using the getParent) method from within the overridden visit(ASTC c) method.

In order to maintain the ancestors’ information, the generated ParentAwareVisitor
uses a stack. Each time before traversing the children of a node, the current node is put
onto the stack. Within a visit method the direct parent can then be accessed using
the getParent method that returns the top node from the stack. After traversing the
children the current node is removed again.

During runtime the stack is altered at the beginning and end of each traverse method.
The object diagram (s. Figure 8.12) shows a snapshot of the parents information when
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public void visit(ASTC node) {
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// returns List{b, a}

getParents(); 

}

Figure 8.12: Additional API methods of the parent aware visitor

visiting c:ASTC node. Here getParent returns the direct parent node b:ASTB as an
instance of ASTLNode, and getParents returns the list with both ancestors b and a.

8.3 Visitors for Composed Languages

Chapter 7 has described the various forms of language composition and how they affect
the concrete and the abstract syntax. The following section explain how the visitor infras-
tructure supports composition.

For language aggregation the visitors of the involved languages remain separated since the
models remain separated as well. Therefore, in a case of language aggregation nothing needs
to be done. This is different from language embedding or inheritance where the language
elements of the embedded/inherited language are part of the host language. Therefore,
these cases are discussed below based on examples.

8.3.1 Visitor for Language Inheritance and Extension

If a language LG2 is an AST-conservative extension of LG1, then a visitor V1 of the
original language LG1 can be reused almost directly. The implementations of the AST
classes remain the same and thus the visitor V1 supports these classes.

There are two challenges to be discussed: First, the extension LG2 of the language LG1
might not be AST-conservative. That means that the production of at least one nontermi-
nal N overrides the original production in such a manner that some elements of the original
body are omitted or their cardinality changed. Hence, some of the assumptions of the
original visitor of the original language are violated. This needs to be carefully clarified
examining the manually implemented behavior of V1. At least it is not a type problem,
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MCG Automaton51 grammar Automaton5 extends de.monticore.MCBasics {
2

3 Automaton = "automaton" Name "{" AutElement* "}";
4

5 // The interface allows extension
6 interface AutElement;
7

8 State implements AutElement = "state" Name ";";
9

10 Transition implements AutElement =
11 from:Name "-" input:Name ">" to:Name ";";
12 }

Listing 8.13: Automaton language with interface nonterminal AutElement used for
extension

MCG Automaton61 grammar Automaton6 extends Automaton5 {
2 start Automaton;
3

4 TransitionWithOutput implements AutElement =
5 from:Name "-" input:Name "/" output:Name ">" to:Name ";";
6 }

Listing 8.14: Adding transitions with output to the Automaton5 language of Listing 8.13

because all attributes defined in the original class lg1._ast.ASTN are inherited to the
new subclass lg2._ast.ASTN.

Second, a visitor V1 for language LG1 normally cannot be directly applied to the new
language LG2, because new nonterminals occur, that the old visitor V1 is not aware of.
V1 has no specific visit method for those new nonterminals and does not know how to
traverse the new child nodes. Therefore, visitor V1 needs either to be subclassed by the
new visitor V2 or needs to be embedded in a new visitor V2 using the delegation visitor
technique. The delegation visitor technique is more general, because it allows to compose
several base language visitors instead of only extending a single one [HMSNRW16a].

We demonstrate visitor extension through subclassing in this subsection on the following
example for automata and give a variant in the following subsection. In Listing 8.14, l. 1
and 2 the Automaton6 language conservatively extends Automaton5 from Listing 8.13.
Listing 8.14 then introduces a new form of transition that has an additional output (l. 4).
The new transition implements the interface production AutElement, enabling to use
complex transitions whenever an instance of AutElement is required.

The resulting AST data structure is illustrated in Figure 8.15. The AST node
ASTAutElement is implemented by the new ASTTransitionWithOutput node type of
Automaton6. MontiCore also produces the interface Automaton6Visitor for the new
language. Generated visitor interfaces extend the visitor interfaces of all superlanguages to
inherit their default implementations. Here, the visitor interface Automaton6Visitor
extends Automaton5Visitor and adds default implementations for the new node type
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ASTTransitionWithOutput. Using this inheritance relation all default implementa-
tions of the original language’s visitor interface are reused. Hence, when implementing a
visitor for the new language the aggregated default implementations are available. Con-
sequently, the pretty printer for the new language (Automaton6PrettyPrinter) can
be implemented by extending the Automaton5PrettyPrinter of the original language
(l. 2 of Listing 8.16). It thereby reuses the handcoded pretty printing for all nodes of the
original language and only adds a pretty printing method for transitions with output.
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Figure 8.15: Overview of visitor classes for Automaton6

Visitors of the original language are unaware of new AST node classes introduced in inher-
iting languages. For example, the pretty printer of the Automaton5 language is able to
handle ASTTransition nodes, but does not know about ASTTransitionWithOutput.

But ASTTransitionWithOutput is a subclass of the ASTAutElement
type and thus still handed to the handle(ASTAutElement) method of the
Automaton5PrettyPrinter. ASTAutElement is the most specific type double
dispatching in the visitor will identify. Hence, handle(ASTAutElement) would be
executed. Furthermore, traversal of children would be omitted, because the visitor’s
traverse(ASTAutElement) method doesn’t know about any children. This is counter
intuitive.

Java «hw» Automaton6PrettyPrinter1 public class Automaton6PrettyPrinter
2 extends Automaton5PrettyPrinter
3 implements Automaton6Visitor {
4 @Override
5 public void visit(ASTTransitionWithOutput node) {
6 print(node.getFrom());
7 print(" - " + node.getInput() +" / " + node.getOutput() +" > ");
8 print(node.getTo());
9 println(";");
10 }
11 }

Listing 8.16: A visitor of the new language reuses an original language’s visitor
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MCG Automaton151 grammar Automaton15 extends de.monticore.MCBasics {
2

3 Automaton = "automaton" Name "{" (State|Transition)* "}";
4

5 State = "state" Name ";";
6

7 Transition =
8 from:Name "-" input:Name ">" to:Name ";";
9 }

Listing 8.17: Automaton language without explicit extension point

Consequently, MontiCore suggests to not directly apply a visitor on any language extension,
because the Java compiler’s typechecker does not prevent this. MontiCore introduces the
convention to only run a visitor on its own language, unless embedded or otherwise adapted
to the composed language. This means that a concrete visitor implementation must be
adjusted to be reused on an inheriting language, even if nothing changes in the vistor.
This, however, is easy and requires minimal glue code. For example, reusing the pretty
printer without adding anything is as easy as defining a class similar to Listing 8.16, but
with an empty class body. Still the original visitor of the superlanguage would be extended
to the sublanguage, because it also implements the visitor interface of the sublanguage.

Please note that defining visitors for language inheritance should not be confused with
the inheritance visitor. These mechanisms are orthogonal. The latter is used to call visit
methods that are defined on super classes of an AST class and can be applied within a
language, but also across extended languages.

8.3.2 Visitor for Language Inheritance – an Alternative

It is worth to note that visitors can also be reused when some of the nonterminals of the
original language are overridden. As already said, this should be done in a conservative
form, such that the body of nonterminal does not provide surprises (e.g. unset attributes
or semantically relevant terminals) for visitors of the original language.

The following example (cf. Listing 8.17) is very similar to the last one. Automaton15
accepts the same models as Automaton5, but instead of explicitly providing an interface
for extension, we redefine the Transition nonterminal, such that transitions with output
become possible. The new production body conservatively extends the old one, as it still
allows to parse all old transitions, but it also has an extension in form of an optional
output.

The resulting AST is different from the previous example Automaton6. In particular,
two versions of ASTTransition classes exist:

Files1 Directory: out/
2 Generated Files: automaton15/_ast/ASTTransition.java
3 automaton16/_ast/ASTTransition.java
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MCG Automaton161 grammar Automaton16 extends Automaton15 {
2

3 start Automaton;
4

5 Transition =
6 from:Name "-" input:Name ("/" output:Name)? ">" to:Name ";";
7

8 }

Listing 8.18: Conservative extension of transitions from Automaton15 of Listing 8.17

Java «hw» Automaton16PrettyPrinter1 public class Automaton16PrettyPrinter
2 extends Automaton15PrettyPrinter
3 implements Automaton16Visitor {
4 @Override
5 public void visit(automaton16._ast.ASTTransition node) {
6 print(node.getFrom() +" - " + node.getInput());
7 if(node.isPresentOutput()) {
8 print(" / " + node.getOutput());
9 }
10 print(" > " + node.getTo());
11 println(";");
12 }
13 }

Listing 8.19: A visitor of the new language reuses an original language’s visitor

The version ’16 of ASTTransition (cf. Listing 8.18) is furthermore a subclass of version
’15. And thus the pretty printer for Automaton16 is again implemented as visitor and
reuses the 15er version of the pretty printer through subclassing (Listing 8.19).

The main difference can be seen in line 7 of Listing 8.19, which accounts for the additional
optional attribute output. Line 5 of Listing 8.19 shows an important detail, namely it is
a visit method for the new version of the ASTTransition class. To avoid ambiguities
for the parser as well as confusion by the reader, the fully qualified class name is used.

Which form of extension the user actually wants to use is potentially a matter of taste,
but often depends on the choice of the designer of the original language, who may have
explicitly included extensibility by providing interfaces.

8.3.3 Visitors for Compositional Language Embedding

Language embedding, especially when multiple languages are involved, enforces compo-
sition of existing and reusable visitors based on the composition form of the language.
Compositional visitors are often used when composing context condition checks that have
been defined on individual sublanguages.

For visitor composition, MontiCore combines the visitor pattern with the realThis object
composition pattern described in Section 11.2. This leads to a powerful, but also complex
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structure. It is described in the following based on the pretty printing of a composed
language Automaton3, which is already defined in Listing 7.10 on page 94.

We assume that two pretty printers are given in classes ExpressionPrettyPrinter and
InvAutomatonPrettyPrinter. Both implement the normal visitor interface. How-
ever, they are intentionally prepared for composition. That means the realThis pattern is
implemented by all visitors (see Listing 8.20):

Java «hw» InvAutomatonPrettyPrinter1

2 public class InvAutomatonPrettyPrinter
3 implements InvAutomatonVisitor {
4

5 InvAutomatonVisitor realThis = this;
6

7 @Override
8 public void setRealThis(InvAutomatonVisitor realThis) {
9 this.realThis = realThis;
10 }
11

12 @Override
13 public InvAutomatonVisitor getRealThis() {
14 return realThis;
15 }
16 // ... more methods
17 }

Listing 8.20: The realThis implementation of a compositional visitor

Furthermore, to become compositional all methods are implemented in such a way, that
they do not use this (neither explicitly or implicitly), but use getRealThis instead. For
example if attributes need to be shared, getRealThis().getAttribute() is used. As
a comfortable alternative, one can externalize all state of the visitors into a separate object
of class PrettyPrinterIndenter. In the example, PrettyPrinterIndenter does
the printing and manages indentation. This class is independent of any AST and can thus
be reused in all pretty printers. It is noteworthy, that all generated visitor classes and
interfaces implement the realThis pattern by default.

The example of language embedding for visitors in Figure 8.21 is based on the exam-
ple in Listing 7.10. The ASTInvariant of the Automaton3 language implements the
ASTInvariantExt interface of the InvAutomaton language and stores an object of
class ASTLogicExpr. The visitor interface of the new language extends both original
language visitor interfaces to implement the delegator pattern.

Figure 8.21 also shows, that neither the original languages nor their handwritten pretty
printers have to be adapted (assuming that they are implementing the realThis pattern).
The composition of two languages in a third grammar Automaton3, however, leads to the
definition of four visitors:
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Figure 8.21: Overview of visitors for Automaton3

• Two original visitors are reused directly.

• A rather small visitor for the new nonterminals of grammar Automaton3 is defined
in Automaton3SublangPP.

• The composition is carried out in a subclass Automaton3PrettyPrinter of the
Automaton3DelegatorVisitor, whose only purpose is to delegate to the correct
pretty printer.

This complexity is necessary, because Java does not allow multi-inheritance of classes.
Hence, it is not possible to extend both languages’ pretty printers. Instead, MontiCore
uses delegation.

Tip 8.22 How to Compose Visitors according to their Languages

Composition is technically challenging, but does not enforce much encoding:

1. Use the realThis pattern for all visitors as basis for composition

2. Don’t care about handle or traversal at language borders. The composite
will do.

3. If visitors have local state that should be shared, either use that state only
through realThis, or externalize the state into an external object and share its
reference.

4. Build a subclass of the generated DelegatorVisitor of the composed lan-
guage and provide the visitors of the sublanguages.

Our composition visitors do not rely on reflection and are type preserving.
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Class Automaton3DelegatorVisitor provides setters for visitors of all (potentially
transitively inherited) original languages. MontiCore uses knowledge of the AST model by
generating this delegator visitor in such a way that it delegates all handle, traverse,
and visit calls to the concrete original visitor of the language that the current node
belongs to. So the delegator visitor makes heavy reuse of all these methods. On the other
hand it is important that all visitors implement the realThis pattern and thus delegate
back to the composite. Please note that even if there is no explicit use of this in a
handwritten visitor, it inherits methods that use getRealThis heavily.

In the example the Automaton3SublangPP visitor in Listing 8.23 implements the re-
alThis pattern. It also reacts on ASTInvariant nodes (lines 5 and 10) to print an
additional comment:

Java «hw» Automaton3SublangPP1

2 public class Automaton3SublangPP implements Automaton3Visitor {
3

4 @Override
5 public void visit(ASTInvariant node) {
6 out.print("/*[*/ ");
7 }
8

9 @Override
10 public void endVisit(ASTInvariant node) {
11 out.print("/*]*/ ");
12 }
13

14 // ... more methods
15 }

Listing 8.23: The implementation of the pretty printer for the Automaton3 sublanguage
(with only one nonterminal)

Please note that the delegator visitor only delegates the visit, handle and traverse
methods with the ASTInvariant signature to this visitor, although there would be a lot
more of those methods inherited. The same is true for other visitors: Only the nonterminals
that are explicitly defined in that language are delegated to the respective visitor.

Subclasses of Automaton3DelegatorVisitor basically delegate each visit, handle
and traverse call to exactly one of its sub-visitors (cf. Listing 8.24). This delegation
behavior is adjustable by extending this delegator visitor and overriding the corresponding
methods. Overriding one of those methods in the subclass of the delegator has precedence
over the implementation on the sub-visitors. This is shown in Listing 8.24 in line 10.
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Java «hw» Automaton3PrettyPrinter1

2 public class Automaton3PrettyPrinter
3 extends Automaton3DelegatorVisitor {
4

5 // ----------------------------------------------------------
6 // Here we can override any visit, endVisit, ... method
7 // Which gets precedence over any (by default) delegated method:
8

9 @Override
10 public void visit(ASTAutomaton node) {
11 out.println("/* print by composed Automaton3PrettyPrinter */");
12 out.println("automaton " + node.getName() + " {");
13 out.indent();
14 }
15 }

Listing 8.24: Composing the infrastructure for several visitors with option to override be-
havior delegation

Finally, all visitors are composed using the delegator visitor like in Listing 8.25.

Java «hw» Automaton3PrettyPrinter1 protected PrettyPrinterIndenter out;
2

3 public Automaton3PrettyPrinter(PrettyPrinterIndenter o) {
4 out = o;
5

6 // ... configured with three sublanguage visitors
7 setInvAutomatonVisitor(new InvAutomatonPrettyPrinter(o));
8 setExpressionVisitor(new ExpressionPrettyPrinter(o));
9 setAutomaton3Visitor(new Automaton3SublangPP(o));
10 }

Listing 8.25: Composing the three visitors through delegation and giving them the same
shared state

The statements from lines 7-9 instantiate the sublanguage visitors and directly add them
to the composite. Object o is handed over to all sub-visitors to share the same state.

The composition always needs to compose visitors of all participating sublanguages. If we
omitted a statement then all nodes of that sublanguage as well as all child AST nodes
are not visited anymore. For example, omitting the statement in line 9 would lead to
a disappearance of the expression part. Omitting the statement in line 7 would give an
empty result, because already the top level node of class Automaton3 would be ignored.

Finally, Listing 8.26 demonstrates how to use the composed visitor.
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Java «hw» Automaton3Tool1

2 // Common storage for all pretty printers
3 PrettyPrinterIndenter ppi = new PrettyPrinterIndenter();
4

5 // The composite visitor
6 Automaton3PrettyPrinter acpp = new Automaton3PrettyPrinter(ppi);
7

8 // run the visitor
9 ast.accept(acpp);
10 System.out.println(ppi.getResult());

Listing 8.26: The composed visitors can be used as if it is only one monolithic component

In line 3 the shared state is instantiated. Line 6 creates the composite. In l. 9 the visitor
is applied to the model and in l. 10 the result is retrieved from the object containing the
shared state.

As mentioned, this mechanism acts as a blueprint for composition and can be reused in
many forms. If no shared state is necessary, the ppi object can of course be omitted.
The shared state could also be inside the composite visitor, when each visitor reuses the
realThis pattern for the state as well.

The blueprint shows, that for n languages composed in a (n+1)th grammar, n+1 visitors
for sublanguages composed are by one more visitor for the overall language. This sums
up to n+ 2 visitor objects. Composed visitors are again usable in a composition for even
larger languages. Composition of visitors scales up in hierarchies of language compositions.
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Chapter 9

Symbol Management Infrastructure

co-authored by Pedram Mir Seyed Nazari

This chapter gives a lightweight introduction to the management of symbols within models,
respectively the generated infrastructure for symbol management.

Symbol tables are tightly integrated with the AST, but because parsing is based on a
context-free grammar, the symbol table is constructed in an extra pass only after parsing.
However, the symbol table should be regarded as part of the AST, even if we will see, it
extends the AST to a graph with an enclosed spanning tree.

The symbol management infrastructure (SMI) is based on the thesis [MSN17] and its
predecessor [Völ11]. The chapter therefore only gives a lightweight overview of the available
mechanisms and concepts and refers to these two theses for further details.

The SMI, as described in the following, is inspired by the general-purpose programming
language Java. Java has a typical complex type system including extensibility through
inheritance, private, protected, and public visibility, and generics. The SMI is designed
to handle all these concepts. But the SMI is also defined in such a way that it assumes
reasonable defaults for common cases and the SMI is, therefore, also usable in simple cases.
The TOP mechanism also allows to adapt the SMI with handwritten code (cf. Chapter 14).

9.1 Introduction to Symbol Table Concepts

Every textual software language has names to (1) identify and reference entities defined in
the language and (2) use entities via these names. In most cases, names serve as identifiers
consisting of a character sequence complying with some specific rules. Typical examples
are names for Java classes or methods that may only contain letters, numbers, dollar signs
and underscores. Furthermore, they may not begin with a number.

Names occur in two forms: name definition and name usage. In some cases a new name is
defined and used at the same time, e.g., attributes in Java are declared and initialized in
a single statement. As a variant, entities may be introduced and thus (implicitly) defined
with its first use – untyped languages often allow to introduce variables that way.
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A name definition introduces a new name for a (new) model entity. In other words, a
name definition defines a new model entity having some specific kind, such as state, class,
or method. Kinds can enforce additional information, e.g., (method) signature or visibility.

A name usage refers to an entity defined elsewhere, either in the same or a different model.
Depending on where in the source code the same name is used, it can refer to different
entities, because of their restricted visibilities.

A symbol is an abstraction of the model entity and contains obviously the name that is
defined, but also some relevant information about the model entity that is needed to use
it. For example, a method definition in the model introduces the method name and leads
to the introduction of the method symbol, which contains the method signature, but not
the method body.

In order to easily and efficiently retrieve the relevant information, a name usage refers to,
so-called symbol tables are employed. In general, a symbol table is a data structure that
maps a name to the corresponding symbol. It allows to effectively find declarations, types,
signatures, implementation details etc. for a name. Due to restricted visibilities, scopes
divide the mapping into smaller, typically hierarchically composed structures.

A scope typically is defined by a nonterminal with a body that has a form of brackets and
nonterminals that may introduce names. The brackets for the visible containment structure
and the nonterminals may introduce new names that are then potentially restricted to
the enclosing scope. Please note, that a nonterminal may introduce several scopes, but in
practice it is sufficient to assist one scope, because otherwise the grammar could be slightly
refactored.

A management infrastructure for symbols, where the SymbolTable is a vital part of,
serves three main purposes:

1. It allows a quick navigation from the usage of a symbol (via its name) to its definition.

2. It collects relevant information about a symbol, which is eventually spread among
one or several sources, for example for a class the list of attributes including inherited
attributes.

3. It acts as a surrogate for the entity definition in other models that use the symbol
(via its name), thus preventing to having to load the complete model, but the symbol
table only.

The result of a name search is a symbol that represents essential information about a named
model entity. If the entity is defined in the loaded model, also a link to the definition is
provided. Different symbols may have the same name, when defined in different scopes or
if they are otherwise differentiable, e.g., like methods through argument types.

Each symbol belongs to a specific kind depending on what kind of model element it denotes,
e.g., variable, method, state, action, port, label, class, etc. The symbol contains useful
information depending on the kind, e.g., for methods: method name, modifiers, return
type and parameter types.

A symbol table consists of a scope tree (or scope graph, see Section 9.3) with associated
lists of symbols at each scope to manage the visibility respective accessibility of symbols.
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Tip 9.1 What is a Symbol?

Symbols are introduced in the models, by giving a certain model entity a name.
Every symbol has a name. A model entity that does not have a name cannot

define a symbol.
Neither anonymous symbols, nor symbols with constructed complex names (that

nobody knows of) are helpful.
Each symbol has a kind. Depending on the kind, the symbol carries different

essential information. For example, a state can be initial or final (booleans). A
variable has a type. A class has a signature, consisting of attributes, methods,
superclasses, and interfaces. A signal has a size and a frequency.

A symbol is an abstraction of its defining model entity. It does not repeat the
whole information from the AST. Otherwise, the AST itself could be used.

Scopes contain symbol definitions, but also import and export symbols. Each symbol is
defined in exactly one scope.

The SMI of MontiCore provides reasonable defaults to facilitate developing of language-
specific symbol tables. Figure 9.2 gives an overview of the main elements (conceptually
and technically) of the SMI, which are introduced in the remainder of this chapter based
on concepts of the Automaton language (see Section 18.1) as well as concepts of the Java
language.
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Figure 9.2: Overview of the main concepts of SMI

We might add the observation that when symbols are imported in heterogeneous language
environments, they might change their kind, name or other essential information. For
example a state Ping of an automaton might become an enum value Ping or alternatively
a boolean method isInPing() in Java. An attribute a of a class diagram may also map
to two symbols getA() and setA(A) when mapped to a Java interface.

9.2 Defining Symbols

The keyword symbol was already mentioned in Chapter 4. It can be attached to nontermi-
nals that are defined in the grammar. The keyword symbol indicates that a nonterminal’s
body defines a new symbol. We demonstrate the effect on an essential part of an Automa-
ton grammar, shown in Listing 9.3 that also contains a reduced form of expressions and
statements.
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MCG Automaton1 grammar Automaton extends de.monticore.MCNumbers {
2 symbol scope Automaton =
3 "automaton" Name "{" (State | Transition)* "}" ;
4

5 symbol scope State =
6 "state" Name
7 (("<<" ["initial"] ">>" ) | ("<<" ["final"] ">>" ))*
8 ( ("{" (State | Transition | Counter)* "}") | ";") ;
9

10 Transition =
11 source:Name@State "-" input:Name ("|" Statement)? ">"
12 target:Name@State ";" ;
13

14 symbol Counter = "counter" Name "=" Decimal ";" ;
15

16 interface Statement ;
17 Print implements Statement = "?" Name ;
18 Increment implements Statement = "++" Name ;
19 }

Listing 9.3: Automaton with counters and transition statements

The grammar in Listing 9.3 identifies three kinds of symbols: each State has a name (l. 5),
a Counter has a name (l. 14) and the Automaton also has a name (l. 2). Therefore, each
of the respective nonterminals has the keyword symbol attached.

The symbol can only be attached to nonterminals that introduce a name on the right-
hand side, which technically means that nonterminal Name or equivalently name:Name is
used. Name has to be mandatory, i.e., neither optional nor in a list. Furthermore, it must
not have a different name, i.e., b:Name would not work.

9.2.1 Generated Classes For Symbols

If the keyword symbol is used, the generator creates an additional subdirectory (package)
_symboltable with several classes that allow to manage symbols. For each kind of
symbol, we get three classes (here demonstrated on the nonterminal State):

StateSymbol.java shall contain the relevant information about the symbol. The generator
includes the name and the kind as well as a link to the defining AST node.

StateKind.java defines the symbol kind. Each symbol in the grammar automatically
introduces a new kind. The symbol kind allows to distinguish different symbols,
even if they have the same name.

StateResolvingFilter.java is used to find State symbols (and will be discussed later).
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Java «gen» StateKind1 package automaton._symboltable;
2

3 public class StateKind implements SymbolKind {
4 private static final String NAME =
5 "automaton._symboltable.StateKind";
6

7 public String getName();
8 public boolean isKindOf(SymbolKind kind);
9 }

Listing 9.4: Generated implementation of class StateKind

StateKind as shown in Listing 9.4 is a lightweight class mainly used to identify kinds.
It can be used as generated. StateSymbol, in contrast, is a candidate that needs a
specific extension with additional attributes that contain the above-mentioned relevant
information. What the relevant information of a symbol is, highly depends on the form of
symbol and where and how it shall be used. Attributes for example also need a type, while
methods even need a signature. In the above example we could store the initial value of a
counter in the counter symbol for potential re-initialization.

Java «gen» StateSymbol1 package automaton._symboltable;
2

3 public class StateSymbol extends CommonSymbol {
4

5 public static final StateKind KIND;
6

7 // the are the adapted methods:
8 public StateSymbol(String name);
9 public Optional<ASTState> getStateNode();
10

11 }

Listing 9.5: Generated implementation of class StateSymbol

Extension of generated classes can again, e.g., be achieved via the TOP mechanism de-
scribed in Section 14.3 or by building subclasses.

9.2.2 RTE Classes For Symbols

Figure 9.6 (top part) depicts three classes and interfaces that are provided by the SMI
runtime environment.

The Symbol interface is the supertype of all symbols and groups information that ev-
ery symbol has, such as the symbol’s simple name (e.g., type name Integer, class
name Person or state name Ping) via getName, its package name (e.g., java.lang)
via getPackageName, and its fully qualified name (e.g., java.lang.Integer) via
getFullName. Additionally, every symbol has a kind (e.g., kind method, state, etc.) rep-
resented by the SymbolKind interface. Listing 9.7 shows the signature that a Symbol
class always provides.
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Java «gen» Symbol1 public interface Symbol {
2 // the name:
3 String getName();
4 String getPackageName();
5 String getFullName();
6

7 // the kind:
8 SymbolKind getKind();
9 boolean isKindOf(SymbolKind kind);
10

11 // connection to the AST defining node:
12 void setAstNode(ASTNode node);
13 Optional<ASTNode> getAstNode();
14 SourcePosition getSourcePosition();
15

16 // a symbol knows the scope it is defined in:
17 Scope getEnclosingScope();
18 void setEnclosingScope(MutableScope scope);
19 }

Listing 9.7: Interface of all Symbol classes

As depicted in Listing 9.7, the generated classes extend the RTE classes accordingly.

Each symbol has an unchangeable name and kind. The package name however is optional
and may be empty. If the AST defining the symbol is available, then a navigation from
symbol to AST is possible. Furthermore, each symbol is defined within a scope (see
discussion in Section 9.3), i.e. its enclosing scope.

CommonSymbol from Figure 9.6 provides default implementations for a symbol based
on concepts of widespread languages such as Java. As a general rule, Symbol should
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not be implemented directly. Instead, CommonSymbol can be subclassed and adapted by
overriding its methods. A language-specific symbol should provide all essential information
about the model element it denotes and that way facilitate its processing.

The bottom part of Figure 9.6 illustrates the symbol classes by the example of a state
symbol. The class StateSymbol implements a state symbol and provides useful informa-
tion, e.g., if the state is initial (isInitial()) or final (isFinal()). What we regard
as relevant information depends on the form of use of the symbols. In the StateSymbol
case, we might for example be interested to know, which input the state can react to.

The state kind is represented by the class StateKind. Since every state symbol has the
same kind, a static constant StateKind KIND in StateSymbol should be defined which
simplifies usage of the resolution mechanism.

The AST itself is not changed. However, the ASTNode interface provides three methods
setSymbol, getSymbol and symbolIsPresent to handle navigation from an AST
node to a related symbol.

9.3 Defining Scopes

A scope holds a group of symbol definitions and limits their visibility, but also manages
import from other scopes and export to other scopes. For example, local variables in a Java
method are grouped together by the scope of that method. Thus, local variable symbols
are defined in a method scope.

Scopes define the visibility of symbols. The exact visibility and accessibility of a symbol
outside its own scope highly depends on the form of the language. The generator, therefore,
is only able to provide a general infrastructure for symbol management, but it is expected
that the scope management is extended by handwritten code or other configuration mech-
anisms to deal with individual forms of visibility.

The keyword scope attached to a nonterminal production introduces a type of scope.
Each time, the nonterminal is instantiated in the AST, an according scope instance is built
as well. We identify two types of scopes in the example grammar in Listing 9.3, namely the
Automaton (l. 2) and the State scope (l. 5). Although it is often the case that scopes
defines symbols as well, in the example above it is just a coincidence. Anonymous scopes
would be possible as well. Java statement blocks are such an example. The keyword scope
can therefore be attached to any nonterminal, but it only makes sense, if there actually
are symbols that can be enclosed in a sub-scope.

9.3.1 Generated Classes For Scopes

If a nonterminal is marked with keyword scope, then a scope class is generated. Listing
9.8 shows the a part of the StateScope class.

The generated scope class itself, however, only delegates to the inherited methods. Thus,
only the constructors need to be generated and the rest is handled by the RTE implemen-
tation.

127



9. Symbol Management Infrastructure

Java «gen» StateScope1 package automaton._symboltable;
2

3 public class StateScope extends CommonScope {
4 public StateScope() {
5 super();
6 }
7 public StateScope(boolean isShadowingScope) {
8 super(isShadowingScope);
9 }
10 public StateScope(Optional<MutableScope> enclosingScope) {
11 super(enclosingScope, true);
12 }
13 }

Listing 9.8: Generated implementation of class StateScope

9.3.2 RTE Classes For Scopes

Listing 9.9 shows the most important signatures that the CommonScope provides and
actually implements. The methods allow to add new symbols and most importantly also
allow to resolve symbols based on either the name or the name and extra information.
Actually resolution is a highly complex process that depends on visibility as well as the
hierarchical structure of scopes that is normally structurally equivalent to the AST, but
also allows importing symbols from foreign scopes when desired.

Java «RTE» CommonScope1 public class CommonScope implements MutableScope {
2

3 // Symbols:
4 public void add(Symbol symbol);
5 public void remove(Symbol symbol);
6 public <T extends Symbol> Optional<T> resolve(...);
7 public <T extends Symbol> Collection<T> resolveMany(...);
8

9 // Scopes:
10 public Optional<MutableScope> getEnclosingScope();
11 public List<MutableScope> getSubScopes();
12 public void addSubScope(MutableScope subScope);
13 }

Listing 9.9: Signature of MutableScopes

Scopes within a model can be structured hierarchically which leads to a scope tree. The
methods getEnclosingScope and getSubScopes (see association in Figure 9.2) allow
to access the enclosing scope and the subscopes, respectively. The only exception to this
rule is the GlobalScope, which also exists predefined in the RTE. It resembles the top-
level scope and can be used to manage symbol resolution across artifacts, i.e., in language
aggregation.

Figure 9.10 shows the structure for scopes provided by the SMI. In case of a shadow-
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ing scope (where local names shadow imported names), isShadowingScope returns
true. To configure whether a scope is a shadowing or visibility scope, the construc-
tor CommonScope(boolean isShadowingScope) is provided. Symbols are visible
from outside their enclosing scope, if they are exported which is stated via method
exportsSymbols. By default, this holds true for scopes. The reason is that, for ex-
ample, a static field f defined in a class (scope) C can be accessed through C.f.
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Figure 9.10: Technical scope classes provided by SMI

The interface MutableScope depicted in Figure 9.10 provides methods for manipulating
a scope, such as via method setEnclosingScope. Moreover, MutableScope enables
to customize the resolution process. This is only required if the default resolution is not
sufficient. Please refer to [MSN17] for a detailed discussion on this.

Since CommonScope implements MutableScope, each scope is mutable. This is in par-
ticular important for the symbol table creation.

9.3.3 Artifact Scope and Global Scope

Due to a modular structure of the many artifacts that are typically involved in a develop-
ment project, the SMI provides two standard scopes the artifact and the global scope.

The artifact scope represents the scope of the artifact (or compilation unit). It is the top
scope of a model and by default a shadowing scope. Artifact scopes can contain additional
information such as a package name and import statements. This information is, among
others, important for name qualifying and inter-model references. In SMI, artifact scopes
are realized in the ArtifactScope class which subclasses CommonScope (see Figure
9.10).

The global scope is the root of the scope graph, thus it is the direct or indirect enclosing
scope of all scopes. Its direct subscopes are artifact scopes since they are the top scopes
of the models. That way, the global scope “connects” models and enables inter-model
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references. The global scope usually also contains globally available information, such as
global types like int and boolean in Java. These types can be used in every model
without explicitly being imported. GlobalScope also extends the CommonScope class
(see Figure 9.10).

Tip 9.11 Navigation from Symbol Usage to Symbol Definition

There are several ways to establish navigation from usage to definition of a sym-
bol. When this navigation is taken sporadically or the condensed information in
the symbol is already sufficient, it is usually sufficient to calculate the symbol table
infrastructure and then do all navigation through its lookup.

However, when navigation will happen often, it makes sense to establish a direct
link in form of an additional attribute in the using AST node linking to the defining
AST node. After the symbol table infrastructure has been used to establish the
links once, it may be completely bypassed.

This is for example quite helpful, when interpreting an automaton, where the
transition node should be directly linked to the node of the target state and the
source states should be directly linked to the outgoing transitions (via a map that
takes the input into consideration).

Additional attributes can alternatively be added to a generated AST via the
grammar (see Section 5.4) or in form of handwritten Java code (see Chapter 14).

9.4 Collaboration between AST, Symbol, and Scope

Figure 9.12 illustrates the relation between AST nodes, symbols and scopes. An AST node
and a symbol are bidirectionally linked together if they represent the same model element.
For example, a state is represented by the node ASTState and the symbol StateSymbol.
That way, we group the information contained by these two classes and use the information
as needed. Not every AST node has a corresponding symbol, e.g., the AST for an import
statement has no symbol as it does not define a name. Although we usually create the
symbols from the AST, this is not necessarily the case. Hence, a symbol can exist without
a corresponding AST node, which is usually the case when an external symbol table is
loaded without loading the full model.

Both, AST nodes and symbols, can be defined in a scope, namely the enclosing scope. For
example, ASTState and StateSymbol are defined in either an AutomatonScope or a
StateScope.

9.5 Using Symbols

When a model element shall be used at another place in the model, then it is used by its
name. For example state names are used in transitions. Actually in complex situations
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additional information may be necessary. Method overloading, e.g., can only be resolved,
because method name and argument types are available.

In a grammar it is possible to extend nonterminal Name by a suffix, explaining to which
kind of symbol the name refers to. In Listing 9.3, lines 10f a transition has a source
State and a target State. Therefore, additional methods are generated to retrieve
the symbols which the names are referring to in Listing 9.13.

Java «gen» ASTTransition1 public class ASTTransition ...
2 {
3 // additionally generated methods, because of
4 // Transition = source:Name@State ... target:Name@State
5

6 // Retrieving the symbol:
7 public Optional<StateSymbol> getSourceSymbol();
8 public Optional<StateSymbol> getTargetSymbol();
9

10 // Directly navigation to the definition of the symbol in the AST
11 // (if the defining model is loaded):
12 public Optional<ASTState> getSourceNode();
13 public Optional<ASTState> getTargetNode();
14 }

Listing 9.13: Extended signature of ASTTransitions

As a convenient shortcut, it is also possible to directly retrieve the ASTNode, where the
mentioned symbol is defined, in case the defining model is loaded. In the automaton
example, states are defined within the same model and, therefore, navigation is always
possible.

9.6 Instantiating Symbol Tables

While the infrastructure can be relatively well generated, the actual instantiation of the
symbols as well as the establishment of all links described above needs additional code
that can be executed after the parsing process is done. Furthermore, if names are used in
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a model, where the corresponding referenced symbols neither exists within the model nor
within imported symbol tables, respective error messages have to be defined.

Because of the wide variety of possibilities, how to define and look up symbols, it is
generally expected that handwritten extensions are necessary. Only in relatively simple
and straightforward cases, such as flat scopes, or hierarchical scopes with standard visibility,
the generated scope classes as well as the provided RTE classes can be used directly. For
detailed discussions, see [MSN17].

9.6.1 RTE Classes For Symbol Table Building

To build up a model’s symbol table, SMI provides the interface SymbolTableCreator
and its default implementation CommonSymbolTableCreator. The symbol table cre-
ator is employed in combination with the Visitor Pattern (see Chapter 8) to build the
symbol table.

Symbol table creators for specific languages should subclass CommonSymbolTable-
Creator and additionally provide a createFromAST method with an appropriate
ASTNode type as parameter. This method is the entry point to create the symbol ta-
ble starting from the top AST node.

9.6.2 Generated Classes For Symbol Table Building

For each grammar, MontiCore generates five classes that deal with the overall management
of symbol tables:

AutomatonLanguage contains the configuration for the automaton language, namely
the parser, the creator for symbol tables, the source, where to load other models,
and the list of filters necessary to resolve symbols in a scope.

AutomatonModelLoader knows where to find additional models un which external sym-
bols can be found. In the automaton example, external symbols are not used and,
therefore, nothing happens here.

AutomatonModelNameCalculator is a helper for symbol resolution.

AutomatonSymbolMill establishes the builder concept for symbols very similar to the
builder concept for the AST nodes.

AutomatonSymbolTableCreator contains a generated version of method
createFromAST. It realizes a visitor for automaton AST nodes, that uses
traversal and visit methods to identify all places where symbols are defined or used
and allows to handle them respectively.

Again, the generated classes can and should be extended by handwritten code to actually
implement the appropriate symbol infrastructure management.
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Chapter 10

Context Conditions

co-authored by Robert Heim

A language definition in MontiCore is based on a context-free grammar (CFG). Such a
grammar only defines the language features in general and does not support context-
sensitive restrictions (e.g., that a specific entity of a model must exist when used elsewhere).
In addition, some restrictions are much easier to express in a context-sensitive way, while
a context-free representation of the same constraint would be cumbersome (see below
for an example). Context conditions enable such context-sensitive restrictions. They are
predicates that further restrict the set of models described by a CFG and determine the
set of correct – also called well-formed – models of a language.

A context condition (CoCo) is a predicate on a CFG-correct sentence where the context of
a word is used to determine the total correctness, also called well-formedness.

A model/sentence of a language is well-formed if it fulfills all context conditions. Well-
formedness is the basis to define semantics, to generate code, etc.

Some typical forms of context conditions are:

• A variable must be declared before it is used.

• The type of a variable must exist.

• Only compatible values can be assigned to a variable.

• A method call must fit to its signature.

• A deterministic automaton must have exactly one start state.

• A class hierarchy does not have cycles.

There exist multiple forms of context conditions, such as, conventions (e.g., names must
start with a capital letter), unreachable statements and many more.

Context conditions can be checked at different times, but should always be checked before
a model is used for its designated purpose. Useful times for checking are:

1. After parsing and building the AST (see Chapter 6).
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2. After creating the symbol table from the AST (see Chapter 9).

3. When a modification was applied on the AST, it may be worth to check all or some
context conditions again.

Many context conditions are checked during or after the symbol table is created, since the
symbol table provides helpful information and enables an efficient way of implementing
them. However, if the symbol table is not needed, context conditions can be checked
against the AST only. Also, context conditions can again be checked after transforming
the AST to ensure that the AST still represents a valid model.

For example, the Automaton language (cf. Section 18.1) requires context conditions such
as the following:

• State names must be unique.

• Source and target of a transition refer to an existing state.

• State names must start in uppercase.

The first one cannot be checked in a context-free way as names can be defined throughout
the model. The uniqueness of state names ensures that references to states (e.g., when
defining transitions) are unambiguously resolvable. The second restriction complements the
first one, since state names not only must be unique, but referenced states must be defined
in the model. This is a context-sensitive restriction, because names cannot be resolved
in a context-free way. While it is possible to formulate the requirement of capitalized
state names in a context-free manner, this would require some tedious amounts of token
definitions. Here, a context condition can easily check that state names are capitalized.
The following sections describe MontiCore’s context condition infrastructure.

10.1 Context Condition Infrastructure

This section describes MontiCores infrastructure to implement context conditions for a
DSL. Given a grammar (such as the Automaton grammar in Section 18.1), MontiCore
generates a context condition infrastructure. Context conditions are predicates concern-
ing specific model elements, such as states, classes, fields etc. The implementation of a
context condition relies on the internal representation of a model element, which is the
respective AST node (and its sub-tree). Hence, MontiCore generates a set of interfaces
each providing a check method for a specific AST node type. In case of the Automaton
language this results in three generated interfaces, namely AutomatonASTStateCoCo,
AutomatonASTTransitionCoCo and AutomatonASTAutomatonCoCo, each defining
a check signature for the corresponding AST node.

For example, MontiCore generates the interface AutomatonASTStateCoCo that defines
the method signature of the check method for nodes of type ASTState (s. Figure 10.1).

Implementing a context condition on an AST element is as simple as implementing
the corresponding interface. As a best practice, each interface implementation should
only implement one context condition at a time. For example, the context condition
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StateNameStartsWithCapitalLetter implements the former mentioned interface
for state nodes (s. Figure 10.1). Listing 10.6 shows the full implementation of this context
condition.

To check the context conditions on a model MontiCore generates a so called checker for
a given grammar. For a language L the checker is called LCoCoChecker and provides
an addCoCo method for each generated coco interface (i.e. for each nonterminal). This
enables developers to register their implemented context conditions at the checker. Addi-
tionally, a checker provides a checkAll method that can handle any AST node of the
language. The latter executes all registered context conditions on the given AST node and
its children. Typically, one would hand the root node of an AST to the method to check
a complete model for well-formedness.
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As an example, the Automaton language’s checker AutomatonCoCoChecker is shown
in Figure 10.2. Internally, the checker uses the visitor pattern (cf. Chapter 8) to traverse
a given AST node. It implements the visit methods to invoke the corresponding regis-
tered context conditions on the specific nodes. Hence, in case of the Automaton language
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Java «gen» AutomatonCoCoChecker1 public class AutomatonCoCoChecker
2 implements AutomatonInheritanceVisitor {
3

4 public void checkAll(ASTAutomatonNode node) {
5 node.accept(getRealThis());
6 }
7

8 private Collection<AutomatonASTStateCoCo> aSTStateCoCos
9 = new HashSet<>();
10

11 public void addCoCo(AutomatonASTStateCoCo coco) {
12 aSTStateCoCos.add(coco);
13 }
14

15 @Override
16 public void visit(ASTState node) {
17 for (AutomatonASTStateCoCo coco : aSTStateCoCos) {
18 coco.check(node);
19 }
20 }
21

22 // ... analog infrastructure for other AST elements ...
23 }

Listing 10.3: Implementation of the AutomatonCoCoChecker class

the AutomatonCoCoChecker implements the AutomatonInheritanceVisitor in-
terface. Listing 10.3 shows the implementation of the checkAll method and the methods
regarding the states.

Listing 10.4 shows a usage example of the AutomatonCoCoChecker. First it is instan-
tiated (l. 2) and then configured by adding some cocos (ll. 5f). Assuming that a model
is available in the variable ast the checker is executed to check all registered context
conditions (l. 10) on the parsed model by handing the AST to the checkAll method.

Usually, context conditions as well as checkers are implemented in a state free form and
thus a single instance can be reused on many models.

Tip 10.5 Fixed Sets of Context Conditions

A language typically has a fixed set of standard context conditions. As a best
practice a language implementation should provide a configured checker to language
users.

In case of the Automaton language, the handwritten class named
AutomatonCoCos implements the method getCheckerForAllCoCos that cre-
ates an AutomatonCoCoChecker object, configures it by adding the common
context conditions and then returns it. Language users can use this method to
obtain a configured checker to check a model for well-formedness.
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Java «hw» AutomatonTool1 // setup context condition insfrastructure
2 AutomatonCoCoChecker checker = new AutomatonCoCoChecker();
3

4 // add a custom set of context conditions
5 checker.addCoCo(new StateNameStartsWithCapitalLetter());
6 checker.addCoCo(new AtLeastOneInitialAndFinalState());
7 checker.addCoCo(new TransitionSourceExists());
8

9 // check the CoCos
10 checker.checkAll(ast);

Listing 10.4: Configure the AutomatonCoCoChecker and check the context conditions

10.2 Implementation of Context Conditions

Besides using the described infrastructure there are some best practices for implementing
context conditions. Every context condition should have a unique error code that makes it
easier to communicate the error (for example when asking developers for help) or identify
the error’s source position. It also facilitates writing dedicated tests for a context condition
(cf. Section 10.3 for details). An error message should be a human-readable, compact
explanation of why a specific context condition is not fulfilled and should contain the exact
source position. Both support the modeler in fixing a violation.

With the whole context condition infrastructure provided by MontiCore, it is easy to
develop own context conditions. Listing 10.6 shows the full implementation of the context
condition StateNameStartsWithCapitalLetter. The handwritten class implements
the generated interface for state context conditions (ll. 2f). Hence, its check method has
an ASTState node as parameter (l. 5). In case of a violation of the context condition
(ll. 6ff), the implementation uses MontiCore’s logging infrastructure (s. Chapter 15) to issue
a warning (ll. 12f). In a productive environment such an error terminates the program and
shows the error message. However, for testing purposes this behavior can be adjusted by
disabling the fail quick feature of the logger. Section 10.3 describes more details on testing
context conditions and the test setup.

Tip 10.7 Using the Symbol Table in Context Conditions

Normally the symbol table is used to understand, which symbols are defined,
what kind and what extra information they carry.

To use the symbol table within context condition implementations, the symbol
table must be created before executing the context conditions. This ensures that the
links from AST nodes to the corresponding symbols and scopes are set (cf. Chap-
ter 9).

Often, context conditions use the symbol table to obtain required information. For exam-
ple, there are two options to check whether the source state of a transition exists. First,
one can iterate over all state children of the ASTAutomaton node and try to find the
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Java «hw» StateNameStartsWithCapitalLetter1

2 public class StateNameStartsWithCapitalLetter
3 implements AutomatonASTStateCoCo {
4 @Override
5 public void check(ASTState state) {
6 String stateName = state.getName();
7 boolean startsWithUpperCase =
8 Character.isUpperCase(stateName.charAt(0));
9

10 if (!startsWithUpperCase) {
11 // Issue warning...
12 Log.warn(
13 String.format(
14 "0xAUT02 State name '%s' is not capitalized.",
15 stateName),
16 state.get_SourcePositionStart());
17 }
18 }
19 }

Listing 10.6: Implementation of a context condition for State objects

correct state’s AST node. Alternatively and more efficiently, one can make use of the
resolving mechanism that is provided by the symbol table. Listing 10.8 shows the solu-
tion using the symbol table. It retrieves the enclosing scope of the AST node through
node.getEnclosingScope() (l. 7). Having the enclosing scope, one can try to resolve
the source state using its name (node.getFrom(), ll. 9f). If a state with the particular
name does not exist, this leads to an error (ll. 12f).

Java «hw» TransitionSourceExists1 public class TransitionSourceExists
2 implements AutomatonASTTransitionCoCo {
3 @Override
4 public void check(ASTTransition node) {
5 checkArgument(node.isPresentEnclosingScope());
6

7 Scope enclosingScope = node.getEnclosingScope();
8 Optional<StateSymbol> sourceState =
9 enclosingScope.resolve(node.getFrom(), StateSymbol.KIND);
10

11 if (!sourceState.isPresent()) {
12 // Issue error...
13 Log.error(
14 "0xAUT03 Source state of transition missing.",
15 node.get_SourcePositionStart());
16 }
17 }
18 }

Listing 10.8: Using the symbol table in a context condition
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Java «hw» TransitionSourceExistsTest1 public class TransitionSourceExistsTest {
2

3 // setup the language infrastructure
4 AutomatonLanguage lang = new AutomatonLanguage();
5 AutomatonParser parser = new AutomatonParser() ;
6

7 @BeforeClass
8 public static void init() {
9 // replace log by a sideffect free variant
10 LogStub.init();
11 }
12

13 @Before
14 public void setUp() throws RecognitionException, IOException {
15 Log.getFindings().clear();
16 }
17 }

Listing 10.9: Initial setup to test a context condition

10.3 Testing Context Conditions

As a best practice for testing context conditions, one should test both, valid and invalid
models. The former make sure that valid models do not violate the context condition (i.e.
true positives and no false negatives), whereas the latter ensure that invalid models do
violate the context condition (i.e. true negatives and no false positives). Consequently, two
different kinds of tests should exist for every context condition.

In MontiCore tests for context conditions are implemented using the test-framework JUnit.
Listing 10.9 shows a best practice to initialize a context condition test. Two reusable objects
are initialized and stored as attributes in l. 3f, because no test modifies them. The init
method (ll. 8) replaces the normal Log using a stub LogStub that does not have side effects
(no output) and disables the fail quick feature of MontiCore’s logger (cf. Chapter 15). This
ensures that the test is further executed when the error occurs. The test can then assert
expected errors. Since this initialization is required only once before all specific tests, the
init method is annotated with @BeforeClass. Before every test, the setUp method
(ll. 13) – annotated with @Before – clears all findings (of potential previous tests) to
ensure a clean test setup.

10.3.1 Testing a Context Condition on a Valid Model

Testing a context condition on a valid model consists of the following three steps:

• Parse the model, obtain the AST, and create its symbol table.

• Check the context condition on that AST.

• Verify that no errors occurred.
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Java «hw» TransitionSourceExistsTest1 @Test
2 public void testOnValidModel() throws IOException {
3 ASTAutomaton ast = parser.parse_String(
4 "automaton Simple { state A; state B; A -x> A; B -y> A; }"
5 ).get();
6

7 // setup the symbol table
8 Scope modelTopScope = createSymbolTable(lang, ast);
9

10 // setup context condition infrastructure & check
11 AutomatonCoCoChecker checker = new AutomatonCoCoChecker();
12 checker.addCoCo(new TransitionSourceExists());
13

14 checker.checkAll(ast);
15

16 assertTrue(Log.getFindings().isEmpty());
17 }

Listing 10.10: Testing a context condition on a valid model

Listing 10.10 demonstrates this by testing the context condition
TransitionSourceExists (cf. page 138). First of all, the model is parsed di-
rectly from a string in l. 3f (cf. Chapter 6) and its symbol table is created (s. Chapter 9)
in line 8. The context condition is instantiated and added to a checker (ll. 11). Next,
the checker is executed on the model (l. 14). Finally, the test verifies that no errors or
warnings occurred (l. 16).

10.3.2 Testing a Context Condition on an Invalid Model

Testing a context condition on an invalid model is similar to the above check, but at the
end checks for the expected errors.

Listing 10.11 shows a test on an invalid model that does not define the source state of a
transition. Again, the model is parsed and its symbol table is created (ll. 3f). This model
uses a state Blubb that had not been defined.

A checker is configured with the context condition under test and executed on the invalid
model. This example expects exactly one error (l. 18) with a given text (l. 19). Checking
that all expected findings occurred ensures that the context condition identifies the invalid
model as such.
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Java «hw» TransitionSourceExistsTest1 @Test
2 public void testOnInvalidModel() throws IOException {
3 ASTAutomaton ast = parser.parse_String(
4 "automaton Simple { " +
5 " state A; state B; A -x> A; Blubb -y> A; }"
6 ).get();
7

8 // setup the symbol table
9 Scope modelTopScope = createSymbolTable(lang, ast);
10

11 // setup context condition infrastructure & check
12 AutomatonCoCoChecker checker = new AutomatonCoCoChecker();
13 checker.addCoCo(new TransitionSourceExists());
14

15 checker.checkAll(ast);
16

17 // we expect two errors in the findings
18 assertEquals(1, Log.getFindings().size());
19 assertEquals("0xAUT03 Source state of transition missing.",
20 Log.getFindings().get(0).getMsg());
21 }

Listing 10.11: Testing a context condition on an invalid model

Please note that the use of LogStub prevents that the error is actually printed and the
program terminates. Instead the error message is only stored in the findings and continues
execution.

It is possible to check the source position of the error in the invalid model as well. However,
it is often useful to reduce the assertion to checking the error code (0xAUT03), because
error messages are relatively often modified.
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Chapter 11

Design Pattern Used and Invented for
MontiCore

Design pattern [GHJV94] are a helpful concept as they provide reusable solutions to com-
monly occurring problems. They can be used to structure a generated product as well as
the generator itself. This is in particular useful for handwritten extensions that need to
integrate with generated parts. While MontiCore uses quite a number of standard design
pattern such as template-hooks, visitors, adapters, factories and builders, some design pat-
terns consistently used in MontiCore’s context have been either substantially adapted or
even newly created.

The visitor pattern is a prominent example and is thus described in its own Chapter 8.
The builders used to create AST objects and symbols are also refined, and described in
Section 5.9. Their composition and adaptation is subject to Section 14.2. Other slightly
adapted design patterns follow in this chapter.

11.1 Static Delegator Design Pattern

The static delegator is a design pattern that combines the advantages of publicly acces-
sible static methods with the possibility to redefine them. For that purpose the pattern
introduces a hidden delegate object that can be replaced on demand for customization.
We demonstrate this on the method info(String, String) that is part of the logging
API described in Section 15.3 and shown in Listing 11.1.

The public static method, that is meant for external use and is therefore publicly available,
is eponymous for the pattern. The static host class provides one or more such public
static methods. Internally, the static method delegates to an object, which provides the
actual implementation in a s called do-method. Considering the example in Listing 11.1,
the static method info delegates the method call to its internally used object log, which
is an instance of the Log class. The static method calls the instance method doInfo that
provides the actual implementation. Static delegators may have many such pairs.

The static delegate object (log) in line 3 is kept hidden but exchangeable and is used
as a delegate for the static methods through the static getLog() method (ll. 3ff.). The
method getLog() initializes automatically on its first use (l. 8), such that no external
initialization is required. However, the behavior can be changed by redefining the hidden
static instance in a new subclass as shown in Listing 11.2.
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Java «RTE» Log1 public class Log {
2 // the single static delegator target
3 protected static Log log;
4

5 // Getter for the underlying Log. By default Slf4jLog
6 protected static Log getLog() {
7 if (log == null) {
8 setLog(new Log());
9 }
10 return log;
11 }
12

13 // Allows to set an individually defined Log instance
14 protected static final void setLog(Log log) {
15 Log.log = log;
16 }
17

18 public static final void info(String msg, String logName) {
19 getLog().doInfo(msg, logName);
20 }
21

22 protected void doInfo(String msg, String logName) {
23 // a default implementation, but can be overridden
24 }
25 }

Listing 11.1: A static delegator method

Java «RTE» LogStub1 public class LogStub extends Log {
2

3 protected LogStub() { }
4

5 // Initialize the LogStub as Log
6 public static void init() {
7 Log.setLog(new LogStub());
8 }
9

10 // The customized behaviour
11 protected void doInfo(String msg, String logName) {
12 // adapted implementation
13 }
14 }

Listing 11.2: Customized static delegator method

After an explicit invocation of the method LogStub.init() shown in Listing 11.2,
line 6ff., the static delegate object in Log will be an instance of LogStub and thus provide
its customized behavior of the info method. That is because the public static method
info of the class Log (cf. line 14 of Listing 11.1) now delegates to the protected method
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doInfo (cf. line 11ff.) of an instance of the class LogStub.

In many cases, e.g., in the shown logging, the method LogStub.init() has to be invoked
as early as possible to ensure proper initialization from the beginning.

The static delegator design pattern can be used in many circumstances, for example, builder
mills, protocol objects etc. It may come in variations, for example:

• Many static methods delegating to the same instance.

• Many static methods where each of the static methods internally has its own instance
object, thus allowing high configurability (cf. the generated AST builder mills de-
scribed in Section 5.9).

• The host class of the static methods and the delegate class can be decoupled (thus
having separate classes).

• Several subclasses may be defined allowing configuration or even dynamic reconfigu-
ration during runtime.

The main benefit of this design pattern is that one method or a certain set of methods is
available uniquely throughout all pieces of code, such that it is still possible to redefine
the methods even though they have a static externally visible interface. This also assists
mocking side effects of a static delegator (like protocols, database access or GUI) when
testing the system, e.g. by replacing the static delegator by a dummy.

Limitations are also coming with the use of static methods. E.g. web frameworks forbid
static methods. If parallel processes want their own individual instantiations, then conflicts
between otherwise independent processes may occur and must be managed like described
in [Rum17].

In contrast to the delegation pattern in [GHJV94], this pattern is a conjunction of a
singleton and delegating methods. Thus, the static methods need not use the same object
to delegate to. Instead, there can be multiple objects stored and handled internally.

11.2 RealThis Object Composition Pattern

When generating code, it is often convenient to generate independent artifacts that are,
however, tightly integrated during runtime. This is in particular necessary when parts
of classes originate from different generators or a class functionality shall be partially
handcoded and generated. To allow separated artifacts but integrated runtime elements
in Java, individual classes need to be defined, but their instantiated objects need to be
closely composed.

C# provides partial classes for that purpose. Compared to the realThis approach, they
have the advantage that native language support is provided, but the disadvantage that
the partial classes need to be compiled together and are statically fixed (thus no individual
use or variability in the composition is possible).
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Figure 11.3: Components use realThis instead of this to enable close collaboration

The core idea of the realThis pattern is to compose objects that collaborate closely and
behave as if they are one single object. As Figure 11.3 shows, the objects to be composed
implement a specific program flow. They never use this explicitly or implicitly (i.e.,
by calling another instance method directly, this would implicitly be used). Instead
the object holds an attribute called realThis that references the this object instance
by default. All explicit and implicit this usages are replaced by realThis. When
delegating everything to realThis, the original program execution stays viable since
realThis references this by default. For customization, getters and setters enable to
change the realThis reference to another object. A composing object, hence, can set
itself to be in control (s. Figure 11.4). For composing A and B while keeping C in control of
the program flow the respective realThis of the composed objects a and b is set to the
CImpl instance. The composed object of type C then delegates to the specified realThis
and thereby hands over control over the program flow. Figure 11.5 shows the impact on
the program flow by example. Here, the original behavior is overridden to match a new
program flow: In this runtime program flow c gets back in control of the program flow
after calling fooA(). This enables c to override AImpl’s original behavior.

This inversion of control principle can be interpreted as an injection of the this reference
at runtime to compose functionality. As mentioned, the visitor infrastructure of MontiCore
is built on this pattern to enable visitor composition (see Chapter 8).

In general, the realThis pattern benefits from enabling late composition of functionality
while users would not recognize that they work with a composed object. A drawback
is the overhead required during implementation since every explicit and implicit this
usage must be correctly identified and replaced by realThis. Also, during runtime, such
composition incorporates many object instances and an increased method delegation stack
occurs (cf. Figure 11.5). Furthermore, to overcome the single inheritance limitation of Java,
the implementation of each class should be interface driven, meaning, that the signature
of all methods should be defined in an interface of the class and the realThis attribute
should be of the interface type (s. Figure 11.3). This enables a composing object to extend

146



11.3. Template Hook Pattern
Prof. Dr. B. Rumpe

Lehrstuhl für 

Software Engineering

RWTH Aachen

Page 3

RealThisComposition

CD

«interface» 

C

C getRealThis()

setRealThis(C realThis)

«interface»

A

A getRealThis()

setRealThis(A realThis)

fooA()

barA()

«interface»

B

B getRealThis()

setRealThis(B realThis)

fooB()

barB()

b

a.fooA()

realThis is injected to a
and b using a CImpl instance

a

CImpl

CImpl(A a, B b)

C getRealThis()

setRealThis(C realThis)

fooA()

barA()

(

realThis

this.a = a;

this.b = b;

realThis = this;

a.setRealThis(realThis)

b.setRealThis(realThis)

Classic delegation, but
the method implementation
delegates back to realThis
(i.e the CImpl instance)
� inversion of control

b.barB()

Overrides AImpl’s program
flow by delegating barA()
to b.barB()instead
of a.barA()

Figure 11.4: Composing objects using the realThis approach
Prof. Dr. B. Rumpe

Lehrstuhl für 

Software Engineering

RWTH Aachen

Page 4

RealThisProgramFlow

SDa:AImpl b:BImplc:CImpl

fooA()
fooA()

getRealThis()

cbarA()

barB()
CImpl overrides
AImpl’s control flow
by delegating
barA()to b.barB()
instead of a.barA()

Hand control back
to composing object

Composes
objects a and b

Figure 11.5: Sequence diagram showing the runtime program flow in a realThis
composition

all interfaces of the composed objects (s. Figure 11.4). Consequently, the composing object
can provide itself as realThis for each of the composed objects. Thereby, controlling
multiple composed objects by one single composing object is possible.

11.3 Template Hook Pattern

The template-hook pattern (often also called template method [GHJV94]) is one of the
simplest and most basic patterns. We explicitly mention it here because it exhibits its
strengths in object-oriented programming languages. It is not only useful for frameworks,
but especially also for the integration of handwritten and generated code, while keeping
both sorts of code separated in individual artifacts.

Please note that "template" in this section does not refer to FreeMarker templates, but to
Java methods.
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The pattern in its simplest form consists of two methods: the template method and the hook
method. The template contains a predefined algorithm and calls the hook for executing
more primitive or specific actions. The hook, however, is empty and meant for redefinition
in subclasses. The pattern may be applied several times, using a method sometimes as
template and sometimes as hook. Chains of hooks may also occur. See e.g. [Pre95, FPR01,
GHJV94] for a more detailed discussion. Two variants are partially shown in Figure 11.6:

• Defaults for the hooks exists vs. keeping the hook abstract,

• Template and hook are implemented in the same class vs. the template delegates to
the hook in a different class (object).
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code

A conjunction of core functionality and delegates of some basic actions to hook methods
is a key mechanism in frameworks, where the template method belongs to the framework
and the hook method is meant to be defined by the individual application via subclassing
respective framework classes (or implementing framework interfaces).

In some cases generated code is intended to be extended by handwritten code or at least an
option to extend generated by handwritten code should eb provided. In this case, providing
such hooks leads to flexibly extensible generated code. That means, a generated piece of
code is designed similar to a framework providing various hook methods.

MontiCore extensively uses the TOP mechanism to integrate handwritten code with gen-
erated parts of the program (see Section 14.3). The created TOP-classes are subclassed
with handwritten classes and thus allow to override parts. Thus, almost all methods in a
generated class can act as hook methods. This is an advancement compared to the gener-
ation gap pattern [Vli98]. It also uses subclassing for handwritten code, but the generator
is sensitive to the code and renames the generated superclass, such that the handwritten
class not only adapts the implementation, but also extends the signature.

MontiCore also applies this technique of templates and hooks to FreeMarker templates
using the hook point mechanisms explained in Section 13.5.
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Chapter 12

FreeMarker

co-authored by Robert Eikermann

The generator engine in the backend of MontiCore produces textual files from internal
representations of the abstract syntax. MontiCore uses the freely available generator engine
FreeMarker [Fre17], which can easily be customized using templates. This feature allows
to write pieces of code with holes in it, which will be filled upon generation. MontiCore
4 currently uses FreeMarker’s version 2.3.231. FreeMarker’s version history is available
online2.

This chapter explains some essentials about the FreeMarker template language, which are
especially helpful for using FreeMarker when integrated in MontiCore. FreeMarker has
much more functions described in the tutorial [Fre17].

The various APIs that MontiCore provides for use within FreeMarker are described in the
next Chapter 13 including AST access, template calls, or adaptation of templates.

12.1 The FreeMarker Template Languages

FreeMarker stores its templates as files with extension "ftl". Templates describe the
general structure of the target to be generated in combination with an expression and a
control language that are evaluated when the templates are being processed.

FreeMarker was chosen, because it is comfortable to use, flexible, and easily integrable
into larger projects. This section concentrates on a number of basic mechanisms that
FreeMarker provides, independent of MontiCore. Listing 12.1 shows a first example pro-
ducing the result shown in Listing 12.2, when applied with the ast variable pointing to
information about a Person class.

1Status Nov 2017
2http://freemarker.org/docs/app_versions.html
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FTL1 <#-- we assume variable ast is pointing towards an AST object
2 containing class information (this is a FreeMarker comment)
3 --#>
4 package ${ast.packageName};
5

6 <#assign cname = ${ast.name}>
7 /* Definition of a standard ${cname}Factory (a Java comment) */
8 public class ${cname}Factory {
9

10 protected static ${cname}Factory f = null;
11

12 protected ${cname}Factory() {}
13

14 public static ${cname} create() {
15 if (f == null) { ... }
16 }
17 }

Listing 12.1: Principle of FreeMarker: Copy the template content, execute FreeMarker
commands, and inject their results into the output

Java «gen» PersonFactory1 package de.myOwnPackage;
2

3 /* Definition of a standard PersonFactory (Java comment) */
4 public class PersonFactory {
5

6 protected static PersonFactory f = null;
7

8 protected PersonFactory() {}
9

10 public static Person create() {
11 if (f == null) { ... }
12 }
13 }

Listing 12.2: Result when applying the template

FreeMarker simply copies everything written in the target language, such as html-
commands, Java, etc. to the output. However, it is sensitive to

• expressions enclosed in ${ast.name},

• directives, such as <#if ...>, and

• comments like <#-- ... --#>
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Tip 12.3 Real Java is not fully equal to FreeMarker’s Java

When Java is also the target for a generation process, it is important to differen-
tiate between the target and the expression Java language.

FreeMarker’s Java expressions enclosed in ${...} are executed when generating
the target Java. Target language Java is not interpreted, but only copied to the
result. This is compiled only later and, if not erroneous, finally executed in the
product.

To avoid confusion, the user is advised to use disjoint sets of variable names.

12.2 Expressions in FreeMarker

Expressions are almost ordinary Java expressions that can use accessible variables (see
Section 13.4.4 on variable management) and can contain method calls to underlying Java
objects. When an expression is evaluated, the result is transformed into a string by the
method toString(). The resulting string is inserted in place of the expression.

A FreeMarker expression can contain Java method calls and also attribute access. For
example ${ast.name} at first tries to apply the get-method ${ast.getName()} to
the object ast. Only if this method does not exist, the FreeMarker engine attempts to
directly read the attribute name.

Please note that FreeMarker was designed as part of a web server and thus tries to be robust
by continuing to operate, even if the variable is not assigned to an object or the attribute
does not exist. Sometimes, this conflicts with the idea of quick failure of a generator,
which runs non-interactive and should not deliver a result in case a failure exists during
the generation process. Thus, FreeMarker is operated in a mode that detects errors and
assists the fail quick principle.

In addition to standard Java, FreeMarker provides its own data types:

• String: "Hello World"

• Number: 15 or -3.7

• Boolean: reserved words true and false

• Date: "10/25/1995"?date("MM/dd/yyyy")

• Hash: {"name":"mouse", "price":50}

• Sequence: ["foo", "bar", 12.3]

For complex data structures a sequence or a hash container with key-value pairs can be
used. Sequence elements as well as hash keys or values can be arbitrary objects and their
types may differ. Sequence and Hash are thus untyped, but otherwise very similar to
Java’s List and Map.

To manipulate data, FreeMarker provides a number of built-in functions. They extend the
Java syntax in form of exp?functionname. The function must exist for the data type that
exp evaluates to. Some examples for built-in functions are:
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• "abcde"?substring(1,3) evaluates to "bc"

• "abcde"?cap_first evaluates to "Abcde"

• "abcde"?contains("de") evaluates to true

• 2.6?round evaluates to 3

• ["c","a","b"]?first evaluates to "c"

• ["c","a","b"]?seq_index_of("a") evaluates to 1

• ["c","a","b"]?sort evaluates to ["a","b","c"]

The following convenient functions deal with the date of execution:

• ${.now} evaluates to, e.g., 02.04.2027 23:46:06

• ${.now?date} evaluates to, e.g., 02.04.2027

• ${.now?time} evaluates to, e.g., 23:46:06

Other functions allow to examine whether a variable is defined or provides a default if it
is not. Some examples are:

• varName?? is true when varName is defined,

• varName! evaluates to the empty string if varName is undefinded,

• varName!"John" evaluates to default "John", if varName is undefined,

• (obj.varName)!"John" evaluates to the given default "John" if obj is unde-
fined, varName attribute does not exist or does not have a value (null).

Tip 12.4 Use Additional FreeMarker Functions with Care

FreeMarker provides a lot of functions [Fre17]. The FreeMarker manual can be
found here:

http://freemarker.org/docs/

However, extensive data manipulation should be implemented in Java directly as
Java is much better suited for programming. A drawback, on the other hand, is that
recompilation of the entire tool is necessary once changes are applied to the Java
code. Modifications of the FreeMarker templates do not require a recompilation.

12.3 Control Directives in FreeMarker

FreeMarker directives allow to control the execution of a template similar to an ordinary
programming language. This includes the usual control constructs, such as case distinction,
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loop, switch-statement and variable assignment. FreeMarker also allows to call other tem-
plates and the definition of custom functions. MontiCore, on the contrary, replaces these
options by customized versions (cf. Section 13.4.2) and suggests to define new functions
only in Java.

Directives are generally enclosed in tags of the form <#directive parameters> and
</#directive> or they just consist of a single tag. The following directives are prede-
fined in FreeMarker:

• Variable declaration: <#assign name=value>

• Variable access: ${name}

An example for a conditional is given in Listing 12.5. The conditional shown in the code
snippet will be evaluated to 4 is smaller than 8. The conditionals are expressions
evaluating to true, while cases are expressions that evaluate to strings.

FTL1 <#assign i=4>
2 <#assign j=8>
3 <#if (i==j) >
4 ${i} and ${j} are equal
5 <#elseif (i<j) >
6 ${i} is smaller than ${j}
7 <#else>
8 ${i} is bigger than ${j}
9 </#if>

Listing 12.5: FreeMarker conditional

An example for a switch case is given in Listing 12.5. The template will evaluate to the
String Size is neither small nor big.

FTL1 <#assign size="medium">
2 <#switch size>
3 <#case "small">
4 Size is really small <#break>
5 <#case "big">
6 Size is really big <#break>
7 <#default>
8 Size is neither small nor big
9 </#switch>

Listing 12.6: FreeMarker switch statement

The loop directive can be used to iterate over a FreeMarker sequence or a Java list. The
definition of a loop directive is shown in Listing 12.7 where item is the loop variable. Inside
the <#list> directive, two special variables are automatically available. The variable
item_index holds the current index number of item in the sequence. The variable
item_has_next is true, if and only if item has a successor in the sequence.
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FTL1 <#list sequence as item>
2 text-body with variables
3 item: value in current iteration of the loop
4 item_index: index number of the current item
5 item_has_next: true if not at the end of the sequence
6 </#list>

Listing 12.7: FreeMarker loop

In Listing 12.8 this is applied to an object p of class Person which has a children
attribute of type List<Person>. Java lists are handled like FreeMarker sequences. Loops
can also be nested. Listing 12.9 shows an extended form with various extras.

FTL1 Children of ${p.firstName}:
2 <#list p.children as child>
3 ${child_index + 1}) ${child.name} born in ${child.age}
4 </#list>

Listing 12.8: Example for a FreeMarker loop

FTL1 <#list sequence-expression>
2 text-header executed once if we have items
3 <#items as item>
4 text-body repeated for each item
5 </#items>
6 text-footer executed once if we have items
7 <#else>
8 alternate text executed when sequence is empty
9 </#list>

Listing 12.9: Extended form of a FreeMarker loop

Besides these, FreeMarker provides more directives. For readers of the generated source
code, <#compress> ... </#compress> might be interesting to look up. This construct
produces texts with condensed white spaces. Unfortunately, starting white spaces are
completely omitted and thus the directive does not format produced code according to
Java’s indentation guidelines.

12.4 FreeMarker Drawbacks

FreeMarker unfortunately has drawbacks: It is completely untyped and heavily relying on
reflection, which can lead to bad forms of errors during runtime. The availability of the
robust generator framework, however, and that it runs in tools not end-products, were two
arguments to still integrate it into MontiCore. Freemarker’s template errors still occur at
development time and thus are not shipped to end users. Furthermore, we have added
some precautions e.g. using a signature statement that add some type safety.

154



Chapter 13

Generator Engine using Flexible
Templates

The generator engine is used to produce textual files from internal representations of the
abstract syntax and thus is the last step in a typical generation process. MontiCore uses the
freely available generator engine FreeMarker [Fre17] for its backend, because FreeMarker
provides a rich and flexibly adaptable infrastructure for templates and assists extensions
well. The FreeMarker language has already been described in Chapter 12. In addition to
this, this chapter explains:

• How to use the FreeMarker template engine in a MontiCore based tool.

• Several APIs that MontiCore provides for the usage within FreeMarker templates,
including AST access, calls of other templates, or adaptation of the call structure
between template.

13.1 Methodical Considerations

Template engines are a powerful and flexible mechanism and thus are suited for generation
of code or many other forms of possible output, such as documentation or webpages.

However, there are other possibilities to generate code. One could manually write the
print statements that produce the target artifacts while traversing the AST, e.g., assisted
by visitors. This is often sufficient when pretty printing the AST only. In this case, a
collection of templates executing the pretty print is not necessary.

However, many times pretty printing the AST is not sufficient, but additional outputs
that are not available in the input should be produced. This is the case for example when
adding access methods for attributes or when generating whole new classes such as builders
or visitors.

In the following, we use the term conceptual distance in an informal way. The more con-
cepts of the source language are present in the target, the smaller is the amount of work
to map between the language. The more concepts of the source language are not available
in the target, the more complex the mapping will become. It would be nice to have a mea-
surement that quantifies such a conceptual distance between languages. The conceptual
distance between source AST and target language typically also increases necessities that
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the recursive decent along the source AST tree structure must be interspersed increasingly
often.

The conceptual distance between the available AST and the target language is to a large
extent responsible for the complexity of the templates and in particular for the complexity
of the template call structure. In normal cases, the AST structure and the output order
fit relatively well (and e.g. 100% in pretty printing situations). In case different files are
generated but the AST structure is well-suited for the templates used, it is sufficient to
execute these different template sets from the top level.

However, in case the generation process needs information from different parts of the
AST, additional infrastructure for calculations based on the AST is helpful. Especially the
symbol table typically is used for navigation shortcuts from the usage position of a symbol
to its definition or the symbol itself carries extra information, such as how to access or
modify the item represented by the symbol. For example local variables are mapped to
relative stack addresses in compilers.

If the conceptual distance, however, becomes too large, it is advisable to transform the
AST of the input language to an AST that is better suited for the output language (if not
directly the output language itself).

In case the output is Java, it is advisable to use a target AST that is directly Java or
conceptually similar to it such as class diagrams. A good balance between conceptual sim-
ilarity (i.e. only a small conceptual distance) and simplicity of the internal transformation
is desirable.

As an example: The MontiCore generator processes grammars (cf. Chapter 4). To produce
the output it maps the grammar to a classdiagram of the language CD4Code [Rot17] inter-
nally. CD4Code provides classes, attributes, associations and method signatures. Missing
method bodies are implemented in templates and attached to the respective method signa-
tures using hook points (see Section 13.5). This allows us to write method implementations
in a rather compact and understandable form within templates, yet ensures that method
signatures and attributes are only generated once, preventing potentially uncompilable
code.

Templates are untyped. On the one hand this offers a lot of flexibility, but on the other
hand it is a burden, because it raises the number of potential errors. Fortunately, when
generating into a solid compilable language, such as Java, the language compiler detects
quite a number of those errors. It would be much better, if the template engine itself would
detect errors early, but something like static typing of templates is still a research direction
in its infancy.

If the number of templates becomes larger and the interaction between templates becomes
more complex, we advise to explicitly describe the template, e.g., in its header. We argue
that each template has a template signature:

• What is the result: The result can typically be described by a nonterminal of the
target language, potentially equipped with a cardinality. Possible characterisations
could be Type, ImportStatement* or Attribute?.
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• What is the input (arguments): Which variables are defined and which elements do
they carry. In MontiCore, the ast variable almost always is expected to point to a
valid AST node. Each template typically expects a certain type (i.e. nonterminal
of the input language) for the ast variable (which varies between the templates as
the ast pointer describes the recursive descent). More variables may be expected,
either in the local or in the global variable store (see Section 13.4.4).

• Templates may expect an array of additional template arguments that are passed to
the template when being called (see e.g. Sections 13.2, 13.4).

• Which explicit hook points are provided (see Section 13.5).

• Does the template open new files and thus write its content to a new file or does
it assume the target file is already open. This usually concurs with the resulting
nonterminal of a template.

• Which templates are used by the template. This is important because (1) all used
templates need to be shipped together with the template and (2) each template call
creates further (implicitly defined) hook points that can be used for adaptation (see
Section 13.5).

In addition, we suggest to separate the list of used templates into groups: (1) Templates
that produce output and assume that the target file is already open and add content to
it, and (2) templates that control the output file that should be written. The latter do
not directly produce output, but concentrate on controlling the AST traversal and call
other templates that create the output. Furthermore, special templates can be used for
configuration, i.e., assigning values to variables, but that can also be managed through the
Groovy interface (see Chapter 16) or of course directly within Java.

13.2 Generator API

To start the generation process in MontiCore and process the templates, we use the
GeneratorEngine class.

There are several parameters that can be configured to adapt the generation process.
Because quite a number of these parameters are rather stable and reusable in the gen-
eration process, we use the class GeneratorSetup as a configuration class for the
GeneratorEngine. The setup is passed to the generator engine as a parameter of the
constructor. GeneratorSetup contains various configurable attributes, such as the form
of comments, the file I/O object, the paths, where templates or handcoded files can be
found, the output directory, and more. See Section 13.3 for a detailed description.

The GeneratorEngine offers several generate (and generateNoA) methods with
varying signatures. In total the following parameters are provided to run a generation
process:

String templateName provides the qualified template name that shall be executed. It
is assumed that the template produces a complete artifact as output. The template
name is searched in the list of provided template paths.
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Path filePath is the artifact name that is to be created upon executing the template.
It is recommended that the file path is relative to the configured output directory
specified in the GeneratorSetup, but filePath could also be an absolute path.

Writer writer is an alternative to the filePath. Here, the file or a string writer is
already opened.

ASTNode node is the starting point, i.e., the AST that the templates act on.

Object... templateArguments allows to provide additional arguments to the ini-
tial template, which can be accessed after the signature method is executed in
the template. The number and form of arguments highly depend on the individual
template and should be explained in the template header itself (see Section 13.1).

The other parameters are usually provided when calling a generate method. Listing 13.1
shows the signature of six generate methods, which can be used as the starting point for
the generation. The different names are necessary to distinguish if an ASTnode is passed
as explicit value for variable ast.

Java GeneratorEngine1 class GeneratorEngine {
2

3 public GeneratorEngine(GeneratorSetup gs)
4

5 void generate(String templateName,
6 Path filePath,
7 ASTNode node,
8 Object... templateArguments);
9

10 void generateNoA(String templateName,
11 Path filePath,
12 Object... templateArguments);
13

14 void generate(String templateName,
15 Writer writer,
16 ASTNode node,
17 Object... templateArguments);
18

19 void generateNoA(String templateName,
20 Writer writer,
21 Object... templateArguments);
22

23 StringBuilder generate(String templateName,
24 ASTNode node,
25 Object... templateArguments);
26

27 StringBuilder generateNoA(String templateName,
28 Object... templateArguments);
29 }

Listing 13.1: Signature of a generate and generateNoA method
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The first generatemethod (ll. 5f) opens a file and executes the given template on the AST
node. It incorporates two flexibility mechanisms: (1) The template replacement discussed
in Section 13.5 may interfere with the template execution and (2) the TOP mechanism
explained in Section 5.10 may adapt the output filename as well as potential content (like
the class name).

The additional arguments templateArguments can be empty. MontiCore passes those
arguments to the template and with the special operator signature they become argu-
ments available in the called template. See Section 13.4 for details. The second, fourth and
sixth generateNoA methods (ll. 10f, 19f, 27f) omit the AST node argument, assuming
that the template called does not rely on it. The generate methods (ll. 14-19) and the
generateNoA method (ll. 27) do not open a file, but use the writer argument to write
to an already open file. The last two methods (ll. 23-27) also do not open a file, but return
the produced text in form of a StringBuilder. These methods can also be used, when
the called template is a control template (instead of an output template), which will open
a file itself and the control template does not produce any useful output.

Please note that all generate methods have a template name as one of its arguments,
which is subject for a possible replacement and extension as described in Section 13.5.

In Listing 13.2, we demonstrate how the GeneratorEngine can be created and used.
The GeneratorSetup acts as the storage of the configuration of the generator engine.
In the case shown, the output directory for the generated files is defined in l. 1. Lines 3-5
define a special form of comments and switch the tracing of templates on. If tracing is on,
the contribution of a template is marked by the template name within the comments. For
details see Section 13.3.

Afterwards, an instance of the GeneratorEngine is created (l. 7). With this instance
the generate method is called for two templates (ll. 9) to generate two files.

Java1 GeneratorSetup s = new GeneratorSetup();
2 s.setOutputDirectory(new File("gen"));
3 s.setCommentStart("/*-- ");
4 s.setCommentEnd(" --*/");
5 s.setTracing(true);
6

7 GeneratorEngine ge = new GeneratorEngine(s);
8

9 ge.generate("tpl/DemoStateMachine1.ftl", Paths.get("demo1"), ast);
10 ge.generate("tpl/StateMachine.ftl", Paths.get("pingPong.aut"),ast);

Listing 13.2: How the GeneratorEngine can be used

13.3 Configuring the Generation Process

In Listing 13.2 we have already seen that MontiCore provides some options to config-
ure the generation process. This configuration is typically defined within Java or could
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be defined in a Groovy script (see Chapter 16). A special configuration class, namely
GeneratorSetup, contains all relevant information and is best explained, by showing its
attributes.

Listing 13.3 shows the attributes that are stored in the generator setup to configure po-
tential output.

Java GeneratorSetup1 class GeneratorSetup {
2 File outputDirectory; // def: "out"
3 String defaultFileExtension; // def: "java"
4 IterablePath handcodedPath; // IterablePath.empty()
5 List<File> additionalTemplatePaths; // def: empty
6 boolean tracing; // def: true
7 String commentStart; // def: "/*"
8 String commentEnd; // def: "*/"
9 Optional<String> modelName; // def: Optional.empty()
10 GlobalExtensionManagement glex; // defaults
11 FileReaderWriter fileHandler; // ...
12 FreeMarkerTemplateEngine freeMarkerTemplateEngine; // exist
13

14 // and a configuration method
15 TemplateController getNewTemplateController(String templateName);
16 }

Listing 13.3: Configuration options of the GeneratorSetup class

The GeneratorSetup allows to set each configuration attribute independently. If the
attribute is not set, defaults apply.

Therefore, each configuration attribute has an accessor and mutator having the same name
as the attribute but with a get and set prefix.

• outputDirectory: The output directory specifies where the generated files are
placed. If none is specified, an out directory is used by default in the current
path. (Also compare this to the -o argument when calling the CLI discussed in
Section 2.2.4).

• defaultFileExtension: Files that shall have a default extension do get this
string as suffix of their filename. The default is used when no explicit file extension
is given as argument, when executing a template that creates a file using the write
method. The default is java.

• handcodedPath: This is a list of directories, where handwritten classes can be
found. As explained in Section 5.10, MontiCore allows handwritten replacements
for the generated Java classes. It detects handwritten classes in any of the specified
paths during code generation and adapts the generated sources. By default this path
is empty and has to be manually configured (cf. CLI argument -handcodedPath;
see also Chapter 14).

• additionalTemplatePaths: This is a list of paths where additional templates
can be found that will be used for code generation. These templates can be injected
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into the generation process by either replacing or adding a template using the glex
mechanism. These handwritten templates are considered during code generation if
the path containing the templates is listed in the additionalTemplatePaths
variable. This additional paths need to be added manually, because by default an
empty path is configured (cf. CLI argument -templatePath).

• tracing: When tracing is enabled, the generated files will contain information on
which template contributed which piece of the generated artifact. This information
will be added in form of comments before the template content is executed. It is
especially helpful when debugging a code generator, but generally leads to unreadable
artifacts and contributes to performance as well as storage overhead. By default,
tracing is enabled.

• commentStart: If, e.g., tracing is enabled, this string describes the begin of a
comment in the target language. Because the MontiCore code generator may target
different target languages, the comments to be generated have to be defined. Using
the mutator for the commentStart the start symbol(s) for the comment can be
defined. By default the comment start is "/*". Please note that the comment start
can be for a single line comment, but then the comment end should contain a newline.

• commentEnd: Besides the start of the comment, the end of a comment has to be
defined. This variable stores the symbol(s) for the comment end, which is by default
"*/".

• modelName: The model name is printed in a comment if tracing is on. This is
helpful if the artifacts are generated from one model, but other models exist for
other artifacts. By default the model name is absent and then the according tracing
info is not printed at all. The model name is optional and has no default.

• glex: The GlobalExtensionMangement manages hook points, global variables,
and template replacements. In particular, it allows to create and bind hook points
as well as global variables. For templates it is allowed to replace existing ones or add
a template before or after an existing template. See Section 13.4.4. The default for
an unset glex is an instance of class GlobalExtensionManagement.

Reuse of the glex object allows even to reuse global variable that may be defined
or changed in one generate call, and accessed or changed in a subsequent call. If
not used with care that may unfortunately also be a source of multiple definition of
global variables (error 0xA0122).

• fileHandler: The file handler is used to read and write files as well as to check,
which handcoded files are existing. This basic operations are recorded with the
reporting described in Section 15.5. It is recommended to use the standard objects
in all occasions. The default for an unset configuration attribute is an instance of
class FileReaderWriter.

• freeMarkerTemplateEngine is the instance of the FreeMarker template engine
that will be used. The default for an unset configuration attribute is an instance of
class FreeMarkerTemplateEngine.
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In addition, the generator setup provides the method getNewTemplateController,
which iteratively creates new TemplateController objects – one for each template
execution. This method is meant for overriding, when a different TemplateController
class should be used.

13.4 MontiCore APIs for Templates

Adapting existing templates or writing new templates requires an understanding of how
to access the AST, the symbol tables and other helpful functionality within the templates.
The available Java data structures are defined in Chapter 5, but custom extensions are of
course possible. Additional Java APIs of the tooling are available allowing the template
developers to access auxiliary functions of various forms within the templates.

MontiCore provides an elaborated API to support generator developers. There are four
standard objects that are directly available within the templates through the variables tc,
glex, and ast, respectively through the statically available methods in class Log:

• TemplateController tc provides typical template operations and template-
specific information (see Section 13.4.2).

• Log provides static methods for logging, warning and error methods (see Sec-
tion 13.4.3).

• GlobalExtensionManagement glex manages global variables and the handling
of extensions and hook points (see Section 13.5).

• Variable ast allows access to the processed model. It points to the currently pro-
cessed node of the abstract syntax (i.e., the internal representation of the model
discussed in Chapter 5). The type of variable ast changes, and the available meth-
ods are therefore dependent on the currently processed node.

The objects (respectively class Log) provide various methods that will be discussed
in the following sections. Throughout all templates glex always refers to the same
GlobalExtensionManagement object. In contrast, tc holds information specific to
each template and is thus instantiated on each template invocation, but always with an
object of type TemplateController. Finally, the templates can process different parts
of the model, and hence, ast contains the corresponding AST node that changes while
processing different parts of the AST usually but not necessarily for each template.

13.4.1 Shortcuts: Aliases in Templates

For the sake of convenience, the MontiCore template engine provides aliases for methods
that are often invoked within a template. Thus, the objects tc and glex can often be
omitted when accessing their functions from templates, because a list of aliases provides
shortcuts.

Listing 13.4 shows the signatures of these aliases. As a rule, we favor the alias ver-
sion of a method instead of its long version, since it improves the readability of the
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templates. So, for example, we write ${include("my.Template")} instead of
${tc.include("my.Template")}.

FTL1 // Aliases provided for templates
2

3 // Include and read signature commands, see Section 13.4.2
4 include(template) -> tc.include(template)
5 includeArgs(tpl,par...) -> tc.includeArgs(tpl,par...)
6 signature(par...) -> tc.signature(par...)
7

8 // Warnings, errors, infos ..., see Section 13.4.3
9 error(message) -> Log.error(message)
10 warn(message) -> Log.warn(message)
11 info(message, logger) -> Log.info(message,logger)
12 debug(message, logger) -> Log.debug(message, logger)
13 trace(message, logger) -> Log.trace(message, logger)
14

15 // Global variable management, see Section 13.4.4
16 defineGlobalVar(name, value) -> glex.defineGlobalVar(name, value)
17 defineGlobalVar(name) -> glex.defineGlobalVar(name)
18 defineGlobalVars(name...) -> glex.defineGlobalVars(name...)
19 changeGlobalVar(name, value) -> glex.changeGlobalVar(name, value)
20 addToGlobalVar(name, value) -> glex.addToGlobalVar(name, value)
21 getGlobalVar(name) -> glex.getGlobalVar(name)
22 requiredGlobalVar(name) -> glex.requiredGlobalVar(name)
23 requiredGlobalVars(name...) -> glex.requiredGlobalVars(name...)
24

25 // Hook point management, see Section 13.5
26 bindHookPoint(name, hp) -> glex.bindHookPoint(name, hp)
27 defineHookPoint(name) -> glex.defineHookPoint(tc, name)
28 defineHookPoint(name, ast) -> glex.defineHookPoint(tc, name, ast)
29 existsHookPoint(name) -> glex.existsHookPoint(name)

Listing 13.4: Shortcuts: Aliased functions available in templates

Please note that class Log needs to be qualified with the package if explicitly accessed,
that means de.se_rwth.commons.logging.Log needs to be used. For this case, the
shortcuts are helpful.

The list of aliases is stored in the template

de.monticore.generating.templateengine.freemarker.Aliases

It is called by default at the beginning of each generation process and can be overridden
by using the replaceTemplate mechanism when desired, e.g., to add more aliases.

13.4.2 The Template Controller

The TemplateController provides methods for typical template operations such as
the inclusion of sub templates or the instantiation of further auxiliary classes as helpers.
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The TemplateController additionally provides access to template-specific information,
for example, the name and the package of the current template. Consequently, every
template execution holds a new TemplateController object, which can be accessed
through variable tc within the template.

It is possible to adapt the template controller by defining a subclass of
TemplateController. For a repeated instantiation of this class the factory method
getNewTemplateController needs to be adapted in a subclass of GeneratorSetup.

Including Templates without Arguments

Tip 13.5 Template Names Pointing to Files

In many methods, Strings are used as names for templates. Those template names
are qualified names that point to the file containing the template. They could be
fully qualified, but normally only define the package they can be found in. In the
latter case, they are looked for in the template path.

The qualifier path can be defined like a Java style package name, like
"tpl4.F.ftl", and also without default extension, like "tpl4.F".

It is also possible to use a pathname of the underlying operating system, such as
"tpl/F.ftl" in Unix. However, "tpl/F" does not work.

To include sub templates into a template, the includemethods are used. Their signatures
are shown in ll. 3-12 of Listing 13.6. by calling tc.include(templateName, ast),
the template templateName is processed on the AST node ast. The result is included
into the current output, i.e., the corresponding position of the template, where the call was
issued. If the included template works on the same ast object (or the ast is just not of
interest), we can use the method in ll. 11-12 as a shortcut. If the methods are called with
lists of templates or lists of AST nodes, then a method applies all templates of the first
list on all nodes of the second list. This mainly acts as a shortcut for iterative application.
If both arguments are lists, the templates are on the outer loop.

Java TemplateController1 class TemplateController {
2

3 StringBuilder include(String templateName,
4 ASTNode ast);
5 StringBuilder include(List<String> templateNames,
6 ASTNode ast);
7 StringBuilder include(String templateName,
8 List<ASTNode> astlist);
9 StringBuilder include(List<String> templateNames,
10 List<ASTNode> astlist);
11 StringBuilder include(List<String> templateNames);
12 StringBuilder include(String templateName);
13 }

Listing 13.6: Include methods provided by the TemplateController tc
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Please note that the include command are subject for substitution by the hook point
mechanism as described in Section 13.5.

The example in 13.7 shows how to use the include methods. The include methods
are used from within templates by generator developers, but these methods could also be
called from within Java source code.

FTL1 ${include("my.Template",ast.getOneChild())}
2 ${include("my.Template")}
3 ${include(["a.Template1","a.Template2"],ast.getSomeChildren())}

Listing 13.7: Examples for including sub-templates within a template

In general, these methods replace and improve the template inclusion mechanism that
FreeMarker provides by a better management of variables and template hook points. Thus,
we ignore FreeMarker’s own template inclusion and use that of MontiCore.

Including Templates with Arguments

A second group of two include methods uses a slightly different approach of variable passing.
The includeArgs methods allow us to call a new template and pass a list of arguments
as additional parameters. Listing 13.8 shows their signatures.

Java TemplateController1 class TemplateController {
2 StringBuilder includeArgs(String templateName,
3 ASTNode node,
4 List<Object> templateArguments)
5 StringBuilder includeArgs(String templateName,
6 List<Object> templateArguments)
7

8 StringBuilder includeArgs(String templateName,
9 String... templateArgument)
10

11 void signature(List<String> parameterNames)
12 void signature(String... parameterName)
13 }

Listing 13.8: The includeArg methods provided by the TemplateController tc

The includeArgs methods accept one template to be executed, optionally an explicit
ast node and a list respectively array of (untyped) arguments. The template called has
the variables glex, tc and ast set only. ast remains identical to the ast of the calling
template if not explicitly set.

The list of further arguments is only implicitly passed to the called template. To make
this implicit list explicit and accessible through variable names, the signature method
is used inside the called template. signature allows a template designer to describe
what the additional parameters of a template are and initializes these parameters. This
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is a workaround to deal with the problem that FreeMarker itself does not allow to declare
parameters and pass arguments. The signature method should be one of the first
commands of a template: It defines a part of the signature of the template, because it
lists the names of the variables (parameters) where the arguments shall be stored in. The
parameter list must have as many entries as the arguments. This is checked at runtime
and leads to an error if it is wrong. Unfortunately, no typechecking happens.

The signature method can only be called once per template and stores variables locally
only. The signature can be omitted, if no argument is passed. An empty list is also
possible to clarify that no extra arguments are expected.

Please note that the TemplateHookPoint class discussed in Section 13.5 also allows to
add parameters. These parameters are passed to the template with the same mechanism:
The first list of parameters comes from the Java method includeArgs and the second
part of the list comes from the TemplateHookPoint constructor.

The example in Listing 13.9 shows a template call and the signature command that would
bind the variables ast to the caller’s child, string prefix to variable "text1", and
postfix to "text2". In the second part, the content of variable ast is bound to n and
i becomes 42. Unfortunately, the variable names need to be enclosed in quotation marks!

FTL1 // Call of a template
2 ${tc.includeArgs("my.Template",ast.getAChild(),"text1","text2")}
3

4 // Line 1 of the called "my.Template"
5 ${tc.signature("prefix", "postfix")}
6 // binds variable prefix to String "text1", ...
7

8 // Call of another template
9 ${tc.includeArgs("my.Template2", 32+10)}
10

11 // Line 1 of the called "my.Template2"
12 ${tc.signature("i")}
13 // binds variable i to value 42

Listing 13.9: Examples for using signature

This form of template calls introduces more flexibility and also a better form of reuse, as it
allows to avoid passing information along globally defined variables. It mimics the spirit of
ordinary method calls between Java methods, although it does not provide the advantages
of static typing.

Please note that if a template is replaced or decorated using the hook point mechanism,
then the same form of argument passing occurs, which means that the replacing or decorat-
ing template has to have the same signature as the replaced template. The only exception
may be that the TemplateHookPoint adds additional arguments, which enlarges the
parameter list in the replacing template accordingly.
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Tip 13.10 Template Signature: Parameters

The signature method can be used within templates to describe, which pa-
rameters need to be set, when executing the template with the includeArgs or
writeArgs methods.

It checks correctness of the number of arguments of the call and assigns the
arguments to the listed parameters.

This is not a full type check, but at least provides some safety and comfort,
because it mimics traditional parameterized method calls.

Writing Template Execution Results to Files

The write methods, e.g., the one in the Listing 13.11 (ll. 2) processes the template
templateName and stores the result in the newly created file fileName.extension.
fileExtension can be null or the empty string "". If the fileExtension does not
start with ".", but is not empty, a dot is inserted. So ".java" and "java" have the
same effect. Unless not absolute, the fileName (respectively filePath) is relative to
the configured target directory.

The template filename may be qualified (using "."). In case it is not qualified, the qualifier
is taken from the current package (same as the calling template).

The file is opened, content is written, and the file is closed. Other versions use the default
extension (ll. 5) or an already defined Path object (ll. 8).

Java TemplateController1 class TemplateController {
2 void write(String templateName,
3 String qualifiedFilename, String fileExtension,
4 ASTNode ast);
5 void write(String templateName,
6 String qualifiedFileName,
7 ASTNode ast);
8 void write(String templateName,
9 Path filePath,
10 ASTNode ast);
11

12 void writeArgs(String templateName,
13 String qualifiedFileName, String fileExtension,
14 ASTNode ast,
15 List<Object> templateArguments);
16 void writeArgs(String templateName,
17 Path filePath,
18 ASTNode ast,
19 List<Object> templateArguments);
20 }

Listing 13.11: Write methods provided by the TemplateController tc
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The writeArgs versions (ll. 12-16) also allow developers to pass additional arguments to
the template. In this respect they behave like the includeArgs methods.

The main difference between the include* methods described above and the write*
methods is that the latter open files and write contents to them. The write* methods
are therefore the entry points for code generation and usually called from Java. The
GeneratorEngine uses these methods.

In principle, it is possible to write to an artifact, while one artifact is already being written
to, i.e., write into a new file can be called within templates that contribute to other files.
However, nested writing processes may be difficult to understand.

Tip 13.12 Controlling Templates

It is possible to use templates for controlling the output. Such a controlling
template contains variable definitions, some control decisions and write commands,
but does not itself produce text.

The advantage of a controlling template is that it can be adapted without touch-
ing Java files and thus without recompilation of the tool. Unfortunately, Java is
better suited for complex control algorithms. Other possibilities would be a de-
tailed Groovy script for output control or the use of hook points for extension or
replacement.

For manageability, controlling templates and producing templates should be
strictly separated and clearly marked.

More Methods in the TemplateController

The TemplateController object tc provides some more methods. An overview is
given in Listing 13.13.

Java TemplateController1 class TemplateController {
2

3 String getTemplatename();
4

5 Object instantiate(String className);
6

7 Object instantiate(String className, List<Object> params);
8

9 boolean existsHandwrittenFile(String fileName);
10

11 boolean existsHandwrittenFile(String fileName, String extension);
12 }

Listing 13.13: Further methods provided by the TemplateController tc

• getTemplatename (l. 3) allows to retrieve the name of the template (allows e.g.
to rename templates without changing content.
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• instantiate (ll. 5-7) allows to instantiate a Java class from its name. If the name
is not qualified, the same package as the calling template is used. Qualification is
dot-separated. The version in line 3 assumes a constructor without arguments, while
the version in line 7 allows to set the arguments of a constructor). Resulting objects
may be used as helpers.

• existsHandwrittenFile (l. 9-11) check whether a file exists in the handcoded
path. This allows a template to react on whether a handcoded class exists (and
generate something different). If the extension is omitted as second argument,
the default extension is taken.

13.4.3 Logging within a Template

Error management and logging are always important components for a helpful tooling. The
details of logging are defined in Section 15.3. This section especially introduces statically
available methods in class Log that can also be used from templates.

As a shortcut a subset of this API (described in Section 15.3) is directly available through
aliasing within templates. Hence, this example is intended for template developers, who
use logging information in templates.

FTL1 // error and warning go to stdout
2 ${error("0x12345 A critical error occured.")}
3 ${warn("AST value is empty, skipping template ...")}
4

5 // infos, debug and trace have additional component names
6 ${info("Starting template.", "component-name")}
7 ${debug("Value of node is " + ast.getValue(), "component-name")}
8 ${trace("Generating line 5.", "component-name")}

Listing 13.14: Logging examples from within templates

As shown in Listing 13.14, this API allows to issue log messages with five different levels
of severity in descending order. While the higher severity levels error and warn are
used to signal critical events or failures, the lower level severities are used for information.
The distinction between these different levels allows to control the verbosity of the actual
logging output.

Log messages can be filtered according to their severity level and per component. This is
what the second parameter of the log API for info, debug, and trace is for.

Issuing an error leads to immediate termination of the generation process, as we strictly
follow the fail quick policy when the generation cannot be completed successfully.

13.4.4 Variables in the Templates with GlobalExtensionManagement

Two kinds of variables are available in the templates: local and global variables. Local
variables are only visible in the scope of the template that defines them, whereas global
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variables are stored globally, hence, can be defined and accessed in any template as well
as from the underlying Java.

Local variables can be defined and assigned using the built-in assign directive that
FreeMarker offers (see Section 12.1). Because FreeMarker does not offer a global variable
management, MontiCore provides the glex (GlobalExtensionManagement) object,
that allows to define and manipulate variables that are visible in all subsequent template
executions.

Global variables should be used rarely, because they are shared and thus can have unex-
pected side effects. To reduce unwanted side effects the GlobalExtensionManagement
class provides functionality to define and access global variables and handle them as if they
were constants. Often these variables are used to access additional Java objects that help
generating from the AST or symbol infrastructures or contain additional template paths.

To set, change or retrieve a global value one of the methods in Listing 13.15 can be used.

Java GlobalExtensionManagement1 public class GlobalExtensionManagement {
2 void defineGlobalVar(String name, Object value);
3

4 void changeGlobalVar(String name, Object value);
5 void addToGlobalVar(String name, Object value);
6

7 boolean hasGlobalVar(String name);
8 Object getGlobalVar(String name);
9 Object getGlobalVar(String name, Object default);
10

11 void requiredGlobalVar(String name);
12 void requiredGlobalVars(String... names);

Listing 13.15: Methods to manage global variables with glex

defineGlobalVar(name,value) defines a new global variable called name and as-
signs it the value value. If the variable is already defined, an error is issued. Because
FreeMarker is untyped, values generally are of type Object. changeGlobalVar only
replaces the value of an already existing global variable.

hasGlobalVar checks if a global variable exists (boolean) and getGlobalVar returns
the value of the global variable. If the global variable does not exist then either a default is
provided as a second argument, or it exits with exception to facilitate the fail quick policy.

addToGlobalVar assumes the variable name contains a list and adds its argument to
the list. This is convenient, e.g., when building up a list of templates that shall later
be executed and thus allows some kind of configuration within the templates themselves.
Variable name needs to be initialized with a list, like defineGlobalVar("name",[]).

A value of a global variable can be used in many ways. By calling requiredGlobalVars,
we can require global variables to be defined. If a variable does not exist an error is thrown
during execution. Using this early in templates defines a weak form of precondition for
template execution. Together with the signature command, requiredGlobalVars
defines a second form of input signature.
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While all the above methods can be called from Java, they can also be called within a
template. Listing 13.16 demonstrates this.

FTL1 ${glex.requiredGlobalVar("v3")}
2

3 ${glex.defineGlobalVar("v1",33+2)}
4 Var v1 is ${glex.getGlobalVar("v1")}
5

6 <#if glex.hasGlobalVar("v1")>
7 Ok.
8 ${glex.changeGlobalVar("v1","Aha")}
9 </#if>
10

11 ${glex.defineGlobalVar("v2",[])}
12 ${glex.addToGlobalVar("v2",16)}
13 ${glex.addToGlobalVar("v2",[18,19])}
14 ${glex.addToGlobalVar("v2",17)}
15 <#list glex.getGlobalVar("v2") as elem> ${elem},</#list>

Listing 13.16: Manipulating global variables from within a template

Please note that the global variables are the same within all template executions, and thus
allow to transport data from Java to the templates, downwards from calling templates to
called ones, but also upwards to the caller. It even allows to share data between different
generator calls, if the GlobalExtensionManagement object glex remains the same.

13.5 Hook Points for Adaptation

Sometimes a code generator does not deliver the optimal form of code, e.g. additional
functionality is desired, the modifier shall be adapted, or additional annotations shall be
attached to attributes. Therefore, it is helpful if a generator provides mechanisms for
adaptation of the generator and thus of the generated code.

MontiCore provides a flexible mechanism for generator adaptation based on hook points in
templates.

13.5.1 The Concept of Hook Points

A hook point is a place within a template that is meant for adaptation [Rot17]. A hook
point can either be defined explicitly or exists by default for decorating or replacing a
called template. If a hook point is not explicitly bound to a value it defaults to an empty
string.

A hook point consists of a name, which is a unique string that identifies the place in the
template, where to hook in, and a value that is bound to the hook point name. The hook
point is defined explicitly by giving it a name or implicitly, because every template itself
acts as hook point name.

171



13. Generator Engine using Flexible Templates

Explicit hook points in templates are therefore providing the same adaptation power as
hook methods in a programming language [Pre95]. Furthermore, decorator hook points
are used to add something before or after a template and act like decorating aspects
[KLM+97]. Figure 13.17 shows a classic hierarchical calling structure of templates. Here,
the caller knows and includes the called template via the include statement. Figure 13.18
demonstrates the effects of decoration with hook points. It is particularly important to
notice that the decoration is defined outside the affected templates A and B. Both templates
neither have explicit knowledge about the hooks they are decorated with, nor need not be
changed. Only their execution is adapted.
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Figure 13.18: Decoration before and after a template (execution order is 1..5)

Hook points can be explicitly defined within a template (see Section 13.5.3), but also each
template itself (by its qualified name) acts as an implicitly defined hook point. Figure 13.20
shows the effect of an explicit definition and binding, while Figure 13.19 shows the effect
of a template replacement, where the template name is used as hook point name.

An even more fine grained replacement is possible: We use the paired combination of
template and an AST object it acts on, as hook point name (i.e. more precisely "identifier")
and allow its individual decoration or replacement.

Therefore, MontiCore provides the following mechanisms:

• A hook point can be used to replace an existing template (see Figure 13.19).

• Existing templates can be decorated with additional hook points that are executed
before or after the original template (see Figure 13.18).
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Figure 13.20: Defining an explicit hook point and binding it

• For a fully fine grained output control, a template and the AST object it acts on,
qualifies as hook point name and can individually be decorated or replaced.

• Explicit hooks points within the generation process can be filled with content (see
Figure 13.20).

The paired, AST-dependent hook point replacement is rather helpful, e.g., when the output
AST shall not be constructed completely, but some parts of it remain in templates. For
example, method signatures can be constructed in the AST, but this results in a rather
complicated AST construction. Thus, individual method body remain in templates and
are attached individually to the corresponding AST method node.

If a hook point is bound several times (using bind, setBeforeTemplate,
setAfterTemplate, or replacetemplate), then only the last statement is effective.
The last binding overrides the earlier ones.

Decoration and replacement is only effective for the explicitly included templates, such as
A in Figures 13.19 and 13.20. In these figures templates E and F cannot be decorated or
replaced. However, the decoration of template B in Figure 13.21 remains active, when B
itself is replaced.

It is noteworthy, that we could also replace an existing and used template by defining a
new one with the same name and path, copying the new one into a local directory and
including the new template in the template path. The new template just needs to have
the same name (including package) and the storage place must be mentioned before the
overridden old one in the template path. However, this process is brittle and somewhat
difficult to understand, when you do not fully control the order of the template path.
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Figure 13.21: External template replacement keeps its decoration (execution order is 1..5)

It is also noteworthy, that direct handcoded adaptations of the resulting Java code are
possible, but affect only single artifacts and are thus somewhat limited in their power.
They are described in Chapter 14. Adding functionality through template adaptations can
be challenging, because the developer requires knowledge about the template structure, the
target and the generator language, the generator architecture, and the generated artifact
architecture.

13.5.2 Forms of Hook Points

So far we have discussed filling hook points with templates. However, MontiCore provides
also the following forms of hook point values that allow to inject a normal string, an inline
template or even Java code. A hook point is filled by one (or if allowed more) hooks. We
distinguish between four types of hooks that define hook point values:

1. String hook : The hook point is filled with a simple, uninterpreted string value.

2. Template hook : The hook point is filled by executing a template given by a qualified
template name. During code generation this template is loaded, executed and the
result is added to the template defining the hook point.

3. Template-string hook : Like the template hook, but the template content is already in
the string, i.e., a string that contains FreeMarker expressions. During code generation
this template string is evaluated and the returned string is embedded in the template
defining the hook point. No file is loaded.

4. Code hook : The hook point is filled with a code hook, namely the value resulting from
its execution. This is the most powerful type of hook point. A code hook is a Java
class that can be used to implement additional functionality. During code generation
this Java class is executed and the returning string is inserted in the template that
defines the hook point.

Each of these forms of hooks is defined by a subclass of HookPoint. Its signature is
shown in Listing 13.23.
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Tip 13.22 Hooks in Object Oriented Programming

Hook points share properties with hook methods in OO programming frameworks,
where the hook is defined as empty method and is meant to be overridden in a
subclass. But, do not use hook points over excessively, because the order of execution
is then not easy to understand.

Java HookPoint1 package de.monticore.generating.templateengine;
2

3 public abstract class HookPoint {
4

5 public abstract
6 String processValue(TemplateController controller,
7 ASTNode ast);
8

9 public abstract
10 String processValue(TemplateController controller,
11 List<Object> args);
12

13 public abstract
14 String processValue(TemplateController controller,
15 ASTNode node,
16 List<Object> args);
17 }

Listing 13.23: Signature that HookPoints provide

The subclasses that implement the forms of hooks are:

1. StringHookPoint implements a string hook, i.e., an uninterpreted string value.

2. TemplateHookPoint implements a template hook, i.e., a template given by qual-
ified name is interpreted. All additional arguments are handed over to the called
template using the signature command.

3. TemplateStringHookPoint accepts an inlined template text, i.e., no file is in-
volved, but the text is executed as template content.

4. CodeHookPoint is itself an abstract class and is intended to be subclassed by all
forms of code hooks.

The first three classes are meant for direct use. They are instantiated by one of the
constructors shown in Figures Listing 13.24-Listing 13.26.

Java StringHookPoint1 public class StringHookPoint extends HookPoint {
2 // constructor of StringHookPoint
3 public StringHookPoint(String value);
4 }

Listing 13.24: Constructor for StringHookPoints
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Java TemplateHookPoint1 public class TemplateHookPoint extends HookPoint {
2 // constructors of TemplateHookPoint
3 public TemplateHookPoint(String templateName);
4

5 public TemplateHookPoint(String templateName,
6 Object... templateArguments);
7 }

Listing 13.25: Constructors for TemplateHookPoint

Java TemplateStringHookPoint1

2 public class TemplateStringHookPoint extends HookPoint {
3 // constructors of TemplateStringHookPoint
4 public TemplateStringHookPoint(String statement)
5 throws IOException;
6 }

Listing 13.26: Constructor of TemplateStringHookPoint

glex provides access to global variables also for hooks. In particular, template and code
hooks can access and modify global variables. Parameters that are defined, e.g., in the
includeArgs method calls are also passed to the hook templates and can be extracted
to local variables using the signature command.

The second constructor in class TemplateHookPoint allows to pass additional argu-
ments to the template. These arguments are managed like the arguments passed to
includeArgs. They are at first implicit in the called template, but they can be as-
signed to variables using the signature command. The list of parameter names in the
signature consists of two parts: first the arguments of the includeArgs class and then
the parameters from the constructor in class TemplateHookPoint are to be mentioned.

This form of arguments is only necessary for TemplateHookPoint, because it allows to
decouple the definition and the provisioning of arguments to three points: (a) definition of
the reusable, parameterized template, (b) creation of the hook point, where some arguments
are fixed and (c) execution of the hook point in the context of the replaced template, where
the rest of the arguments is provided.

As said, hooks themselves are not subject to further replacement and thus names of
template hooks do not act as hook names. In particular, the template defined in class
TemplateHookPoint can not be replaced or decorated, but again hook points can be
defined in this template and further include calls are subject for replacement and decora-
tion.

The abstract class CodeHookPoint is not instantiated directly, but used by implement-
ing subclasses. It receives all necessary information through the arguments, i.e., vari-
ables tc and ast. tc can provide additional infos, e.g., to access the glex or the
GeneratorSetup object. If a CodeHookPoint wants to access the signature ar-
guments of a called template, it may ask the tc with getArguments to retrieve the list
of objects that were passed as arguments.
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Using a subclass of CodeHookPoint provides of course a general and mighty form of
hook point definition. However, using this kind of hook points requires recompiling the
tool (respectively MontiCore) before using it, while templates are interpreted.

13.5.3 Defining Explicit Hook Points in Templates

To simplify the adaptation and extension of templates, hook points can be explicitly defined
in templates. A hook is a place in a template that is planned for extension. Through its
definition, it gets a name. If the name was bound to one of the above mentioned hook
points, this hook point is executed and the result is inserted in the template.

To define a hook point in a template the TemplateController class pro-
vides defineHookPoint methods that are used only within templates as
shown in Listing 13.27. In this listing the hook point with the name
"<JavaBlock>?TemplateName:member" is called. If the hook point should work on
the same ast node then the ast argument can also be omitted.

To check if a hook point with a specific name is already existing, the existsHookPoint
method is typically used within template control structures.

FTL1 // defining a hook point (if it is bound,
2 // the hook point value is inserted here)
3 ${glex.defineHookPoint(tc,"<JavaBlock>?TemplateName:member",ast)}
4 ${glex.defineHookPoint(tc,"<JavaBlock>?TemplateName:member",
5 ast.getAChild())}
6 ${glex.defineHookPoint(tc,"<JavaBlock>?TemplateName:member")}
7

8 // to find out, whether a hook point is bound (if necessary)
9 ${glex.existsHookPoint("<JavaBlock>?TemplateName:member"))}
10

11 // shortcuts with the same effect
12 ${defineHookPoint("<JavaBlock>?TemplateName:member",ast)}
13 ${defineHookPoint("<JavaBlock>?TemplateName:member")}

Listing 13.27: Methods to define a hook point in a template

The aliases described in Section 13.4.1 allow developers to use the shortcuts shown in
ll. 12f.

Please note that it is not possible to pass additional arguments from explicit hook point
definitions to the executing hook point except through global variables. Only the standard
ast and tc are usually available.

Hook Point Naming Conventions

Hook points need memorable names such that developers have a unique identification. Due
to a lacking type system for templates in general and thus also hook points, we suggest the
following convention for hook point names. The following naming scheme helps developers
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to better recognize what to do and how to achieve the desired effect. A hook point name,
like "<Block>?ClassImpl:ConstructorInit" consists of

1. the type of the expected result (given as nonterminal <Block>). It is associated
with a cardinality, such as * or ? (default: ?, i.e., maximum one), to describe that
omission or repetition is allowed,

2. the template name in which the hook point is defined (if the hook point with that
name is defined only once),

3. the type of the ast where the hook point is applied to, and

4. optionally the purpose of the hook point.

This convention encodes some typing information in the hook point name: For example,
a hook point defined in the ClassImpl template that requires a Class ast, returns
an arbitrary set of JavaBlock statements, and is defined to add class members can be
named with <JavaBlock>*ClassContent:member.

An often used hook point name, however, uses a different convention, namely

FTL1 ${glex.defineHookPoint("JavaCopyright")}

that expects a comment containing some copyright information for each generated Java
class.

13.5.4 Binding Hook Points

Binding a hook point means to assign one or several hook point values to a previously de-
fined hook point name. Binding is usually applied, when the hook point was defined explic-
itly by name and is not a template. To set a hook point GlobalExtensionManagement
provides the method bindHookPoint.

Java GlobalExtensionManagement1 class GlobalExtensionManagement {
2 String defineHookPoint(TemplateController controller,
3 String hookName,
4 ASTNode ast);
5 String defineHookPoint(TemplateController controller,
6 String hookName);
7

8 void bindHookPoint(String hookName, HookPoint hp);
9 void bindStringHookPoint(String hookName, String content);
10 void bindTemplateHookPoint(String hookName, String tpl);
11

12 boolean existsHookPoint(String hookName);
13 }

Listing 13.28: Methods of the GlobalExtensionManagement class for hook point
management
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The class GlobalExtensionManagement is not only responsible for managing global
variables, but also for hook points in templates. Listing 13.28 describes the methods it
provides for this purpose.

The effect of the methods called from templates, namely defineHookPoint and
existsHookPoint are already described in Section 13.5.3.

The bindHookPoint method is used to bind a hook point name to one of the forms
of hook points described in Section 13.5.2. This method can be used from Java as
well as within templates. The convenience methods bindStringHookPoint and
bindTemplateHookPoint allow to define hook points more easily from within tem-
plates. If the hook point already had a binding, a warning is issued and the hook point
name gets bound to the new value, so the new value overrides the old.

Binding Hook Points in Templates

A hook point can also be bound within a template. The code examples in Listing 13.29
demonstrate this. We advise to use the shortcuts only.

FTL1 ${glex.bindHookPoint("aComment1",
2 tc.instantiate(
3 "de.monticore.generating.templateengine.TemplateHookPoint",
4 ["tpl4/SE-Copyright.ftl"]))}
5

6 <#-- or with these shortcuts: -->
7 ${glex.bindTemplateHookPoint("aComment2",
8 "tpl4/SE-Copyright.ftl")}
9

10 ${glex.bindStringHookPoint("aComment3",
11 "// Developed by SE RWTH\n")}

Listing 13.29: Example: setting a hook point

13.5.5 Replacing and Decorating Hook Points

When the hook point is a template, then replacement and decoration of the template is
possible, when executing it. The following methods can be applied for template names and
for explicitly named hook points.

As already mentioned, this mechanism mimics aspect orientation for templates: an "as-
pect" template can decorate or replace the basic template, without the basic template
knowing that its effect is modified.

The class GlobalExtensionManagement provides appropriate methods shown in List-
ing 13.30.
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Java GlobalExtensionManagement1 class GlobalExtensionManagement {
2 replaceTemplate(String oldTemplate,
3 HookPoint hp);
4 replaceTemplate(String oldTemplate,
5 ASTNode node,
6 HookPoint newHp);
7

8 setBeforeTemplate(String template,
9 HookPoint beforeHp);
10 setBeforeTemplate(String template,
11 List<? extends HookPoint> beforeHps);
12

13 setAfterTemplate(String template,
14 HookPoint afterHp);
15 setAfterTemplate(String template,
16 List<? extends HookPoint> afterHps);
17 }

Listing 13.30: GlobalExtensionManagement for hook point management

replaceTemplate replaces a template call (via include, includeArgs, write, or
writeArgs) by the provided hook point, which is executed instead. The three argument
version of replaceTemplate only replaces the template if called on a specific ast node.

The two methods setBeforeTemplate and setAfterTemplate allow to decorate
templates (as well as explicitly named hook points).

This mechanism provides a powerful approach to extend a code generator. Likewise, it
should be used with care, because it may provide unwanted side effects.

Tip 13.31 Use Template Replacement And Decoration with Care

To avoid confusion with the aspect-like template decoration and replacement,
developers should only either replace a template or decorate it with extensions, but
not both.

Template replacement is also error prone and should thus be handled with care.

13.5.6 HookPoint Replacement and Decoration Strategy

Irrespective, whether the hook point name is explicitly defined or a template name, the
hook point binding respectively replacement and decoration strategies are the same.

However, the strategy is complex and thus repeated here in detail:

If a hook point name hpn and a concrete AST node ast are given and the hook point
shall be executed, then the following is calculated:

1. If hpn is decorated with one or more before hook points, then this before decoration
is executed. This may be a list of hook points.
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2. If there is a specific replacement (depending on hpn and ast), then this replacement
hook point is executed.

3. Otherwise, if there is no specific replacement (depending on hpn and ast), then it is
checked, whether a general replacement (dependent on hpn) exists. If so, then this
replacement hook point is executed.

4. Otherwise, if there is no replacement at all and hpn is a template, then the template
is executed (this typically happens within include and write methods).

5. Otherwise, if there is no replacement at all and the hook point was explicitly defined,
it defaults to the empty string (this typically happens with the defineHookPoint
method).

6. At the end: If hpn is decorated with one or more after hook points, then this after
decoration is executed. This may be a list of hook points.

The various binding, replacement and set methods do have a variety of effects:

bindHookPoint(hpn,hp) binds hp to hpn. If hpn was already bound, the value is
overwritten, but also a warning issued. bindHookPoint does not affect decoration.

replaceTemplate(hpn,hp) binds hp to name hpn. If name hpn was already replaced,
the value is overwritten, but there is no warning issued. replaceTemplate does
not affect decoration and does not affect specific replacements.

replaceTemplate(hpn,ast,hp) binds hp to identifier (hpn,ast). If name
(hpn,ast) was already replaced, the value is overwritten, but there is no warn-
ing issued. replaceTemplate does not affect decoration, but setting a specific
replacement has the effect that it overrides general replacement or binding.

setBeforeTemplate(hpn,hp) decorates the hook point named hpn such that hook
point value hp is executed before. setBeforeTemplate does also take a list of
hook points, but a second call of setBeforeTemplate overrides the first value.
Only the last call counts. If the decorated template is also replaced, the decoration
remains active.

setAfterTemplate : like setBeforeTemplate, but applied after the main hook
point execution.

None of the binding, decoration and replacement methods is transitive. That means a
template mentioned within a TemplateHookpoint is not a hook point name and will
therefore not be further replaced or decorated.

All replacing and decorating hook points have the same signature as the basis template.
In particular, TemplateHookPoints should have the same signature command.

bindHookPoint and replaceTemplate have very similar effects, when applied on tem-
plate names. The main difference is that bindHookPoint is usually applied on explicitly
defined and thus otherwise empty hook point names, while replaceTemplate is usually
applied to replace a non empty template.
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If the hook point is defined explicitly with bindHookPoint, decoration or replacement
have the same effect, as long as only one form is used, because replacement of an empty
default looks like decoration.

Technical Info 13.32 How hook points are managed internally

Hook point names are just strings. This holds for template names as well as freely
defined strings for explicit hook points.

The bindHookPoint and replaceTemplate (with two arguments) store their
replacement in the same Map<String,HookPoint>.
setBeforeTemplate and setAfterTemplate have multimaps with type

Multimap<String,HookPoint> to be able to store lists of hook points.
Finally, the three argument version of replaceTemplate stores its replace-

ments in a map of maps: Map<String, Map<ASTNode, HookPoint>>.
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Chapter 14

Integrating Handwritten Code

co-authored by Klaus Müller, Alexander Roth

Not every piece of code can and should be generated. Sometimes no appropriate modeling
language exists, algorithms are already well implemented, or various external libraries shall
be used. Thus, quite often specific functionality is implemented by hand. We call this
handcoding, in short hc, and the result handwritten code. Efficient techniques for a smooth
integration of handwritten and generated code are essential in a practical development
process. This integration is also necessary when using several generators producing different
pieces of code.

Hence, in this chapter we discuss two solutions to add handcoded functionality into the
code generated by a MontiCore tool.

As described in Chapter 13, it is possible to adapt the generation process itself by writing
new templates that are aware of the handcoded functionality and are thus able to directly
use these functions.

14.1 Integration of Handwritten Code

Reusability of a code generator is an essential property. This includes that it is possible
to change the source model and to re-generate new code easily. This allows to reuse and
evolve the source model, because in practice models will be adapted, enhanced, extended,
and refactored plenty of times. Therefore, the generated code must not be modified by
hand. Thus, any handcoded parts need to be located in separate artifacts. Each artifact
is either completely handcoded or generated, but not a mixture.

Tip 14.1 Keep Generated and Handwritten Code Separate

Keep generated and handwritten code in separate artifacts.
Ideally separate the artifacts in different directory hierarchies, such that cleaning

of all generated artifacts is simple.
And do not put any generated artifacts under version control.
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A good generator aims for extensibility of the the resulting code. This can be accom-
plished by by integrating design patterns (see e.g. Chapter 11 and [GHJV94]) into the
generated code. As a consequence, developers are able to add their own subclasses and to
inject them appropriately. This kind of usage facilitates the generated code like a frame-
work. In particular, the template method pattern1 is a standard technique for handcoded
extensibility.

MontiCore also uses a second technique: It generates the code while being aware of existing
handcoded classes and directly integrates them into the generated code. For that purpose
the MontiCore generator examines the handcoded path (argument -hcp) and reacts on
existing handwritten classes.

Because all generated classes are stored in the out directory (argument -out) the hand-
coded and the generated classes can be kept separate. This allows to clean up generated
files easily and also prevents developers from accidentally storing generated files in a version
control.

In Java, the package structure is reflected in the directory structure. Consequently, the
output directory can have a larger substructure, representing the different packages that
contain generated code while the directories above the package structure are used to sep-
arate handcoded and generated classes. Handcoded classes are thus part of the same
package, but reside in a different directory structure.

14.2 Adaptation of Generated Code by Subclassing

It is always possible to define subclasses of generated classes or implement generated inter-
faces. Depending on the concrete form of usage, it is, however, simpler or more complicated
to inject objects of subclasses into the generate code structures. For example, the parser
creates lots of instances of the AST-classes. In case subclasses should be used instead, the
parser needs to create objects of appropriate subclasses. This, however, needs to be done
without changing the generated parser.

For that purpose, many classes (including all AST-classes) have corresponding builder
classes. Builders and their providers, the builder mills, are generated in form of the static
delegator pattern (see Section 11.1) and can be adapted through building a subclass, in-
stantiating the subclass and injecting the single instance (see Figure 14.2).

This approach has the disadvantage that it is not possible to add new methods to the
signature of the ASTState class directly, but to the subclass only. So either the subclass
needs to be explicitly known in the rest of the system, and downcasts of ASTState objects
are necessary, or no additional functionality is available.

1The template method pattern has nothing to do with our Freemarker templates. A template method
contains an implemented, reusable part of code and uses (empty) hook methods for extensibility. Subclasses
redefine these hooks and thus add functionality.
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Figure 14.2: How a given class can be extended by building a subclass

Tip 14.3 Adaptation through Subclasses

When building a subclass of a generated class, you typically also need to adapt
the builder for that class. This is usually done by subclassing the generated builder
as well.

This approach is robust, because it allows re-generation. However, when the
superclass is not re-generated (in the same form), the handcoded subclass becomes
erroneous and does not compile anymore.

14.3 Adaptation of Generated Code using the TOP
Mechanism

A second and for developers less labor-intensive approach is to directly write the desired
class by hand. This has the advantage that the implementation can be extended and
method bodies overridden, but also the method signature can be extended and the newly
defined methods are available for users of the generated class. There is no need for users,
to explicitly know (and import) subclasses to be able to use these methods.
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Figure 14.4: How a given class can be replaced by a handwritten class

Figure 14.4 demonstrates this. Here a handwritten class ASTState is existent in the
path for handcoded files (argument -hcp) that replaces the generated ASTState class.
The handwritten class ASTState has the same name and package as we would expect
for the generated class, however, it is located in the source path, which is passed to the
generators via -hcp argument. In this case, a class ASTStateTOP is generated instead,
which contains the identically generated code, but is abstract and has obviously a different
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name. This class is not explicitly used in the framework, but may mainly serve as superclass
for ASTState. The developer has the following options:

• The handwritten class extends the generated class (as shown).

• The handwritten class is a copied version of the original class with specific modifica-
tion, but does not extend the TOP class.

• The handwritten class is completely written afresh and ignores the generated class.
In this case the generated class is not used at all, but the handwritten class needs
to provide at least the same interface, i.e., the same methods, as the generated class
but may provide additional methods.

If MontiCore detects a handwritten class (here ASTState), it creates all other classes in
the usual form, except if these classes are replaced by handwritten classes as well.

Please note that the generation process is now sensitive to the existing set of classes.
This means: when adding new handwritten classes or removing a handwritten class, a
re-generation might be necessary. In the worst case, a cleanup and re-generation or an
improvement of the generation script (maven or make) should help. Furthermore, when
configuring the classpath yourself, it is useful to always include handcoded classes before
generated classes in the Java classpath.

Tip 14.5 How to Add Handwritten Code

When handwritten classes shall be added, the following steps may help:

• Create (empty) class ASTState in a directory dir.

• Don’t forget to put the new file under version control.

• If not yet done, add dir to the handcoded path via the -hcp argument.

• Execute the MontiCore generator.

• Now, let ASTState extend ASTStateTOP.

• Adapt ASTState at will.

• Do not forget to initialize additional attributes.

• Rerun the generator.

This introduces a handcoded version of the class and thus allows versioning and
modification.

When the constructor for the handcoded class remains the same, then the generated builder
can be reused directly. This is typically the case when no new attributes are added or all
added attributes have default values to start with. If the constructor of a handcoded class
has, however, changed, the same TOP mechanism can be applied to the builder. Figure
14.6 demonstrates how a class and its builder are replaced using the TOP mechanism.
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Figure 14.6: How a given class and its builder can be replaced by handwritten versions

The TOP mechanism can also be used, when the generated classes are embedded in an
inheritance hierarchy. Each class in an inheritance hierarchy can be replaced individually,
while the generator for other classes does not need to take notice at all. Figure 14.7
demonstrates possible resulting structures.
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Figure 14.7: How a given class and its subclass can be replaced by a handwritten class

In the MontiCore language workbench itself and usually for the MontiCore tools the same
principle is used for all generated classes.
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Chapter 15

Error Handling, Logging and Reporting

co-authored by Andreas Horst

This chapter serves two purposes: First, it describes general considerations on error han-
dling and second it describes how MontiCore implements these. The first part of this
chapter is also useful for writing your own generator.

In addition, this chapter describes, which reports are generated in a MontiCore generation
run and how to configure the reports.

15.1 Where to find Concrete Help for an Error, Warning, or
other Message

The rest of this chapter are more general considerations on errors, warnings and logs as
well as their configuration. When you have a concrete error message that you don’t know
what to do with, please have a look at:

1 www.monticore.de // Explanations to errors
2 // and potential help

Here you can find a more current and up-to-date list of help and suggestions.

Tip 15.1 Internal Errors in MontiCore

MontiCore tries to avoid internal errors. In case you got one, please send
it to bugreport@monticore.de including the source model, configuration,
MontiCore-version and other potentially interesting information. It will not be gen-
erally visible, but used for improvement among MontiCore developers.

15.2 Errors, Warnings and Log Messages

In this section the different kinds of error messages are explained. Furthermore, the differ-
ence between internal errors and errors due to incorrect usage of a generator is elaborated.
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15.2.1 Errors

Many forms of errors may occur during model processing and generation. These errors can
have various causes and address different user groups. MontiCore distinguishes at least
two kinds of errors, namely internal errors caused by MontiCore developers and usage
errors caused by the users of the MontiCore tool, i.e., by erroneous input models or wrong
configurations.

In addition to errors MontiCore may identify flaws that may be a problem when using the
generated result and issue a warning. Regardless of the different severities it is vital to
appropriately report these situations.

Apart from errors and non critical flaws as described above, sometimes it is also desirable
to report general information about the complex model processing and generation process
to the user.

We identify these two kinds of errors:

Internal error is an error which prevents the tool from performing its tasks and which is
caused by erroneous implementations. As such, if experienced by a user, the user
cannot avoid or fix the error but should report it to the developers.

Usage error is relevant to the user of a tool. It is caused by erroneous input, configuration
or other behavior of the user and can be handled directly by the user.

Internal errors are caused by implementation faults (e.g., missing initialization of a class
member before first access) and ideally discovered and fixed during extensive testing. For
a code generator an internal error should lead to the immediate termination as it is better
to have no result instead of an incomplete and incorrect result. Furthermore, stopping im-
mediately avoids unnecessary waiting times for the user. MontiCore tries to avoid internal
errors, but more importantly avoids erroneous output.

A modeler typically has no implementation insights into the used tool and therefore receives
a friendly apology with the remark "internal error". Stack traces obviously do not help
the users, but can be stored in a log file that can be sent to the developers. Nowadays
there typically exist several channels of feedback which allow users to provide relevant
information (such as log files) about a program crash to the developers. They can then
use these additional information for fixing and improving the tool.

Usage errors are, for example, caused by configuration faults or erroneous input models.
User errors must be reported with concise and user readable error messages. Ideally they
include what caused the problem and a hint on how to fix the error.

As for internal errors, the tool should terminate as quickly as possible allowing the user to
adapt the erroneous input for the next iteration. However, it has proven useful to complete
parsing and context condition checks, in order to allow the user to handle several user errors
at once. In the backend, namely the generation, immediate termination is however useful.
MontiCore has taken some effort to be helpful here.

The roles of users and developers blur, when the user of a tool adapts the tool with
additional templates or Java classes. In this case, the user code replaces or adapts internal
code and thus may produce internal errors result from erroneous user code.
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15.2.2 Warnings and Information

MontiCore provides further levels of escalation, corresponding to the interests and roles of
their users.

Warning does not prevent the successful execution of the tool or generator, but might lead
to unwanted results the user should be aware of.

Information message contains neutral information about the executed process and help
to comprehend what is currently or has already been done by the tool.

Debug message contains detailed internal information about specific states of the exe-
cuted process.

Trace message allows to comprehend the execution of a program in very detailed form
and is based on the implementation internals such as method names or even numbers
of lines of codes.

Warnings are reported, because the user may want to react and fix it or explicitly decide
to live with it. Warnings are always on the user level as "internal" warnings are useless,
but it may happen that only the tool developer can interpret the warning.

Information messages typically signal what is currently done by the tool (e.g., the different
execution steps) or what has already been done (e.g. successful parsing of a model, suc-
cessful generation of an artifact). They signal to the user that in fact something is being
done by the tool as opposed to a quiet execution where, when in doubt, it may be unclear
if something is happening at all. Information messages should be selected carefully and
not be too numerous.

Debug and trace messages are targeted at tool developers and potentially also tool adapters,
i.e., users that not only use the tool, but add additional handwritten code. They are
intended to help to debug a program by inspection of the internal states of a program.
Debug and trace messages provide detailed insight into the executed program (in this
context DSL tools). They allow for instance to inspect concrete arguments passed to
a method and hence can provide hints about what caused an error. The interpretation
of such information of course requires detailed knowledge of the implementation. Hence
debug messages are explicitly aimed at developers and not normal users.

MontiCore in its default mode provides some, but not too verbose information and the
debug messages are switched off completely. See below how to configure both via script as
well as using them from additional Java classes or MontiCore templates.

15.2.3 Form of Errors, Warnings and Log Messages

Summarizing these definitions and considerations yields the following types of messages
and their semantics:
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error messages denote critical errors during the execution of the application. Typically
this means that the program cannot or could not be executed successfully.

warn messages denote situations which do not hinder the execution of the program but
should be fixed to avoid unwanted behavior.

info messages are used to communicate general information to the user such as the start
or successful termination of a process.

debug messages as opposed to info messages may contain detailed information about
the state of the program. Such detailed information are not required during normal
execution but help to debug the program.

trace messages are typically used for even more detailed information such as the cur-
rently called method or even line of code or the number of iterations. Such detailed
information is mainly used for optimization or complicated debugging.

This list of types of messages can be used in a concise and centralized logging component
which will be presented in Section 15.3.

Good error messages help to solve the problem or at least to communicate it to a potential
expert. Complex, highly adaptable software such as MontiCore, has many kinds of errors
with individual solution strategies. This includes e.g. the many context conditions of a
language. It is useful to simplify communication (for example the chat over telephone) by
attaching unique and simple to find identifiers to an error message. For quick finding of
information, errors in MontiCore and its DSL tools have an error identification code in the
form of e.g. "0xD0016" or "0xAF21C". They use a familiar representation known from
hex representations with (unfamiliar) five digits and upper letters and are thus of form
"0x[0-9A-Z]^5". Advantages of such an identifier are:

• Easy to communicate and less likely to misunderstand an error communication (e.g.
through the telephone).

• Easy to find in the code (usually they have 5 digits).

• Easy to check their uniqueness.

• Easy to search for potential solutions in the web.

Too many or detailed warnings and especially informative messages often pollute the out-
put and prevent the user - and potentially also the developer - from seeing the relevant
information (such as errors). It is therefore important to configure where to announce
information:

• Console: Console output is the most direct form of information. It is created and
viewed directly during the execution of the tool/generator.

• Log file: Log files typically contain more detailed information to prevent pollution of
the direct output in the console. MontiCore by default writes logs to a single log file
in out/monticore.date.log.

• Reports: In addition, reports of various kinds contain special information about the
executed process. See Section 15.5 for details.
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In interactive systems such as web servers, log messages often contain timestamps for each
message. Administrators and developers use this information to retrospectively analyze
issues. Since generators typically run in batch mode, their logs do not require such infor-
mation. It might at most be valuable to add starting and end time or the total duration
of an execution.

Below we examine the MontiCore error management in order to see how error handling
and logging are implemented, and can be reused for DSL tools.

Please note that the generated code oder product also may experience errors. These error
messages address users of the generated code. However, depending on the form of product,
the MontiCore error handling may be completely inappropriate. For instance, code that
runs in embedded systems may have no detailed log file, while multi-user systems usually
have extensive logs including timestamps, error codes and messages, and so on.

15.3 The Error and Logging Component

MontiCore uses a centralized logging component for issuing error, warning, and other log
messages. This logging component is made available using the static delegator pattern
(see Section 11.1), and thus can be reached globally from everywhere in the code and
templates. This was a deliberate decision, because we expect a unified logging mechanism
to be acceptable for all components of a DSL tool.

Although the logging API is static, there are extensive configuration mechanisms, as the
static methods basically delegate to a hidden object that can be configured as well as
replaced by own implementations. As mentioned above, we use the static delegator design
pattern for this purpose.

The class Log defines and constitutes the core API (as shown in Listing 15.2) for the
logging component and acts as a central delegator for issuing errors, warnings, and log
messages.

Files1 Repository: MontiCore/se-commons github
2 Directory: se-commons-logging/src/main/java/
3 Files: de.se_rwth.commons.logging.Log.java
4 de.se_rwth.commons.logging.LogStub.java
5 de.se_rwth.commons.logging.Slf4jLog.java

While the Log class uses standard printing (System.out) and also exits the program in
case of an error. The LogStub instead only internally stores the messages, but does not
produce any side effects. LogStub is thus useful for testing (see e.g. Section 10.3). A
third subclass Slf4jLog is a highly configurable subclass that is used by default. See
Section 15.4.4 for its configuration.

Using this central logging component, developers can issue log messages at the respective
severity. For instance, error messages are to be issued using the respective error log
methods shown in Listing 15.2 in lines 2 and 3. Log messages intended for debugging have
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Java «RTE» Log1 public class Log {
2 public static void error(String msg)
3 public static void error(String msg, Throwable t)
4

5 public static void warn(String msg)
6 public static void warn(String msg, Throwable t)
7

8 public static void info(String msg, String logName)
9 public static void info(String msg, Throwable t, String logName)
10 public static void debug(String msg, String logName)
11 public static void debug(String msg, Throwable t, String logName)
12 public static void trace(String msg, String logName)
13 public static void trace(String msg, Throwable t, String logName)
14

15 public static void enableFailQuick(boolean enable)
16 public static int getErrorCount()
17 public static boolean isFailQuickEnabled()
18 }

Listing 15.2: Logging API in class Log

to be respectively issued using the debug log methods in ll. 10. All log methods provide
one parameter for the log message and a second overloaded variant with an additional
parameter for exceptions (e.g., for printing out stack traces).

The different log levels error, warn, info, debug and trace form a hierarchy of
severities where the level error is of highest severity and trace the lowest. A common
approach in logging is to use the log level for controlling the verbosity of logs. The idea is
that trace messages are far more numerous than error messages which only occur when
something went wrong. With this in mind log levels can be seen as threshold filters for
controlling which messages actually get printed in the output (e.g., console, log files, etc.).
The desired log level is meant to also include all log messages of levels with higher severity.
For example, most systems by default log with level info which will output messages
of the levels info, warn, and error in the logs. That is because the levels warn and
error are considered more severe than info. One could hence choose to ignore all log
messages except for error or activate all log messages by using trace as threshold. The
configuration of which log level to use for controlling the output verbosity is provided by
many different logging frameworks and described in Section 15.4.

As can be seen in Listing 15.2, the methods for issuing log messages of level info, debug,
and trace provide an additional argument logName. This argument is used for another
output control mechanism which allows to control the output for specific parts or com-
ponents of a program. These parts or components are specified using by the parameter
logName. As an example in MontiCore consider a scenario where one wants to see only
the log messages of the parser or the symbol table. Logging frameworks provide configu-
ration options for achieving this using the values of the logName parameter. Using this
feature efficiently of course requires detailed knowledge of the program code. For the log
levels error and warn this mechanism is considered unimportant as their high severity
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is global, i.e., it is not relevant which part of the program issued the error or warning.
Detailed information about what caused the error or warning is nonetheless to be given in
the respective messages (or even stack traces).

The implementation of the centralized log component also realizes the fail quick paradigm
described in Section 15.2.1. By default, issuing log messages of level error leads to the
immediate termination of the application. This behavior may be controlled with the meth-
ods enableFailQuick and isFailQuickEnabled. The former allows to temporary
deactivate the fail quick mechanism such that error log messages do not automatically
terminate the application. However, the log component keeps track of any issued error
log messages such that if fail quick is re-enabled later on, it terminates the application as
well. This might be useful for example when multiple model artifacts have to be processed
where failure to process one model artifact should not immediately cancel the entire pro-
cess but after all processing is completed. How to use the logging API for such a use case
is shown in Listing 15.3.

Java1 public void processModels() {
2 // disable fail quick
3 Log.enableFailQuick(false);
4 // iterate and process many models
5 // ...
6

7 // re-enable fail quick
8 Log.enableFailQuick(true);
9 }

Listing 15.3: Example for controlling fail quick

In Listing 15.3 the fail quick mechanism is temporary disabled in line 3 to process a set of
models. In this example errors occurring while one model is processed do not terminate
the whole process. The logging component keeps track of issued error log messages. As
soon as the fail quick mechanism is re-enabled in line 8, it is checked whether any error
messages were issued and if so, fail quick is applied and the application is terminated then
immediately.

15.4 Logging Configurations in MontiCore

As described in Section 15.3, logs may contain detailed information. For controlling this
information, MontiCore uses and provides different means which are described in this
section.

Log message can be printed to the console, in much more detailed form to log files and,
depending on the specific purpose, in an aggregated form of so called reports. The log
files can be different for each DSL tool or even single components of an application and
vary in desired verbosity (see Section 15.3). The logging APIs SLF4J [QOS17b] provides
mechanisms to configure the logging output for specific requirements. The default imple-
mentation of the centralized log component described in Section 15.3 is based on SLF4J and
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its implementation logback [QOS17a]. With this, MontiCore provides three configuration
mechanisms for the logging component. These three mechanisms are:

• Selection of one of two built-in logback configurations (Section 15.4.1).

• Usage of a custom logback configuration (Section 15.4.2).

• Implementation of a custom log component (Section 15.4.4).

15.4.1 Selecting one of the given Configurations

MontiCore ships with two externally usable default logging configurations and four Java
based mechanisms to select a configuration internally.

The externally selectable configurations control output based on the severity. Both print
info, warn, and error messages to the console and into the same log file. debug
messages are only printed into the log file. Log files are created for each execution of
MontiCore individually and stored in the configured output directory of MontiCore. An
overview over the characteristics and differences of the two default configurations is given
below.

MontiCore default logback configuration for users:

• Console

– Contains info, warn, and error messages

– No logger names (see parameter logName in Section 15.3)

– No stack traces of any logged exceptions

– No timestamps etc.

• Log file: out/monticore.yyyy-MM-dd-HHmmss.log

– Contains debug, info, warn, and error messages

– Contains logger names (see parameter logName in Section 15.3)

– Contains stack traces of any logged exceptions

– Contains timestamps of the log messages

MontiCore default logback configuration for developers:

• Console

– Contains info, warn, and error messages

– Contains logger names (see parameter logName in Section 15.3)

– Contains stack traces of any logged exceptions

– Contains timestamps of the log messages

• Log file: out/monticore.detailed.yyyy-MM-dd-HHmmss.log
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– Contains debug, info, warn, and error messages

– Contains logger names (see parameter logName in Section 15.3)

– Contains stack traces of any logged exceptions

– Contains timestamps of the log messages

By default MontiCore uses the configuration for users. The configuration for developers
can be selected by using the -d (or -dev) option over command line.

15.4.2 Using a Custom logback Configuration

An entirely custom logback configuration can be passed to the execution of MontiCore
using the command line option -cl (or -customLog). Detailed information about the
configuration of logback is available online [QOS17b, QOS17a].

15.4.3 Initializing the Log within Java

If a Java developer chooses to initialize the log via one of the following init methods (from
within Java), then the above discussed defaults or custom configurations with SLF4J are
not effective anymore, but a direct implementation is provided:

• LogStub.init() leads to sideffect free log: all output is internally stored. It also
does not terminate upon errors, but throws an Exception (e.g. to be caught by
JUnit). This is mainly usable for test automation.

• Log.init() leads to a logging component that does not write any file, suppresses
trace and debug messages, but writes infos, warnings and errors to standard output
(console). It also terminates on error, if fail quick is enabled and the returned error
code is then 1 to distinguish erroneous termination from a correct program end1.

• Log.initDEBUG() is like Log.init(), but writes all messages to the console.

• Log.initWARN() is like Log.init(), but even suppresses info messages and only
writes warnings and errors.

Furthermore, some of the reporting functions are then disabled, because reporting also acts
as subclass of Log.

15.4.4 Providing a Custom Log Implementation

This mechanism allows the highest flexibility and control. In contrast to the first two
methods, this mechanism requires to write substantially more Java code.

Log implements the static delegator design pattern described in Section 11.1. As such,
subclasses can be used to implement custom log components.

1This is usable in make, shell or CLI environments
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All public static methods of the Log class (as depicted in Section 15.3) delegate to an
corresponding protected do method. A subclass has to register itself as the new log com-
ponent through the protected static method setLog(Log). LogStub is such a subclass
and can be used as blueprint if desired.

15.5 Reports

Reports differ from logs in that they need not follow a time line, but usually aggregate
their information and are produced at the end of a processing run.

15.5.1 Where to Find Reports

To understand the MontiCore generator and in particular the generated code, MontiCore
offers a possibility to produce a number of reports. Reports provide detailed information
about the execution process and states of the generator. This includes different statistics
as well as detailed reports about occurrences of generator events such as template execu-
tions, file generations and AST transformations. All generated reports are available in the
reporting output directory:

Files1 out/reports // directory with generated reports

Information contained in reports is usually presented short and dense. Therefore, a short
explanation of the content can be found at each report’s end. The purpose of the report
and an overview of the contained information can be found in section 15.5.4.

15.5.2 How to Configure Reporting

All reports are enabled when using the default configuration. When using a user specific
configuration file, the report generation can be enabled and then is automatically switched
on by adding the following lines:

Groovy1 Reporting.init(aPath, reportManagerFactory)
2 // ...
3 Reporting.flush(anAST); // finally writes the reports

Listing 15.4: How to enable reporting

where reportManagerFactory is a predefined variable in the MontiCoreScript en-
vironement that Groovy is interpreted in. This variable comes by default with a factory
instantiating class ReportManager, but we could override this by our own class.

If the reporting shall temporarily be switched off for some activities of the generator, the
methods
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Groovy1 Reporting.off();
2 // generator activity without reporting
3 // ...
4 Reporting.on(aName)

Listing 15.5: How to stop and start reporting

can be used between enabling and writing (Reporting.flush()) the reports.

Reports can be adapted e.g. by adding more content. For example, the report
08_Detailed.txt introduced in Section 15.5.4 can be extended by using the follow-
ing method of the Reporting class:

Java1 Reporting.reportToDetailed("Additional info");

Listing 15.6: Additional information reported in 08_Detailed.txt

Each call of this method produces an additional line written to the detailed report.

15.5.3 Identifiers contained in the Reports

Some reports contain information in temporal order of appearance and thus can be un-
derstood as log files on certain aspects of the generation process. Other reports aggregate
information during the generation process and are thus only produced at the end. Reports
contain some general references to templates, AST nodes etc.

All AST nodes and other objects, e.g. from symbol tables, are uniquely identified in all
reports. MontiCore uses a semi-readable object identifier (OID) that reflects some content
of the AST node (at the time the identifier is created). The OID does definitely not change
over time, once it is computed, even though object attributes may change. Examples for
AST node identifiers of a CD4A model are:

Reporting1 @Person!CDInterface
2 @PersonImpl!CDClass(5,2)
3 @age!CDAttribute(7,4)
4 @_!Modifier
5 @_!Modifier(!2)
6 @_!Modifier(3,4!2)

Listing 15.7: Exemplaric object identifiers in reports

Line 1 shows an identifier for an AST node with name Person and type CDInterface.
Line 2 contains an AST node of type CDClass and name PersonImpl. Moreover, this
identifier carries two additional comma separated numbers denoting the line and column
position of the corresponding model element in the input model. If these numbers are
missing, the respective AST node is usually not a direct result of model parsing, but added
to the AST afterwards.
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Line 3 contains another example of an identifier with source position. The last lines 4-6
contain identifier for AST nodes of type Modifier. All except letters and numbers are
escaped with "_". In line 5, a number !2 is added to indicate that the corresponding
object is not the same as reported in line 4. Line 6 shows this number added when the
source position is present too (which rarely happens).

In general, the representation of AST Nodes within the reports has the structure of one of
the following lines:

Reporting1 @content!type(line,col)
2 @content!type
3 @content!type(!nr)
4 @content!type(line,col!nr)

Listing 15.8: Object identifiers in reports

type refers to the class of the AST node that it identifies, content is a small identifier
that is extracted from the attributes of the object. As seen before, content is dependent
on the kind of node, e.g. if the node has an attribute called name, usually this name is
taken. If the AST node was created as result of parsing, it comes with a source position
that is added in form of (line,col). If there is no source position present, the AST
node was probably created during a transformation process. Finally, if there are several
objects that would have the same identifier, we distinguish them by an appendix of form
!nr within the brackets. In such a situation the identifier for the first node does not have
an appendix, the second one has the appendix !2, the third one !3 and so on.

Note that AST nodes are always uniquely identified in the whole generation process. How-
ever, an identifier may not fit to the actual content of an AST node as it’s content can
change over time while the identifier remains stable.

The reports also reference templates, hookpoints, Java classes, Java files and variables in
the following forms:

Reporting1 NameOfTemplate.ftl // Templates occur with extension
2 NameOfClass // Java classes occur without extension
3 NameOfSourceFile.java // Java source files occur with extension
4 Nonterminal // Nonterminal from grammar and
5 // also stands for Java class ASTNonterminal
6 HP:"NameOfHookPoint" // Hookpoints are prefixed and quoted
7 NameOfVariable

Listing 15.9: Representation of various entities

Generally, qualifiers (or path names) are omitted for the sake of brevity. Therefore, it helps
not only here to generally use unique names.
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15.5.4 List of the Reports

In this section the different reports and their purposes are introduced. A detailed descrip-
tion of the content can be found in the explanation section, which is located at the end of
each reported file.

01_Summary.txt contains some numbers summarizing the overall generation process.
Examples for information reported here are the number of generated files, the number
of used templates or the number of called hook points.

02_GeneratedFiles.txt contains the list of all created files. In addition, the source
of the file creation is given by the responsible template and ast node.

03_HandwrittenCodeFiles.txt contains all used and unused handwritten source
code files. Inspecting this report helps the generator user to ensure that necessary
handwritten code files are taken into account by the generator.

04_Templates.txt contains the list of templates used in the generation process and
how often they were called to open a new file for generation or how often they were
executed for existing files. In addition, a list of available but unused templates of the
corresponding project is provided. Both lists are generated for standard templates
provided by the generator as well as for user specific templates which are extracted
by examining the template path.

05_HookPoint.txt contains detailed information of all kinds of hook point related
events. This includes both, usual hook points as well as AST specific hook
points. Hook points are regarded as AST specific if they are registered via the
replaceTemplate method of the GlobalExtensionManagement class.

The information given in this report helps generator users and generator developers
to understand in which order hook points are registered and executed. Moreover
the different possibilities of hook point registrations (before template, after template
etc.) are reported. The execution of a hook point is reported together with additional
information such as the type and content of the hook point.

06_Instantiations.txt contains the list of Java classes, which have been instantiated
from templates during the generation process. In MontiCore Java classes can be
instantiated directly from templates using the instantiatemethod of the template
controller. The reported information about instantiations from templates can help
the generator developer to ensure that the usage of Java classes from templates works
properly.

07_Variables.txt contains the list of global template variables used during the exe-
cution of the generator. Global variables can be read and written from all templates
and Java objects through the GlobalExtensionManagement. For each variable
the number of value changes of the variable is reported. These information help
generator developers to identify undesired overriding of variable values during the
generation process.

08_Detailed.txt is a fine grained protocol of all events reported in temporal order
of occurrence. This includes events, which are reported in other reports as well as
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instantiations from templates, write operations of global variables, file generations,
template executions and hookpoint events. Moreover, warnings and errors are re-
ported. The purpose of this report is to comprehend the overall generation process
by analyzing the individual process steps. This facilitates localizing the source of
failures.

09_TemplateTree.txt shows the call hierarchy of the templates as tree structure.
In addition to the involved templates, variable assignments, instantiations of Java
classes via the template controller and hook point executions are reported. Like the
detailed report, this report overviews the overall execution process of the generator,
but it focuses on the template execution. Thus, this report helps especially to reveal
weak spots corresponding to the templates of a generator.

10_NodeTree.txt depicts the AST structure captured after finishing the generator’s
generation step. In addition to the AST nodes and the structure of the whole tree,
it reports how often a node has been used as parameter ast for template execution.
The provided information help identifying mistakes after transformation steps of the
AST and moreover to identify AST nodes which might be unused and potentially
unnecessary.

11_NodeTreeDecorated.txt contains a more detailed version of report
10_NodeTree.txt. The additional information can help the generator de-
veloper to understand which files are generated based on specific AST nodes and
which templates have been executed with specific AST nodes as input.

12_TypesOfNodes.txt provides information about the final AST in a summarized
manner. The report focuses on the type of AST nodes, how many objects of each
type exist in the AST and how often objects of each type were used as input for a
template. The purpose of this report is to get a better intuition about the different
elements and the magnitude of elements of the different types which are part of the
final AST.

13_SymbolTable.txt contains the content of the symbol table after the execution of
the generation process. This information support generator developers in under-
standing the content and structure of the symbol table.

14_Transformations.txt contains some information about explicitly defined trans-
formations used in the generator process. A transformation event is reported when
a transformation creates or modifies a specific AST node. Generator developers can
use this report to check if the transformations work as supposed.

18_ObjectDiagram.txt contains the AST structure in form of an object diagram.
Every AST node represents an object with an unique name and a type. Attributes
of objects include their corresponding name and value.

A graphical representation of the participating templates can be derived from two addi-
tional reports, which are generated in special language formats (GML [Gro17] and Graphviz
text language [Gra17]) for this purpose. Within the graphical representation, relations be-
tween templates used during the execution process of the generator are displayed. More-
over, it is shown which Java objects are instantiated from which template files and the
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directories which contain the Java source files of the instantiated Java objects and the
template files. Behind the name of each template and Java source file a number is dis-
played which indicates the total number of executions for templates and the total number of
instantiations of the Java type defined within the Java source file. Some more information
are shown dependent on the chosen graphical representation as described below:

15_ArtifactGml.gml is generated in the format of the Graphical Modeling Language
(GML) [Gro17] which can be graphically presented by yEd [yWo17] for example. An
excerpt of such a diagram is shown in Figure 15.10

Figure 15.10: Relationship between artifacts (templates and Java, excerpt)

In this graphical representation, template files are displayed as ellipses, Java source
files of instantiated Java objects are displayed as diamonds and directories containing
the files are displayed as boxes (their names are displayed in a dot separated notation.)
In addition to the information described above, the edges between two elements are
labeled with a number. This number indicates how often a template is executed
from the linked template or how often a Java type is instantiated from the linked
template. Moreover, the line width of the link is adapted according to this number.
A graphical template element colored in green represents a template file which has
generated one or more files during the generation process.

16_ArtifactGv.gv is generated in the format of the Graphviz text language, which can
be transformed into a graphical representation by Graphviz layout programs [Gra17].
An excerpt of a diagram created by a Graphviz layout program is shown in 15.11.

Figure 15.11: Relationship between template artifacts (excerpt)

In this graphical representation, template files are displayed as ellipses, Java source
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files of instantiated Java objects are displayed as arrows and directories containing the
files are displayed as boxes (their names are displayed in a dot separated notation.) In
addition to the general graphical information, the created files are shown as squares
each with a snapped corner. A link between a template and a generated file indicates
that the template is responsible for the file creation.

In addition to the standard textual and graphical reports there may exist additional, only
internally used reports such as the report 17_InputOutputFiles.txt. For example,
the latter is used in a subsequent generator execution to enable incremental generation.

15.6 For Developers: How to Deal with Errors and Warnings

Exceptions are basically handled with the mechanisms provided by Java. They carry
important technical information such as the stack trace and typically occur when fatal in-
ternal errors happen. Exceptions shall not be used to implement validation failures/results
to be regularly coming from user errors. Instead of eagerly printing out stack traces etc.
MontiCore applies these techniques:

1. Relevant information about the occurred exception is stored in an appropriate log.
If the exception signifies an internal error it is logged with level error using a brief
but informative message together with the stack trace of the exception. The logging
configuration (see Section 15.3) can ensure that the informative message is logged to
the console while the detailed stack trace is only printed to a log file. This ensures
that the immediate feedback on the console is not too verbose thus not polluting
relevant messages by unnecessary information.

2. Additional information about the context in which the exception occurred is also
logged, if appropriate. The log levels debug and trace (see Section 15.3) are
suitable for this as they are intended for detailed analysis and not for general feedback
to the user. As above the logging configuration ensures that these log messages are
printed to a log file.

3. All further execution is terminated if the system cannot recover in a sensible way
(except when parsing, which only stops at the end of parsing). The logging API
(see Section 15.3) automatically terminates the application if an error message is
issued.

The idea is that if an exception cannot be handled in a meaningful way, then the exception
should not be caught. For generators (which usually are embedded in sophisticated build
processes) it is better to terminate with an exception than to pretend being successful
and to produce incomplete and incorrect results. The default logging configuration of
MontiCore as described in (see Section 15.4) is designed to support the aforementioned
steps of handling exceptions.
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Chapter 16

MontiCore Configuration with Groovy

The MontiCore generator is controlled by a Groovy script which manages the high level
workflow. Groovy is an interpreted language [KLK+15], but looks very similar to Java .

The Groovy script is executed on the base class MontiCoreScript, providing a set
of available methods (cf. Listing 16.2). MontiCore provides two predefined Groovy
scripts that can be used to execute the generator: monticore_emf.groovy and
monticore_noemf.groovy. Both Groovy scripts implement the same generation pro-
cess explained later in this chapter. The only difference between those two scripts is
that monticore_emf generates EMF-compatible AST classes while monticore_noemf
generates clean MontiCore AST classes. By default, the MontiCore CLI uses the
monticore_noemf whereas the MontiCore Maven plugin uses the monticore_emf
Groovy script. As described in Chapter 2, the user can choose between those two pre-
defined Groovy scripts provided by MontiCore as well as develop a custom Groovy script.
The scripts may use Java methods and variables as well as imported classes explained
below. Groovy scripts are passed to the generator using the -script or -s parameter
described in Chapter 2.

Groovy is used for the realization of a flexible top-level control workflow in order to provide
a high degree of flexibility to cope with Javas customization and flexibility deficiencies:
A Java-coded control workflow cannot be changed without recompilation. Even worse,
recompilation requires not only the source code of the control workflow but also the entire
original build environment (tools and dependencies). This is not optimal for an efficient on
site customization, e.g. by a tool user (here, language developers using MontiCore). The
Groovy integration chosen here is much more flexible and requires only little infrastructure.

MontiCore implements a generation process consisting of the following ten actions:

M1 Initialize generation (incremental generation, reporting, global scope)

M2 Load and parse the input grammar

M3 Derive the symbol table for the grammar

M4 Check the grammar context conditions

M5 Translate Grammar-AST to CD-AST

M6 Generate parser using ANTLR

M7 Decorate CD-AST with methods
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M8 Generate symbol and scope classes for models of the grammar

M9 Generate ast classes, visitor and context condition infrastructure

M10 Write reports to files

Listing 16.1 depicts the actual implementation of the MontiCore control workflow in
Groovy. This listing shows the Groovy script to generate the standard classes as described
in this book.

The first step M1 initializes MontiCore. It initializes the incremental generation, enables
reporting and creates the global scope. Steps M2 to M4 belong to the frontend which
processes the input and checks the correctness of the processed grammar. Usually, the
input grammar imports further super-grammars, that also have to be loaded (M3). When
the frontend is finished, the backend starts to produce code and reports beginning with
step M5. In M5 the grammar AST is translated to a class diagram AST which will be
used in subsequent generation steps and written to a file as part of the reports created
by MontiCore. In M6 an input file for the ANTLR parser generator is created. Then
the ANTLR parser generator is executed, which generates the desired language parser.
Next, in M7 the class diagram AST is enriched with further methods for the AST class
generation in preparation for M9. In M8 the symbol and scope classes are generated that
allow defining a symbol table for the processed grammar. Finally, in M9 the AST classes
as well as the visitor and context condition infrastructure are generated. At the end, in
M10 all reports are written into files.

One can see that the workflow is rather straight forward (see points M1 to M10 above).
Simplicity in the controlling scripts is favored here. Thus, adaptation of the control work-
flow can be done by substituting the control script through a handwritten one. This script
can reuse the various predefined functions provided by the MontiCore library, because
these functions are designed in particular for being used by control workflow scripts.

The individual steps performed in the control workflow as depicted in Listing 16.1 are part
of the MontiCore component library and described in Section 16.2.

16.1 Generate the Standard Classes

Listing 16.1 depicts the Groovy script monticore_noemf.groovy that is used by the
MontiCore generator to generate standard classes. It generates the whole model processing
infrastructure such as lexer, parser, AST classes, context conditions, visitors and symbol
table infrastructure. It is the default script used by the MontiCore CLI. To use this script
via the MontiCore Maven plugin, it can be passed as argument using the parameter -s
oder -script.
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Groovy1

2 // M1 basic setup and initialization:
3 // initialize incremental generation; enabling of reporting; create

global scope
4 IncrementalChecker.initialize(out)
5 InputOutputFilesReporter.resetModelToArtifactMap()
6 globalScope = createGlobalScope(modelPath)
7 Reporting.init(out.getAbsolutePath(), reportManagerFactory)
8

9 while (grammarIterator.hasNext()) {
10 input = grammarIterator.next()
11 if (force || !IncrementalChecker.isUpToDate(input, out, modelPath,

templatePath, handcodedPath )) {
12 IncrementalChecker.cleanUp(input)
13

14 // M2: parse grammar
15 astGrammar = parseGrammar(input)
16

17 if (astGrammar.isPresent()) {
18 astGrammar = astGrammar.get()
19

20 // start reporting
21 grammarName = Names.getQualifiedName(astGrammar.getPackageList

(), astGrammar.getName())
22 Reporting.on(grammarName)
23 Reporting.reportParseInputFile(input, grammarName)
24

25 // M3: populate symbol table
26 astGrammar = createSymbolsFromAST(globalScope, astGrammar)
27

28 // M4: execute context conditions
29 runGrammarCoCos(astGrammar, globalScope)
30

31 // M5: transform grammar AST into Class Diagram AST
32 astClassDiagram = transformAstGrammarToAstCd(glex, astGrammar,

globalScope, handcodedPath)
33 astClassDiagramWithST = createSymbolsFromAST(globalScope,

astClassDiagram)
34

35 // write Class Diagram AST to the CD-file (*.cd)
36 storeInCdFile(astClassDiagramWithST, out)
37

38 // M6: generate parser and wrapper
39 generateParser(glex, astGrammar, globalScope, handcodedPath,

out)
40 }
41 }
42 }
43

44 for (astGrammar in getParsedGrammars()) {
45 reportGrammarCd(astGrammar, globalScope, out)
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46 astClassDiagram = getCDOfParsedGrammar(astGrammar)
47

48 // M7: decorate Class Diagram AST
49 decorateCd(glex, astClassDiagram, globalScope, handcodedPath)
50

51 // M8: generate symbol table
52 generateSymbolTable(astGrammar, globalScope, astClassDiagram, out,

handcodedPath)
53

54 // M9 Generate ast classes, visitor and context condition
55 generate(glex, globalScope, astClassDiagram, out, templatePath)
56

57 // M10: flush reporting
58 Reporting.flush(astGrammar)
59 }

Listing 16.1: Groovy script used to generate the standard result

Moreover, MontiCore is able to generate AST classes that are compatible to the Eclipse
Modelling Framework (EMF) [SBPM08]. The Groovy script used to generate EMF com-
patible classes is called monticore_emf.groovy and can be used by the MontiCore
CLI via the command line parameter -s or -script. The workflow is identical to the
standard script except where specific methods are used that realize the compatibility. It
is the default Groovy script used by the MontiCore Maven plugin.

16.2 MontiCore Base Class for Groovy Scripts

Listing 16.2 depicts the method signatures that are provided by the base class shipped
with MontiCore and can be used within the Groovy script. All Groovy scripts provided
by MontiCore rely on this base class. Furthermore, custom Groovy scripts can use this
base class to define a custom generation process. But besides that, within a Groovy script
the typical import mechanism, variable and method declarations known from Java can be
used to implement a custom Groovy script. In the following subsections, methods of the
base class, predefined variable and preimported classes are briefly described.

Java «hw» MontiCoreScript1

2 Optional<ASTMCGrammar> parseGrammar(Path grammar)
3 List<ASTMCGrammar> parseGrammars(IterablePath grammarPath)
4 generateParser(GlobalExtensionManagement glex,
5 ASTMCGrammar grammar, GlobalScope symbolTable,
6 IterablePath handcodedPath, File outputDirectory)
7 generateParser(GlobalExtensionManagement glex,
8 ASTMCGrammar grammar, GlobalScope symbolTable,
9 IterablePath handcodedPath, File outputDirectory,
10 boolean embeddedJavaCode, Languages lang)
11 generateSymbolTable(ASTMCGrammar astGrammar,
12 GlobalScope symbolTable, ASTCDCompilationUnit astCd,
13 File outputDirectory, IterablePath handcodedPath)
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14 ASTMCGrammar createSymbolsFromAST(GlobalScope globalScope,
15 ASTMCGrammar ast)
16 ASTCDCompilationUnit createSymbolsFromAST(
17 GlobalScope globalScope, ASTCDCompilationUnit ast)
18 runGrammarCoCos(ASTMCGrammar ast, GlobalScope scope)
19 ASTCDCompilationUnit transformAstGrammarToAstCd(
20 ASTCDCompilationUnit transformAstGrammarToAstCd(
21 GlobalExtensionManagement glex, ASTMCGrammar astGrammar,
22 GlobalScope symbolTable, IterablePath targetPath)
23 reportGrammarCd(ASTMCGrammar astCd, GlobalScope globalScope,
24 File outputDirectory)
25 decorateCd(GlobalExtensionManagement glex,
26 ASTCDCompilationUnit astClassDiagram,
27 GlobalScope symbolTable, IterablePath targetPath)
28 generate(GlobalExtensionManagement glex,
29 GlobalScope globalScope,
30 ASTCDCompilationUnit astClassDiagram, File outputDirectory,
31 IterablePath templatePath)
32 decorateEmfCd(GlobalExtensionManagement glex,
33 ASTCDCompilationUnit astClassDiagram,
34 GlobalScope symbolTable, IterablePath targetPath)
35 generateEmfCompatible(GlobalExtensionManagement glex,
36 GlobalScope globalScope,
37 ASTCDCompilationUnit astClassDiagram,
38 File outputDirectory, IterablePath templatePath)
39 GlobalScope createGlobalScope(ModelPath modelPath)

Listing 16.2: Methods available in the Groovy scripts

16.2.1 Methods Available within Groovy Scripts

The provided Groovy scripts use several methods that are predefined by the MontiCore
base class. In this section, these methods are briefly explained. Therefore, the expected
arguments as well as the realized functionality and, if applicable, the returned value are
described.

createGlobalScope(...) uses the model path received as input parameter to create
the global scope. The global scope is used to resolve grammars, e.g., super grammars
of the processed grammars.

parseGrammar(...) parses the grammar received as input parameter and creates the
corresponding AST. Returns the created AST.

createSymbolsFromAST(...) creates the symbols and scopes for the symbol table
of the given grammar and attaches them to the AST elements. Returns the AST
including its symbol table.

runGrammarCoCos(...) executes the context conditions for grammars to ensure well-
formedness of the processed grammar. If the grammar violates any context condition,
an appropriate message is displayed and the generation process aborted.
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transformAstGrammarToAstCd(...) translates the grammar AST to a class dia-
gram AST for further processing. Returns the created class diagram AST.

generateParser(...) generates the parser and lexer for the processed grammar us-
ing ANTLR. Therefore, a g4 file is created and passed to ANTLR to create the
corresponding parser and lexer.

reportGrammarCd(...) writes the given class diagram to a file located in the reporting
folder for reporting purposes.

decorateCd(...) enriches the class diagram AST with further methods for the AST
classes generated for the processed grammar. The AST classes are generated by the
generate(...) method.

generateSymbolTable(...) generates symbol and scope classes as well as a symbol
table creator class for the processed grammar.

generate(...) generates the AST classes, the visitor interfaces and classes, and classes
to define and check context conditions for the language defined by the processed
grammar.

decorateEmfCd(...) similar to decorateCd(...) but creates methods for EMF
compatibility as well.

generateEmfCompatible(...) similar to generate(...), but creates classes and
methods for EMF compatibility as well.

16.2.2 Variables Available within Groovy Scripts

The provided Groovy scripts use several variables that are predefined by the MontiCore
base class. In this section those variables are briefly explained. Therefore, their types and
purposes are described.

IterablePath grammars corresponds to the grammars parameter used to create the
grammarIterator.

Iterator<Path> grammarIterator used to process grammars sequentially.

ModelPath modelPath created from the model path parameter and used to load gram-
mars such as super grammars, if needed.

IterablePath handcodedPath created from the path parameter describing where
handcoded classes are and used for the handwritten code integration mechanism.

File out is the output directory.

IterablePath templatePath created from the path parameter for Freemarker tem-
plates and used to find handwritten templates.

boolean force created from the force parameter. It indicates whether the generation
is always enforced, or there will be first a check, whether regeneration is necessary
at all.
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String LOG_ID is the name of the logger which is "MAIN" by default. Can be overrid-
den in custom Groovy scripts.

GlobalExtensionManagement glex is used for the template attachment and tem-
plate hook point mechanism.

MontiCoreReports reportManagerFactory initializes and provides the set of re-
ports desired for MontiCore to the reporting framework.

16.2.3 Available preimported Classes within Groovy Scripts

To further ease the implementation of (custom) Groovy scripts, several classes provided
by MontiCore are imported by default. In this section those classes are briefly explained.

Log offers methods to write to the log files. Includes methods for log warnings, informa-
tions and errors.

Reporting offers methods to write reports.

Names offers methods for name handling such as creating lists from qualified names and
vice versa.

IncrementalChecker offers methods to check whether generated files are up to date.

InputOutputFilesReporter offers methods to track which files are read, written, or
considered (e.g. for the handwritten code integration mechanism) during a generation
run.
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Chapter 17

Some MontiCore Grammars Explained

MontiCore provides a number of grammars and libraries. Their usage supports language
engineering. This chapter shortly describes some of the available grammars. This chapter
therefore serves two purposes: First, it explains some of the available grammars and non-
terminals for a reuse and extension. Second, it also demonstrates how to write a reusable,
and hopefully also well engineered grammar. For that purpose, we discuss the nontermi-
nals and their arrangements in productions as well as some best practices for production
definition.

Tip 17.1 Basic Grammars

The grammars discussed below can be found in the MontiCore repository under:

Files1 Repository: MontiCore/monticore github
2 Directory: monticore-grammar/src/main/grammars/
3 Files: de.monticore.MCBasics.mc4
4 de.monticore.Cardinality.mc4
5 de.monticore.Completeness.mc4
6 de.monticore.MCNumbers.mc4
7 de.monticore.MCHexNumbers.mc4
8 de.monticore.StringLiterals.mc4
9 de.monticore.UMLStereotype.mc4
10 de.monticore.UMLModifier.mc4
11 de.monticore.MCBasicTypes1.mc4
12 de.monticore.expressions.MCExpressions.mc4

17.1 Component Grammar MCBasics.mc4

Lexicals are very basic entities of a language, such as names, whitespaces and comments.
Several of these token never show up in the AST.

The header defines the package and that the MCBasics grammar is a component grammar
that depends on the no other grammar.
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MCG MCBasics1 package de.monticore;
2

3 component grammar MCBasics {

Names have a special meaning. They are used as symbol references that can either point
to a symbol defined elsewhere or introduce a new symbol. Nonterminal Name is therefore
relevant in grammars. If a token does not explicitly define a different type, its Java type
automatically is String.

MCG MCBasics1 token Name =
2 ( 'a'..'z' | 'A'..'Z' | '_' | '$' )
3 ( 'a'..'z' | 'A'..'Z' | '_' | '0'..'9' | '$' )*;

NEWLINE accepts all three variants of line breaks. Whitespaces are captured with WS and
the Java code after it leads to an ignoring of that token. So white spaces do not show up
in the AST.

MCG MCBasics1 fragment token NEWLINE =
2 ('\r' '\n' | '\r' | '\n' ): ;
3

4 token WS =
5 (' ' | '\t' | '\r' | '\n' ) :{_channel = HIDDEN;};

Comments come in the Java style either as single line ("//") or are enclosed in "/*" and
"*/", but are not nested. Comments are also not stored as token, but are attached to
the currently processed token. This is ensured by the enclosed Java code (not fully shown
here):

MCG MCBasics1 token SL_COMMENT =
2 "//" ( ~('\n' | '\r' ) )* :
3 { _channel = HIDDEN; // ...
4 };
5

6 token ML_COMMENT =
7 "/*" ({_input.LA(2) != '/'}?'*' |
8 NEWLINE | ~('*' | '\n' | '\r' ) )*
9 "*/" :
10 { _channel = HIDDEN; // ...
11 };
12 }

The semantic predicate _input.LA(2) != ’/’ in the regular expression allows ’*’ to
be parsed only, when the second character in the input differs from ’/’. This is a compact
form to exclude closing patterns on the token level.
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17.2 Component Grammar StringLiterals.mc4

There are two important literals to manage strings: the CharLiteral and the
StringLiteral. Both are defined in such a way, that they embody the typical lit-
erals of a programming language like Java. In particular, both nonterminals embody the
typical escape sequences and character encodings that Java uses. It may therefore be that
a totally different kind of language cannot directly reuse these literals.

The StringLiterals grammar basically contains three blocks: (1) The two tokens,
CharToken and StringToken are defined to identify the core literals. (2) Two atomic
AST nonterminals, called CharLiteral and StringLiteral, are defined that contains
the literal and are meant to be used in other grammars. (3) Each AST class resulting
from these nonterminals is extended by a basic method getValue that allows to retrieve
the decoded value. For that purpose, the code uses an additional class from the RTE,
called MCLiteralsDecoder that provides numerous methods decodings strings to the
respective values.

StringLiterals build on MCBasics:

MCG StringLiterals1 package de.monticore;
2

3 component grammar StringLiterals extends de.monticore.MCBasics {

The following block of token precisely defines characters including all possible escape se-
quences. Both, characters and strings are parsed with their delimiters, but only the con-
tents is stored. Note, however, that the escape sequences are not expanded, but remain
as parsed. This form of storage is common, because repeated stripping of a string on each
reuse is somewhat inefficient, but escapes potentially should remain for later processing.

MCG StringLiterals1 CharLiteral =
2 source:CharToken;
3

4 ast CharLiteral =
5 method public char getValue() {
6 return de.monticore.MCLiteralsDecoder.decodeChar(getSource());
7 }
8 ;
9

10 token CharToken
11 = '\'' (SingleCharacter|EscapeSequence) '\''
12 : {setText(getText().substring(1, getText().length() - 1));};
13

14 fragment token HexDigit
15 = '0'..'9' | 'a'..'f' | 'A'..'F' ;
16

17 fragment token OctalDigit
18 = '0'..'7' ;
19
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20 fragment token SingleCharacter
21 = ~ ('\'');
22

23 fragment token EscapeSequence
24 = '\\' ('b' | 't' | 'n' | 'f' | 'r' | '"' | '\'' | '\\')
25 | OctalEscape | UnicodeEscape;
26

27 fragment token OctalEscape
28 = '\\' OctalDigit
29 | '\\' OctalDigit OctalDigit
30 | '\\' ZeroToThree OctalDigit OctalDigit;
31

32 fragment token UnicodeEscape
33 = '\\' 'u' HexDigit HexDigit HexDigit HexDigit;
34

35 fragment token ZeroToThree
36 = '0'..'3' ;

While the token CharToken would be sufficient for a use, it is convenient to embed the
pure string in an AST object that provides additional functionality, but more important
that can be targeted by the generated visitors. It is therefore a matter of taste, whether
the token is reused directly or the embedding nonterminal CharLiteral.

This grammar also shows that smaller Java functions can relatively easily be added to the
generated AST classes, but it is generally not recommended to write much functionality
in this form. Instead the handcoded extension mechanism described in Chapter 14 should
be used.

The definition of CharToken relies on a complex structure of token fragments, because
the escapes need to be precisely defined to ensure that only correct characters are actually
parsed. For this purpose the grammar uses a number of fragments that cannot be used as
direct token, but merely as shortcuts within a concrete token definition. However they can
be reused in other, importing grammars for defining more tokens.

Strings are defined using a similar structure to characters:

MCG StringLiterals1 StringLiteral =
2 source:StringToken;
3

4 ast StringLiteral =
5 content:String
6 method public String getValue() {
7 if(content == null) {
8 content =
9 de.monticore.MCLiteralsDecoder.decodeString(getSource());
10 }
11 return content;
12 };
13

14 token StringToken
15 = '"' (StringCharacters)? '"'
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16 : {setText(getText().substring(1, getText().length() - 1));};
17

18 fragment token StringCharacters
19 = (StringCharacter)+;
20

21 fragment token StringCharacter
22 = ~ ('"' | '\\') | EscapeSequence;

The main difference to a single character is that the decoded string is stored in a buffer to
prevent repeated calculation. On the other hand if the AST object is modified, then both
attributes, source and content need to be kept in sync.

Please note that Strings do not allow arbitrary form of escapes, e.g. "\a " is forbidden.
Furthermore, it is important that a string is parsed in detail, because escape sequences
may contain string delimiter ", without actually terminating the string.

17.3 Component Grammars for Numbers

Numbers can be positive decimals only, or also come with a negative sign. In many pro-
gramming language they also can be provided as hexadecimals, octals or binary numbers.
And finally they could be integers or longs.

The following two grammars demonstrate, how to define numbers and extend the way how
numbers are encoded in subgrammars. The following grammar introduces an interface
Number that is meant for a subsumption of different potential encodings. The interface
comes with an extension of three methods, for either getting the direct source that has
been parsed or the decoded integer with getValueInt respectively long with getValue.
Please note that the methods are attached to the interface and need to be overwritten in
all implementing nonterminals.

17.3.1 Component Grammar MCNumbers.mc4

Grammar MCNumbers provides two nonterminals for positive decimals and integers:

MCG MCNumbers1 package de.monticore;
2

3 component grammar MCNumbers extends de.monticore.MCBasics {
4

5 interface Number;
6

7 ast Number =
8 method public String getSource()
9 { throw new UnsupportedOperationException(
10 "0xFF230 Method not implemented"); }
11 method public int getValueInt()
12 { throw new UnsupportedOperationException(
13 "0xFF231 Method not implemented"); }
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14 method public long getValue()
15 { throw new UnsupportedOperationException(
16 "0xFF232 Method not implemented"); }
17 ;

The interface methods have default implementations, which in this case basically means
throwing an exception, because the actual implementation can only be provided in the im-
plementing classes. However, the signature is common to all known terminals implementing
Number.

One nonterminal implementing this interface parses exactly the Decimals and thus pro-
duces only positive numbers (≥ 0):

MCG MCNumbers1 Decimal implements Number =
2 source:DecimalToken;
3

4 ast Decimal =
5 method public int getValueInt() {
6 return Integer.parseInt(getSource());
7 }
8 method public long getValue() {
9 return Long.parseLong(getSource());
10 }
11 ;
12

13 token DecimalToken
14 = '0' | (NonZeroDigit Digit*);
15

16 fragment token Digit = '0'..'9' ;
17

18 fragment token NonZeroDigit = '1'..'9' ;

Again, Decimal is a nonterminal that is built on the token DecimalToken which would
only provide a string and could not be reached by visitors, neither implement the signature
desired by the Number interface. Please note, that only two methods are implemented
directly, while the third method getSource is generated because we called the token
source in the right inside of the Decimal production.

Please note that we deliberately decided, that 00 is not parsed as a single decimal and
that separating dots, spaces or underscores to group large numbers are also prohibited.
However, there is no prevention against large number overflows.

The following part of the grammar introduces integers, which optionally have a minus sign:

MCG MCNumbers1 Integer implements Number =
2 (negative:["-"])? decimalpart:DecimalToken;
3

4 ast Integer =
5 method public int getValueInt() {
6 int a = Integer.parseInt(getDecimalpart());
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7 return negative ? -a : a;
8 }
9 method public long getValue() {
10 long a = Long.parseLong(getDecimalpart());
11 return negative ? -a : a;
12 }
13 method public String getSource() {
14 String s = getDecimalpart();
15 return (negative ? "-" +s : s);
16 }
17 ;

Please note that the literals with a prefixed negation consist of two token and thus allow
spaces in between. The reason for this separation is that otherwise the infix operator "-"
would not be lexically recognized anymore when followed by a number. On the other hand
this means that method getSource has to be implemented explicitly and the containing
attribute gets a different name (decimalpart).

17.3.2 Component Grammar MCHexNumbers.mc4

While the MCNumbers grammar can be used directly, it also allows to extend the forms
of how to describe numbers. This is shown in the following grammar by introducing
hexadecimal numbers:

MCG MCHexNumbers1 package de.monticore;
2

3 component grammar MCHexNumbers extends
4 de.monticore.MCNumbers, de.monticore.MCBasics {
5

6 Hexadecimal implements Number =
7 source:HexadecimalToken;
8

9 ast Hexadecimal =
10 method public int getValueInt() {
11 return Integer.parseInt(getSource().substring(2),16);
12 }
13 method public long getValue() {
14 return Long.parseLong(getSource().substring(2),16);
15 }
16 ;
17

18 token HexadecimalToken
19 = '0' ('x' | 'X') HexDigit HexDigit*;
20

21 fragment token HexDigit
22 = '0'..'9' | 'a'..'f' | 'A'..'F' ;

The principle is again the same: a new nonterminal Hexadecimal implements the given
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interface Number and is based on an appropriate token definition, that describes encodings
of hexadecimal numbers.

The language developer may decide, whether only decimal encodings or in addition
hexadecimals encodings are allowed for numbers, simply by extending MCNumbers or
MCHexNumbers. Depending on which grammar is extended, the nonterminal Number
provides different language elements being parsed, but the further reuse is basically har-
monized through providing a common signature with a method like getValue. Please
note that if only hexadecimals should be allowed, then the nonterminal Hexadecimal
can also be used directly.

The following part of the grammar also allows negative hexadecimals:

MCG MCHexNumbers1 HexInteger implements Number =
2 (negative:["-"])? hexadecimalpart:HexadecimalToken;
3

4 ast HexInteger =
5 method public int getValueInt() {
6 int a = Integer.parseInt(getHexadecimalpart().substring(2),16);
7 return negative ? -a : a;
8 }
9 method public long getValue() {
10 long a = Long.parseLong(getHexadecimalpart().substring(2),16);
11 return negative ? -a : a;
12 }
13 method public String getSource() {
14 String s = getHexadecimalpart();
15 return (negative ? "-" +s : s);
16 }
17 ;

17.4 Component Grammar MCBasicTypes1.mc4

This grammar defines very simple Java compliant types. The scope of this grammar is to
ease the reuse of type structures in Java-like sublanguages. The grammar contains qualified
names, import statement, primitive types from Java, void, and reference types, but does
not include types with dimensions, generics, and type parameters.

QualifiedName represents a possibly qualified name in the AST. The different parts of
a qualified name are separated by ’.’; they are stored in a list of Strings.

The ImportStatement represents the import for any form of artifact. We generally
assume that artifacts, including various forms of models as well as code use and therefore
import each other.

220



17.5. Component Grammars for UML Languages

MCG MCBasicTypes11 package de.monticore;
2

3 QualifiedName =
4 part:(Name || ".")+;
5

6 ast QualifiedName =
7 method public String getQName(){
8 return de.se_rwth.commons.Names.getQualifiedName(
9 this.getPartList());
10 };
11

12 ImportStatement =
13 "import" QualifiedName ("." Star:["*"])? ";" ;
14

15 ast ImportStatement =
16 method public String getQName(){
17 return getQualifiedName().getQName();
18 };

In addition to the productions defining the new nonterminals, this grammar adds a hand-
written function getQName() to the AST, which reconstructs the full name as a string.
Furthermore, isStar() can be used to identify, whether a star import has been defined.

For all other type definitions, we refer directly to the grammar MCBasicTypes1 or any
other grammar defining types.

17.5 Component Grammars for UML Languages

In modeling languages, such as the UML, it is quite common that additional information
needs to be attached, that is officially not part of the modeling language. This may include
information about the representation on screen, about the mapping to computational or
physical devices, the necessary level of security, as well as meta information about the de-
veloper, the time of development, test coverage, etc. For that purpose UML has introduced
the concept of stereotype.

In the grammars discussed in this section, we define a textual variant of stereotypes, mod-
ifiers and also the possibility to define cardinalities in a form as they are used e.g. in
associations. All of these nonterminals are extended with functions available on the AST.
E.g. stereotypes allow to set and retrieve their values.

17.5.1 Component Grammar UMLStereotype.mc4

The grammar uses a Java action to check whether the closing parenthesis are written
without spaces in between. This is unfortunately necessary, because generic types use
single parenthesis and it is therefore not wise to introduce a token ">>" directly. A short
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semantic predicate, that calls the predefined noSpace method can be used to glue the
two previous tokens together and achieve the same effect.

MCG UMLStereotype1 package de.monticore;
2 component grammar UMLStereotype extends de.monticore.StringLiterals {
3 Stereotype =
4 "<<" value:(StereoValue || ",")+ ">" ">" {noSpace()}? ;
5 // It is not possible to define ">>" in one string.
6 // Parsing generic types like "List<List<String>>"
7 // is then not working.
8

9 StereoValue =
10 Name& ("=" text:StringLiteral)?;
11

12 ast Stereotype =
13 method public boolean contains(String name) ...
14 method public boolean contains(String name, String value) ...
15 method public String getValue(String name) ...
16

17 ast StereoValue =
18 content:String
19 method public String getValue() { ...
20 }

Method getValue in class ASTStereoValue uses a cache to store the value, when
decoded the first time. This redundancy needs caution, because if the value is changed in
the AST, the cached content is outdated.

17.5.2 Component Grammar Cardinality.mc4

A cardinality is for example written in form [3..17]. Boolean flag many indicates an
unconstrained cardinality ("*"). The various pieces of Java code directly calculate the
upper and the lower bound storing them as integer values in the additional attributes
defined using the ast statement.

MCG Cardinality1 package de.monticore;
2 component grammar Cardinality extends
3 de.monticore.MCBasics,
4 de.monticore.MCNumbers
5 {
6 Cardinality =
7 "["
8 ( many:["*"] {_aNode.setLowerBound(0);_aNode.setUpperBound(0);}
9 | lowerBoundLit:Decimal
10 { _aNode.setLowerBound(
11 _aNode.getLowerBoundLit().getValueInt());
12 _aNode.setUpperBound(_aNode.getLowerBound()); }
13 ( ".." (
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14 upperBoundLit:Decimal
15 ( {_aNode.setUpperBound(
16 _aNode.getUpperBoundLit().getValueInt());})
17 |
18 noUpperLimit:["*"] {_aNode.setUpperBound(0);} ) )?
19 ) "]";
20

21 ast Cardinality =
22 lowerBound:int
23 upperBound:int;
24 }

Please note that is the upper limit is absent, then attribute upperBound is 0. It is better
to use the flags generated for many and noUpperLimit to determine absence of the upper
bound.

Cardinality is an example, where some extra code is directly added to the parser. The
code is executed directly when parsing and is used to calculate some additional attributes
defined using the ast statement. Alternatively would it have been possible to embed that
code in some extra methods, e.g. like the getValue() methods used in the MCNumbers
grammar.

17.5.3 Component Grammar Completeness.mc4

The UML and especially UML/P defined in [Rum16, Rum17] make explicit use of the
possibility to define models or part of models as complete or incomplete. The following
textual representation allows to differentiate between two compartments, for example the
list of attributes and the list of methods in classes.

While white spaces in general should not be included, it is again necessary to separate the
brackets in the incomplete case to avoid a clash with similar symbols from other languages.

MCG Completeness1 package de.monticore;
2 component grammar Completeness {
3 Completeness =
4 [complete:"(c)"]
5 | ("(" [incomplete:"..."] ")")
6 | [incomplete:"(...,...)"]
7 | [complete:"(c,c)"]
8 | [rightComplete:"(...,c)"]
9 | [leftComplete:"(c,...)"];
10 }

17.5.4 Component Grammar UMLModifier.mc4

Programming as well as modeling languages usually provide a set of modifiers that can be
applied to its entities, such as classes, methods or attributes. The following nonterminal
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Modifier three presents a standard set of these modifiers and allows a purely keyword
representation, but also a shorthand alternative used in modeling languages.

MCG UMLModifier1 package de.monticore;
2 component grammar UMLModifier extends de.monticore.UMLStereotype {
3 Modifier =
4 Stereotype?
5 ( ["public"] | [public:"+"]
6 | ["private"] | [private:"-"]
7 | ["protected"] | [protected:"#"]
8 | ["final"]
9 | ["abstract"]
10 | ["local"]
11 | ["derived"] | [derived:"/"]
12 | ["readonly"] | [readonly:"?"]
13 | ["static"]
14 )*;
15 }

Please note, that it was deliberately decided through the design of the production that
after parsing it cannot be distinguished anymore, whether the keyword protected or the
iconic shorthand # led to the Boolean attribute in the AST to become true. Furthermore, it
cannot be distinguished, how often a keyword was applied, and in which order the keywords
were used. This leads to an efficient storage and management.

If any of this information is still necessary, for example for a precise pretty printing, or the
order is semantically relevant (which is neither in Java nor UML the case), then a different
definition for nonterminal Modifier needs to be used.

It would also be possible to define an interface, e.g. SingleModifier, and then realize each
modifier as a nonterminal implementing the interface. This would have the advantage that
a visitor could act on a modifier directly, but also the disadvantage that more classes would
be generated.

17.6 Component Grammar MCExpressions.mc4

The forthcoming MCExpression grammar is very specifically inspired from the Java pro-
gramming language. It contains almost all elements that Java provides, with the exception
of creating new objects or defining anonymous classes.

For reference the grammar is completely included here. The grammar definition starts
with the definition of interface Expression and subsequently implements this interface
with a variety of expressions in different priorities. Please see Section 4.2.8 for discussion
of priorities and how to use and extend the grammar with new forms of expressions as well
as the removal of unwanted forms of expressions.
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MCG MCExpressions1 package de.monticore;
2

3 component grammar MCExpressions extends de.monticore.types.Types {
4

5 interface Expression;

These forms of expressions mainly deal with objects (applying this or super) as well as
type casting and method call:

MCG MCExpressions1 ThisExpression implements Expression <280> =
2 Expression "." ["this"];
3

4 SuperExpression implements Expression <270> =
5 Expression "." "super" SuperSuffix;
6

7 GenericInvocationExpression implements Expression <260> =
8 Expression "." PrimaryGenericInvocationExpression;
9

10 TypeCastExpression implements Expression <230> =
11 "(" Type ")" Expression;
12

13 InstanceofExpression implements Expression <140> =
14 Expression "instanceof" Type;
15

16 PrimaryThisExpression implements Expression <320>
17 = "this";
18

19 PrimarySuperExpression implements Expression <330>
20 = "super";
21

22 ClassExpression implements Expression <360>
23 = ReturnType "." "class";
24

25 PrimaryGenericInvocationExpression implements Expression <370>
26 = TypeArguments GenericInvocationSuffix;
27

28 GenericInvocationSuffix
29 = ["super"] SuperSuffix
30 | ["this"] Arguments
31 | Name Arguments;
32

33 SuperSuffix
34 = Arguments
35 | "." TypeArguments? Name Arguments?;
36

37 Arguments
38 = "(" (Expression || ",")* ")";

In the following block a number of applications, for example reading attributes, indexing
arrays, calling methods is defined:
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MCG MCExpressions1 QualifiedNameExpression implements Expression <290> =
2 Expression "." Name;
3

4 ArrayExpression implements Expression <250> =
5 Expression "[" indexExpression:Expression "]";
6

7 CallExpression implements Expression <240> =
8 Expression Arguments;

Suffixes and prefixes generally have a high priority. Please note that due to the given
priorities, -v++ parses as -(v++).

MCG MCExpressions1 SuffixExpression implements Expression <220> =
2 Expression
3 ( suffixOp:"++"
4 | suffixOp:"--"
5 );
6

7 PrefixExpression implements Expression <210> =
8 ( prefixOp:"+"
9 | prefixOp:"-"
10 | prefixOp:"++"
11 | prefixOp:"--"
12 )
13 Expression;
14

15 BooleanNotExpression implements Expression <200> =
16 "~" Expression;
17

18 LogicalNotExpression implements Expression <190> =
19 "!" Expression;

Then follow a large set of infix operations in their usual priorities. Please note that if
priorities are identical, then left associative parsing is applied. Thus, a*b*c is represented
in the AST as (a*b)*c.

MCG MCExpressions1 MultExpression implements Expression <180> =
2 leftExpression:Expression
3 ( multiplicativeOp:"*"
4 | multiplicativeOp:"/"
5 | multiplicativeOp:"%" )
6 rightExpression:Expression;
7

8 AddExpression implements Expression <170> =
9 leftExpression:Expression
10 ( additiveOp:"+"
11 | additiveOp:"-" )
12 rightExpression:Expression;
13
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14 ComparisonExpression implements Expression <150> =
15 leftExpression:Expression
16 ( comparison:"<="
17 | comparison:">="
18 | comparison:">"
19 | comparison:"<" )
20 rightExpression:Expression;
21

22 IdentityExpression implements Expression <130> =
23 leftExpression:Expression
24 ( identityTest:"=="
25 | identityTest:"!=" )
26 rightExpression:Expression;
27

28 BinaryAndOpExpression implements Expression <120> =
29 leftExpression:Expression "&" rightExpression:Expression;
30

31 BinaryXorOpExpression implements Expression <110> =
32 leftExpression:Expression "^" rightExpression:Expression;
33

34 BinaryOrOpExpression implements Expression <100> =
35 leftExpression:Expression "|" rightExpression:Expression;
36

37 BooleanAndOpExpression implements Expression <90> =
38 leftExpression:Expression "&&" rightExpression:Expression;
39

40 BooleanOrOpExpression implements Expression <80> =
41 leftExpression:Expression "||" rightExpression:Expression;
42

43 ConditionalExpression implements Expression <70> =
44 condition:Expression "?" trueExpression:Expression
45 ":" falseExpression:Expression;
46

47 AssignmentExpression implements Expression <60> = <rightassoc>
48 leftExpression:Expression
49 ( assignment:"="
50 | assignment:"+="
51 | assignment:"-="
52 | assignment:"*="
53 | assignment:"/="
54 | assignment:"&="
55 | assignment:"|="
56 | assignment:"^="
57 | assignment:">>="
58 | assignment:">>>="
59 | assignment:"<<="
60 | assignment:"%=" )
61 rightExpression:Expression;

The grammar has been deliberately designed in such a way that operators of same priority
are stored within the same AST class as an explicit additional attribute. E.g. assignment
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is an attribute with according get/set- methods of type string containing one of the above
defined operators.

Unfortunately the shifting expressions that use "<<" and ">>" again produce a challenges
and need special handling with a look into the input chain of the parser:

MCG MCExpressions1 ShiftExpression implements Expression <160> =
2 // It is not possible to define "<<", ">>" or ">>>"
3 // in one string. Parsing generic types like
4 // "List<List<String>>" is then not working.
5 leftExpression:Expression
6 ( shiftOp:"<" "<" {noSpace()}?
7 {_aNode.setShiftOp("<<");}
8 | shiftOp:">" ">" {noSpace()}? ">" {noSpace()}?
9 {_aNode.setShiftOp(">>>");}
10 | shiftOp:">" ">" {noSpace()}?
11 {_aNode.setShiftOp(">>");}
12 )
13 rightExpression:Expression;

In the final block, the grammar defines a number of prime expressions, such as bracket
enclosed expressions and simple variable names:

MCG MCExpressions1 BracketExpression implements Expression <310>
2 = "(" Expression ")";
3

4 NameExpression implements Expression <350>
5 = Name;
6

7 LiteralExpression implements Expression <340>
8 = Literal;
9 }

It is an advantage of MontiCore that the expression language can almost be defined in its
natural form, defining both the parsing strategy and the AST. This is possible because
MontiCore allows a form of mutual recursive definitions of left recursive productions, where
an interface nonterminal (here: Expression) and a variety of implementing nonterminals
are allowed.
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Chapter 18

Some Example Languages

co-authored by Robert Heim

Quite a number of languages have been developed using MontiCore, some of them are
publicly available in the repositories1. In this chapter we describe a small selection of
these languages, because they are used as examples in various parts of the manual.

The main purpose is to demonstrate some features of the MontiCore language workbench.
For a detailed and more complete overview of existing languages and tools behind that
languages please see the forthcoming MontiCore language and tool book.

18.1 A Simple Automaton Language

The SAutomaton language (S is short for Simple) is a example for a language that is
delivered with standard MontiCore and can easily be used to build on.

When designing a language, the first step is to discuss its properties on the basis of concrete
examples. Listings 18.1 shows a simple automaton having two states and two transitions
and 18.2 shows an automaton describing how a ping-pong game is played. Graphical
versions are displayed in Figure 18.3.

Automaton Simple1 automaton Simple {
2 state A <<initial>>;
3 A - x > B;
4

5 state B <<final>>;
6 B - y > A;
7 }

Listing 18.1: Simple automaton in text format

1https://github.com/MontiCore
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Automaton PingPong1 // The ping pong game
2 automaton PingPong {
3 state NoGame <<initial>> <<final>>;
4 state Ping;
5 state Pong <<final>>;
6

7 NoGame - startGame > Ping;
8

9 Ping - stopGame > NoGame;
10 Pong - stopGame > NoGame;
11

12 Ping - returnBall > Pong;
13 Pong - returnBall > Ping;
14 }

Listing 18.2: Example model for the Automaton languageProf. Dr. B. Rumpe
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Two Automata Examples
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Automaton SimpleAutomaton 
PingPong

Figure 18.3: Two automata example models

As can be seen in these examples an automaton consists of a basic block (l. 2 and 14 in
Listing 18.2), states (l. 3ff in Listing 18.2) and transitions (l. 7ff in Listing 18.2). States
start with the keyword state and have a name. They can be initial, final or none of
it. Transitions connect two states where one state is the source and the other the target.
Furthermore, transitions are triggered by events such as stopGame in the examples or
x and y. After identifying the structure with fixed (e.g. keyword and multiplicities)
and variable parts (e.g. names) that all models of the desired language have in common,
a grammar can be defined. One such grammar that allows specifying automatons as
presented before is shown in Listing 18.4.

MCG Automaton1

2 grammar SAutomaton extends de.monticore.MCBasics {
3

4 symbol scope Automaton =
5 "automaton" Name "{" (State | Transition)* "}" ;
6

7 symbol State =
8 "state" Name
9 (("<<" ["initial"] ">>" ) | ("<<" ["final"] ">>" ))* ";";
10
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11 Transition =
12 from:Name@State "-" input:Name ">" to:Name@State ";" ;
13 }

Listing 18.4: MontiCore grammar for the SAutomaton language

The grammar does not have a package declaration and immediately starts with the start
nonterminal of the grammar. The grammar extends the base grammar MCBasics, which
provides white space handling and common lexical nonterminals such as Name. The gram-
mar itself defines three nonterminals Automaton, State and Transition corresponding
to the different modeling elements of the automaton language. The MontiCore grammar
describes the concrete and the abstract syntax, as well as a core symbol table infrastruc-
ture. If we are only interested in the concrete syntax, the reduced EBNF is easier to
read:

MCG EBNF1 Automaton = "automaton" Name "{" (State | Transition)* "}"
2

3 State = "state" Name (("<<initial>>" ) | ("<<final>>" ))* ";"
4

5 Transition = Name "-" Name ">" Name ";"

Listing 18.5: EBNF of the SAutomaton language

To understand the AST, it suffices to use the grammar shown in Listing 18.6 that contains
all essential information that MontiCore needs to derive a set of Java classes for the AST.
The resulting AST classes are shown in Figure 18.7. As described in Chapter 5, MontiCore
translates the keyword final into the attribute boolean r__final to avoid naming
conflicts with the final keyword of Java.

MCG SAutomaton (AST only)1

2 grammar SAutomaton extends de.monticore.MCBasics {
3 Automaton = Name (State | Transition)* ;
4 State = Name (["initial"] | ["final"])* ;
5 Transition = from:Name input:Name to:Name ;
6 }

Listing 18.6: MontiCore grammar for the SAutomaton languageProf. Dr. B. Rumpe
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AST of the Automaton Language
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Figure 18.7: AST of the Simple Automaton language
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For a deeper look into the class structure of the AST, the connection with the runtime
classes provided by MontiCore are shown in Figure 18.8.
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Extended AST of the Automaton Language
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Figure 18.8: AST of the SAutomaton language extended by runtime classes

For the SAutomaton language the usual four forms of visitors are generated as depicted in
Figure 18.9. As described in Chapter 8 the generated interfaces and classes already provide
default implementations for traversing the AST and visiting AST nodes. The default
traversal strategy is depth first while the default visiting implementation is empty. Thus,
when implementing a visitor, e.g., for realizing a pretty printer, it is sufficient to override
visit methods relevant for the desired functionality. An example of an implemented
visitor interface is the context condition checker, which is explained in Chapter 10 and
later on in this chapter.
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Visitors for the Automaton Language
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Figure 18.9: Visitors for the Automaton language

Two of the nonterminals defined in the SAutomaton grammar in Listing 18.4 are marked
as symbols: Automaton and State. Furthermore, Automaton is marked as scope span-
ning. Transition sources and targets are references to states. Therefore, a symbol table
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infrastructure is generated. This includes symbol, symbol kind and scope classes as well
as a basic symbol table creator and a language class.
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Figure 18.10: Symbol table structure of the Automaton language

The essentials of the generated symbol table infrastructure are shown in Figure 18.10. As
described in Chapter 9 for every nonterminal X marked as a symbol the classes XSymbol,
XKind and XResolvingFilter are generated. Thus, for the SAutomaton language
the following classes are generated:

• AutomatonSymbol and StateSymbol,

• AutomatonKind and StateKind, and

• AutomatonResolvingFilter and StateResolvingFilter

In addition, for every nonterminal Y marked as a scope a YScope class is generated.
Hence, for the nonterminal Automaton an AutomatonScope class is generated. Fi-
nally, for a language X the infrastructure to create and manage the symbols is gen-
erated: XLanguage, XModelloader, XModelNameCalculator, XSymbolMill and
XSymbolTableCreator.

Files1 Directory: out/sautomaton/_symboltable
2 Files: SAutomatonLanguage
3 SAutomatonModelloader
4 SAutomatonModelNameCalculator
5 SAutomatonSymbolMill
6 SAutomatonSymbolTableCreator
7 AutomatonSymbol
8 AutomatonKind
9 AutomatonResolvingFilter
10 AutomatonScope
11 StateSymbol
12 StateKind
13 StateResolvingFilter

Listing 18.11: Summary of files generated for the symbol table of SAutomaton
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Thus, for the SAutomaton language SAutomatonLanguage, SAutomaton-
Modelloader, SAutomatonModelNameCalculator, SAutomatonSymbolMill and
SAutomatonSymbolTableCreator are generated. Listing 18.11 summarizes the files
generated for the symbol table of the SAutomaton language.

Another important part of a language definition is well-formedness. Besides the restriction
expressed by the grammar there are typically further constraints that need to be satisfied
by the models of a language in order to be well-formed. For the SAutomaton language
these are for example:

• There must be at least one initial state.

• State names start with capital letter.

• Transition source and target must exist.Prof. Dr. B. Rumpe
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Figure 18.12: Defining context conditions for the SAutomaton language

For defining well-formedness rules MontiCore generated infrastructure to implement con-
text conditions. For every nonterminal an interface is generated that should be imple-
mented by a context condition concerning this nonterminal. Furthermore, a context con-
dition checker and a context condition interface for the base node of the language are
generated. Figure 18.12 shows an example context condition implementation for state
names start with capital letters. Implemented context conditions must be added to the
context condition checker that afterwards is able to check the well-formedness of mod-
els (cf. Figure 18.12). The checker is implemented as a visitor. It traverses the AST and
checks all context conditions suitable for the visited nodes. For the SAutomaton language
the files listed in Listing 18.13 are generated for defining context conditions.
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Files1 Directory: out/sautomaton/_cocos
2 Files: SAutomatonCoCoChecker
3 SAutomatonASTAutomatonCoCo
4 SAutomatonASTStateCoCo
5 SAutomatonASTTransitionCoCo
6 SAutomatonASTSAutomatonNodeCoCo

Listing 18.13: Summary of files generated for context conditions of SAutomaton

18.2 A Language for Hierarchical Automata

In the previous section the language SAutomaton for simple automata was explained and
two example automata where considered. The next automaton in Listing 18.14 is not a
valid model of the SAutomaton language, but is an extended version of the automaton in
Listing 18.2. Here, the automaton has an additional state InGame that contains the two
states Ping and Pong and their transitions. SAutomaton does not allow containment
and thus an extension is necessary for this kind of automata.

Automaton PingPong1 automaton PingPong {
2 state NoGame <<initial>>;
3 state InGame <<final>> {
4 state Ping ;
5 state Pong ;
6

7 Ping - returnBall > Pong;
8 Pong - returnBall > Ping;
9 }
10

11 NoGame - startGame > Ping;
12

13 InGame - stopGame > NoGame;
14 }

Listing 18.14: Example model for the hierarchical Automaton language

As this language is an extension of the SAutomaton language, the grammar of
HAutomaton (H for Hierarchical) extends the grammar of SAutomaton (l. 1 of List-
ing 18.15). Thereby all nonterminals of SAutomaton are inherited. HAutomaton uses
the same starting nonterminal as SAutomaton (cf. in l. 6). As states can be hierarchical
in HAutomaton, the nonterminal State is redefined such that the former state syntax is
still valid but in addition states may have a body consisting of states and transitions (cf.
l. 8).
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MCG HierarchicalAutomaton1 grammar HAutomaton extends SAutomaton {
2 // keep the old start rule
3 start Automaton;
4

5 // redefine a nonterminal
6 State = "state" Name
7 ( "<<" ["initial"] ">>" | "<<" ["final"] ">>" )*
8 ( ";" | "{" (State | Transition)* "}" );
9 }

Listing 18.15: MontiCore grammar for the HAutomaton language

The resulting AST structure is depicted in Figure 18.16. The AST classes of SAutomaton
are reused for HAutomaton. For the redefined State nonterminal a new AST class
State is generated that extends the State class of SAutomaton. As for SAutomaton
the typical four types of visitors are generated. The grammar defines no symbols or scopes
itself, thus no symbol or scope classes are generated. Instead, the symbols of SAutomaton
can be reused for HAutomaton. However, as states are hierarchical in HAutomaton
the symbol table creation needs to be reimplemented. For the new state nonterminal of
HAutomaton a context condition interface is generated as well as a context condition
checker.
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Figure 18.16: AST of the hierarchical Automaton language

18.3 A Language for Automata with Invariants

Another example of an automaton is shown in Listing 18.17. In comparison to the simple
automata of SAutomaton states have invariants. A possible and flexible grammar for this
kind of automata is shown in Listing 18.18.
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Automaton PingPong1 automaton PingPong {
2 state NoGame - <<initial>>;
3

4 NoGame - startGame > Ping;
5

6 Ping - stopGame > NoGame;
7 Pong - stopGame > NoGame;
8

9 state Ping var1;
10 state Pong !var2 <<final>>;
11

12 Ping - returnBall > Pong;
13 Pong - returnBall > Ping;
14 }

Listing 18.17: Example model for the Automaton language with invariants

This grammar is called IAutomatonComp (I for Invariant and Comp for component)
and defines states that have invariants. However, it does not yet define any syntax for
invariants but uses an external nonterminal (cf. l. 7). Thus, this grammar is meant for
extension and must be marked as a component (cf. l. 2). An extension of this grammar
called IAutomaton (I for invariant) that defines a syntax for invariants is shown in
Listing 18.19. IAutomaton overrides the external nonterminal Invariant and thereby
defines a syntax for it. The resulting AST structure is shown in Figure 18.20.

MCG IAutomatonComp1

2 component grammar IAutomatonComp extends de.monticore.MCBasics {
3

4 Automaton =
5 "automaton" Name "{" (State | Transition)* "}" ;
6

7 external Invariant;
8

9 State = "state" Name
10 Invariant ( "<<" ["initial"] ">>" | "<<" ["final"] ">>" )* ";" ;
11

12 Transition =
13 from:Name "-" input:Name ">" to:Name ";" ;
14 }

Listing 18.18: Grammar Component for IAutomatonComp that defines state with
invariants

For IAutomatonComp MontiCore generates the AST classes for Automaton, State
and Transition and an interface Invariant for the external nonterminal. For
IAutomatonMontiCore generates an Interface for the interface nonterminal LogicExpr,
AST classes for the nonterminals Truth, Not and Var as well as an AST class for the over-
riding nonterminal Invariant. The AST class for Invariant implements the interface
Invariant of generated for IAutomatonComp.
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MCG IAutomaton1 grammar IAutomaton extends IAutomatonComp {
2 start Automaton;
3

4 // use this production as Invariant in Automata
5 Invariant = LogicExpr | ["-"] ;
6

7 interface LogicExpr;
8 Truth implements LogicExpr = tt:["true"] | "false" ;
9 Not implements LogicExpr = "!" LogicExpr ;
10 Var implements LogicExpr = Name ;
11 }

Listing 18.19: Grammar for automata with state invariants
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Figure 18.20: AST of the Automaton language with Invariants

As for SAutomaton the typical four types of visitors are generated for IAutomatonComp
as well as for IAutomaton. Both grammar define no symbols or scopes, thus no symbol
or scope classes are generated. For all nonterminals regardless of whether their marked as
interfaces or external or not marked at all context condition interfaces are generated.

18.4 Scannerless Parsing to Handle Complex Tokens

Section 4.1 discusses how the lexer groups individual characters into tokens, which are then
used by the context-free parser to construct the abstract syntax. Because tokens are defined
using regular expressions and are scanned without any context information, overlapping
tokens may lead to problems. It depends on the order of definition, which tokens are
recognized and given to the parser. Furthermore, if one token is a prefix of another, then
only the longer token is recognized. For example the infix operator ">>" has a prefix ">",
the negative decimals like "-42" are prefixed by "-".
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To prevent these problems, we discuss two among several possible solutions in the following
two sections.

18.4.1 Parsing with Whitespaces

When the simple comparison ">" needs to be recognizable as token, the infix operator
">>" cannot be directly defined, but needs to be defined as nonterminal with two token.
Unfortunately, on the nonterminal level, whitespaces are not visible anymore and a non-
terminal with right-hand side ">" ">" can not distinguish the correct input ">>" from
an erroneous "> >".

One way to handle this is to switch off the parsing and ignoring of whitespaces as defined
in the token WS by not including the MCBasics grammar. Token definition WhiteSpace
achieves this:

MCG Scannerless1 S = WhiteSpace* ;
2 S1 = WhiteSpace+ ;
3

4 token WhiteSpace = (' ' | '\t' | '\r' | '\n' ) ;

Listing 18.21: Whitespaces made explicit in the productions

Nonterminal S groups an arbitrary sequence of whitespaces including the empty sequence,
while S1 demands at least one whitespace.

The advantage is that whitespaces can now be explicitly handled in the productions. The
disadvantage is that they need to be handled everywhere explicitly as the following excerpt
of a grammar shows:

MCG Scannerless1 interface Expression;
2

3 ShiftExpression implements Expression <160> =
4 leftExpression:Expression
5 ( shiftOp2:"<" "<"
6 | shiftOp4:">" ">"
7 )
8 rightExpression:Expression;
9

10 BracketExpression implements Expression <310>
11 = S "(" Expression ")" S;
12

13 NameExpression implements Expression <350>
14 = S Name S;
15

16 Type = S Name S TypeArguments? S;
17

18 TypeArguments = S "<" (Type || ",")* ">" S ;

Listing 18.22: Whitespaces explicitly used in productions
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The productions are decorated with the explicit whitespace nonterminal S in many places,
to explicitly allow spaces at the beginning, between and after a language element. Because
Expression is recursively defined, for example it is not necessary to repeat the initial
S in left recursive definitions (it it not even allowed to repeat it). Explicit omission of S
between two character terminals enforces both to stand in the input directly next to each
other and thus allows us to achieve that "<" "<" in the production only parses "<<" in
the input. Please note that the production still needs to contain two individual characters
and not their combination, because that implicitly defines a new token.

This form of grammar definition almost does not use the lexer and thus is called almost
scannerless. It puts the burden of token aggregation to the parser and thus slows down the
parsing process by a not neglectable factor. However, it exploits the parsing capabilities to
full context-free parsing. Not only whitespaces are managed by the parser, but many other
tokens are separated into their character sequences and managed by the parser directly.

18.4.2 Temporarily Parsing with Whitespaces

As an alternative, it would also be possible, to switch off the omission of whitespaces
temporarily. This means that we would generally add a status concept, stored in form of
attributes in the lexer and change the behavior of certain tokens according to that status.

The following grammar excerpt demonstrates such a definition, again using an alternate
definition of whitespaces. It relies on the possibility to add extra functionality to a token
(discussed in Section 4.1.2) and to the lexer in general (introduced in Section 4.2.11). In
addition, this example demonstrates, how to use a state to dynamically adapt behavior of
the lexer and similarly of the parser if necessary.

MCG SpaceOnOff1 token WhiteSpace = (' ' | '\t' | '\r' | '\n' )
2 :{ if(isSpaceOn()) {_channel = HIDDEN; } };
3

4 concept antlr {
5 lexerjava {
6 protected boolean spaceOnFlag = true;
7

8 public boolean isSpaceOn() {
9 return spaceOnFlag;
10 }
11 }
12 }

Listing 18.23: Whitespaces temporarily explicit in the production using a state switch in
the lexer

In case the boolean variable spaceOnFlag is true the token WhiteSpace has the usual
behavior. That means whitespaces are filtered from the input stream and not delivered to
the parser. Setting spaceOnFlag temporarily to false changes this behavior. Whites-
paces are now submitted to the parser and must explicitly be parsed if they occur in the
input stream or cannot occur in the input stream.
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Switching the spaceOnFlag can only be controlled from the scanner. Because of the
variable lookahead of the scanner a number of preprocessed token may already include (or
filter) whitespaces, before the parser can switch the behavior. To be able to switch from the
lexer to the parser, special tokens need to be defined that do the switching. Unfortunately,
these tokens need to be present in the input stream, which makes the process only usable
for certain special cases. The below excerpt shows an impractical example for the ">>"
operator:

MCG SpaceOnOff1 ShiftExpression implements Expression <160> =
2 leftExpression:Expression
3 WSOff ( shiftOp2:"<" "<"
4 | shiftOp4:">" ">"
5 ) WSOn
6 rightExpression:Expression ;
7

8 token WSOff = ":!"
9 :{ spaceOnFlag = false; };
10

11 token WSOn = "!:"
12 :{ spaceOnFlag = true; };

Listing 18.24: Switching whitespaces on and off temporarily in productions

Token WSOn and WSOff adapt the behavior of token WhiteSpace. Both nonterminals
are selected such that they do not interfere with other nonterminals. Unfortunately they
cannot be empty and they need to be token (and not other nonterminals). The result is
unsatisfactory for this case.

18.4.3 Preventing Whitespaces between Tokens

If the tokens need to be defined individually, but should follow consecutively without spaces
in between, we can also use the line and column position of tokens after being parsed. The
following grammar shows how the extra function is used in the productions in form of a
semantic predicate.

MCG SpaceFreeChecks1 ShiftExpression implements Expression <160> =
2 leftExpression:Expression
3 ( shiftOp2:"<" "<" {noSpace()}?
4 | shiftOp3:">" ">" {noSpace()}? ">" {noSpace()}?
5 )
6 rightExpression:Expression;
7

8 C = Name "." NoWSLast2 Name NoWSLast2 ;
9

10 NoWSLast2 = {noSpace()}? ;

Listing 18.25: Disallowing spaces between last two token
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The semantic predicate {noSpace()}? can be used directly or can be encapsulated in a
nonterminal like e.g. NoWSLast2. It must be applied after the two tokens that shall be
directly connected and can be used repeatedly, e.g. to define ">>>" but also with tokens
that consist of several characters as shown with nonterminal C.

The definition of method noSpace() needs expert knowledge about ANTLR4, which can
e.g. be found on ANTLR4’s website2. However, the following definition of noSpace()
works for all forms of token and can be used without any modification. Because of its
general nature, it is provided by the MontiCore parser.

MCG SpaceFreeChecks1 concept antlr {
2 parserjava {
3 // checks that there is no space between the last two token
4 // this function is used after the two tokens that are combined
5 public boolean noSpace() {
6 org.antlr.v4.runtime.Token t1 = _input.LT(-1);
7 org.antlr.v4.runtime.Token t2 = _input.LT(-2);
8 // token are on same line
9 // and columns differ exactly length of earlier token (t2)
10 return ((t1.getLine()==t2.getLine()) &&
11 (t1.getCharPositionInLine()==
12 t2.getCharPositionInLine()+t2.getText().length()));
13 }
14 }
15 }

Listing 18.26: Function noSpace disallows spaces between the last two tokens

18.5 Tip: Testing Grammars and their Models

Defining a new grammar is a task as complex and error prone as writing arbitrary software.
Much can be said about how to assure the quality of a grammar. To ensure the quality
of a grammar, a comprehensive set of parsable model, as well as negative examples are
useful. It is necessary to

• review the grammar thoroughly,

• use a comprehensive set of input models to be parsed, and

• Identify a set of negative (not parseable) models to prevent false positives.

Unit tests are among the most helpful and efficient techniques to check a grammar respec-
tively its outcome for the desired behavior. Therefore, we use a JUnit infrastructure to
check the desired behavior of a grammar’s result.

This piece of Java code can be used in a similar manner for many unit tests, like in example
in Listing 18.28.

2http://www.antlr.org/
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Tip 18.27 Testing a Grammar

A kind of "unit tests" can relatively easy be achieved by embedding the grammar
to test into a testing grammar that includes the nonterminals to be tested e.g. into
repeating lists, etc.

This simplifies the tests that need to be set up especially for grammars that deal
with small literals.

The test framework JUnit [Bec15] allows to define small tests to check whether
a model or a part of a model has been transformed into the correct AST.

Java CheckScannerlessTests1 package test;
2 import static org.junit.Assert.*;
3 import de.monticore.scannerless._ast.*;
4 import de.monticore.scannerless._cocos.*;
5 import de.monticore.scannerless._symboltable.*;
6 import de.monticore.scannerless._parser.*;
7

8 public class CheckScannerlessTests {
9

10 // setup the language infrastructure
11 ScannerlessParser parser = new ScannerlessParser() ;
12

13 @BeforeClass
14 public static void init() {
15 // replacing log by a side effect free variant
16 LogStub.init();
17 Log.enableFailQuick(false);
18 }
19

20 @Before
21 public void setUp() {
22 Log.getFindings().clear();
23 }
24 }

Listing 18.28: Setting up a JUnit test infrastructure

A typical testing class, such as CheckScannerlessTests defines a reusable parser for
the grammar under test (here Scannerless). It also replaces the normal logging by a
stub that collects and ignores all errors, which is necessary to handle negative models as
well. The log is cleared for each test.

Figure 18.29 contains a positive and a negative test. Both use the parsing from a String.
In the first case a Type is parsed and in the second case an Expression (here types are
also expressions like in OCL, but the comparison ">>" contains an erroneous space).
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Java CheckScannerlessTests1 @Test
2 public void testType2() throws IOException {
3 ASTType ast = parser.parse_StringType( " List < Theo > " ).get();
4 assertEquals("List", ast.getName());
5 ASTTypeArguments ta = ast.getTypeArguments();
6 assertEquals("Theo", ta.getType(0).getName());
7 }
8

9 @Test
10 public void testType8() throws IOException {
11 // This cannot be parsed because of the illegal space in ">>"
12 Optional<ASTExpression> ast0 = parser.parse_StringExpression(
13 "List<Set<Theo>>> >wert" );
14 assertFalse(ast0.isPresent());
15 }

Listing 18.29: Some JUnit tests

Other possibilities would be to parse a string, pretty print it and compare the original and
the pretty printed version, while completely ignoring all whitespaces.

For smaller examples parsing and pretty printing etc. can be done within the process and
no files are needed, which speeds up the execution.

18.6 Questionnaire Language

The language Questionnaire provides modeling elements for questionnaires. The key
idea is to easily define and develop questionnaires and allow a backend to setup a website
with a database to let people fill the questionnaire. The user has specific demands on the
language, which are partially reflected below.

As usual, we start with an example for a model, which in this case is a questionnaire
definition for personal skills. A questionnaire defines items (i.e. questions) that ask for
information as strings, alternatives, numbers or values from a specific scale. The listing
below consists of four items asking for the name, age and programming skills in Java and
C++ (ll. 2-5)

Often items share a scale (e.g., rating an item on a range from "Beginner" 1 to
"Expert" 5). Consequently, scales can be defined once (as scale types) and items reuse
them (see l. 6). The user has provided the following example:

Questionnaire model1 questionnaire Personal {
2 item name "What is your name?" text 140
3 item age "What is your age?" number
4 item java "Rate your Java skill" skill
5 item cpp "Rate your C++ skill" skill
6 scale skill range ["Beginner" 1 .. 5 "Expert"]
7 }
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The example allows us to identify a number of keywords, such as questionnaire or
item. While the user did ask for a specific form of indentation, we as usual decided to
provide a robust implementation, which means that white spaces are ignored. The language
is only loosely inspired by programming languages, like Java, because it uses curly brackets
to enclose the questionnaires body. We also identify a number of statements, namely the
item and the scale definitions, which start with an appropriate keyword, but not have
a regular terminator, such as ";" or ",". We might either use the newline (which would
make it sensitive to white spaces) or the implicit termination, when the next keyboard
occurs. After clarification with the user, the second approach was chosen. The user denied
our suggestion to introduce a regular terminator.

As the users have to experience the language, we usually try to accommodate their wishes.
This differs, when the representation of the language is defined in a grammar, which is for
tool developers only. In the following the grammar details are described.

MCG Questionnaire1 grammar Questionnaire extends de.monticore.MCLiterals {
2

3 symbol scope QDefinition = "questionnaire" Name "{"
4 ( Item | Scale )*
5 "}";
6

7 symbol Item = "item" Name question:String (scale:Name | ScaleType);
8

9 symbol Scale = "scale" Name ScaleType;
10

11 interface ScaleType;
12

13 Range implements ScaleType = "range" "["
14 minTitle:String? min:IntLiteral
15 ".."
16 max:IntLiteral maxTitle:String?
17 "]";
18

19 Number implements ScaleType = "number";
20 Text implements ScaleType = "text" maxCharacters:IntLiteral?;
21

22 Select implements ScaleType = "select" "{"
23 options:SelectOption+
24 "}";
25

26 SelectOption = id:IntLiteral ":" title:String;
27 }

The grammar omits an explicit package declaration and starts with the grammar defined
as Questionnaire (l. 1). It makes use of MontiCore’s common grammar MCLiterals
and therefore extends it.

As defined by production rule QDefinition, each questionnaire model starts with the
keyword questionnaire (l. 3) followed by its name and an arbitrary count of Items
and Scales enclosed by curly brackets (ll. 3-5).
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An Item (l. 7) is introduced by the keyword item. It has a name and specifies the question
to ask. It either refers to a scale by its name or defines a new type of scale for that specific
item.

A Scale (l. 9) starts with the keyword scale followed by a name and a definition of a
ScaleType. There are several kinds of scale types and they all implement the interface
production ScaleType (l. 11). Since ScaleType is an interface production it is easy to
extend the language by other kinds of scales.

The language supports the following scale types. A Range (ll. 13-17) starts with the
keyword range and an interval definition in square brackets. Each end of the interval
has an optional title. The scale type Number (l. 19) simply states the keyword number
meaning that any number is expected for the item (e.g., age of a person). Similar, the
Text scale type (l. 20) starting with keyword text expects any free text (which can be
restricted to a maximum character count). Choosing an element of predefined options is
modeled by scale type Select (ll. 22-24). The keyword select introduces the modeling
element and encloses the available options in curly brackets. Each SeclectOption (l. 26)
consists of an id and a title separated by a colon.

The presentation of such a grammar is relatively straightforward, we begin with the starting
nonterminal that describes the overall language and introduces the next nonterminals. To
keep readers in the flow, it is generally a best practice, to define the next nonterminals in
order of their occurrence in the previous definition.

There is a second best practice, to start with nonterminals for larger parts of the language
and define the small nonterminals, which are usually not further decomposed, at the end.
And a third best practice is to try to define nonterminals that implement an interface
directly below the interface. Finally for larger grammars, we try to group nonterminals
that belong together. Unfortunately, these best practices are regularly in conflict.

We decided to introduce ScaleType as an interface, because this reflects that several
potential implementations are available and furthermore, we assume that more variants
will be coming. It would also have been a natural possibility to introduce an interface, e.g.
QStatement, as a common super-nonterminal for Item and Scale. This is especially
interesting, if it matters whether a scale has been defined before it is used in an item,
because the current AST item and scale definitions are kept in separate lists.

We can also see from the productions for QDefinition and Range, that the represen-
tation (layout, indents, brackets) of the production mimics the expected representation of
the text to be parsed.

The language obviously needs context conditions, a completed symbol infrastructure and
a generative backend. From those aspects the visitors are discussed in Chapter 8 in detail.
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Chapter 19

Developer’s View on MontiCore

authored by Robert Heim

In this chapter an overview of where to find MontiCore’s source files is given. MontiCore
is open source and was originally developed by the Software Engineering Group of RWTH
Aachen University. MontiCore imports other sources, partly as open source. Consequently,
the source code mentioned in this report is not fully located in one single location.

In general, Java is MontiCore’s default programming language. Apache Maven [Fou17a]
is a de facto standard to manage module dependencies and the build infrastructure of
Java projects. Following this standard, MontiCore’s source code is structured in Maven’s
default project layout [Fou17c]. One project object model (POM) [Fou17b] specifies one
Maven project. The POM is located in a file called pom.xml in the root folder of a
Maven project. The most important folders are explained in the following. On the
top level the folder src separates source code from generated code. The latter is lo-
cated in the target folder. The src folder contains a main folder for the productive
source code and a test folder containing all tests. Both, folders then are structured
by separating the actual java source code (src/main/java, src/test/java) from
additional resources (src/main/resources, src/test/resources). Also, gram-
mars (src/main/grammars) and models (src/main/models) are separated. Please
note, that by default only the compiled source code (target folder) and resources of the
src/main/resources folder are included when Maven packages the final jar. Also, the
target folder must never be part of a version control system since it is generated.

Currently, MontiCore uses two project management tools (SSELab and GitHub). The
SSELab project [Mon17a] is private. All source code specific to MontiCore that is not yet
open source is located in its SVN repository [Mon17b]. Besides that a main purpose of
the SSELab project is its ticket system for planning development cycles and to track bugs.
However, it also contains MontiCore’s Release Notes [Mon17c] as well as source code and
documentation of outdated MontiCore versions. Additionally, some languages that are not
yet open source are located in the mclang folder [Mon17d].
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Tip 19.1 Different Kinds of Projects

The term project is used in multiple ways. Some common usages are specified in
the following.

A software engineering project commonly consists of a project definition (often
in form of a research or industry application), has a budget, a lifetime, potential
project partners, responsible project managers, a project team, project management
tools, a development infrastructure, etc. This is the business oriented interpretation
of the term project.

To conduct a SE project, project management tools are used. Here, the term
management project is a set of services provided by any of the project management
tools (e.g., SSELab, GitLab, GitHub). These tools support the project development,
documentation and communication between team members. Their services may
include source code repositories and their version control (SVN, git), a ticket system,
wikis, mailing lists, etc. A SE project may use several management projects (e.g.,
some may be accessible for customers or students, others may be internal or open
source such as MontiCore).

A Maven project [Fou17a] is the technical bundling of specific source code that
can be deployed as an artifact (this is often a library jar or an executable jar). A
Maven project is reusable in other Maven projects by defining a dependency on the
deployed artifact. Most management projects consist of multiple Maven projects
to structure modules of complex source code. Maven projects can be nested. E.g.,
MontiCore as well as its runtime are available as single jars that bundle the different
specific modules.

19.1 MontiCore’s GitHub Repository

MontiCore’s source code itself is open source and located in the MontiCore GitHub repos-
itory1. There are several branches which have their own purpose:

master contains the latest stable source code. On each release of MontiCore the master
branch is updated from the dev branch.

dev is the developers branch on which developers actually work day to day.

ticketX other branches may be created in case huge changes or experimental features are
implemented. To keep track of features the name of such a branch should match a
ticket in MontiCore’s ticket system. Such development should not interfere with the
dev branch and, hence, is developed in its own branch until it is stable. Then, the
branch is merged into the dev branch and the ticket branch can be deleted.

1https://github.com/MontiCore/monticore
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Tip 19.2 Repositories

MontiCore and its components can be found under:

Files1 // MontiCore core parts
2 Repository: https://github.com/MontiCore/monticore
3

4 // Basics, such as logging
5 Repository: https://github.com/MontiCore/se-commons
6

7 // MontiCore open source languages
8 Repository: https://github.com/MontiCore/
9

10 // Language-projects in development
11 Repository: https://sselab.de/lab2/private/svn/MontiCore/
12

13 // Packaged components, sources, snaphots etc.
14 Nexus: https://nexus.se.rwth-aachen.de/
15

16 // Help for regular builds, continuous integration, etc.
17 CI: http://ci.se.rwth-aachen.de/
18

19 // Results of daily checks for smells, etc.
20 Sonar: http://metric.se.rwth-aachen.de/
21

22 // Management of open issues, enhancements, etc.
23 Tickets: https://sselab.de/lab2/private/trac/MontiCore/
24

25 // Release notes about important changes, etc.
26 Release Notes:
27 https://sselab.de/lab2/private/intwiki/MontiCore/
28 index.php?title=Release_Notes_MontiCore

The github project is public. It contains the core project and a number of lan-
guages. The SSELab repository is private and contains languages still under develop-
ment. Access can be granted upon request. The Nexus website provides convenient
download of the newest versions of the required resources and allows a nice inte-
gration into maven project organisation. Sonar and Jenkins CI identify common
problems early, automatically execute tests and build deployable artifacts.

The MontiCore project team internally uses the Trac ticket system to manage
open issues.

19.1.1 External Developers and Forks

External developers should only work on the dev branch. It is also suboptimal to start too
many branches. As a best practice, side developments should fork2 the repository and work
in their own fork. When finished, they must merge all new changes from MontiCore’s dev

2https://help.github.com/articles/fork-a-repo/
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branch and then create a merge request on the dev branch. MontiCore’s core developers
will review and possibly accept it to incorporate the work.

19.1.2 MontiCore’s Maven Projects

The MontiCore GitHub Repository3 consists of several Maven projects, from which the
following provide MontiCore’s core features:

monticore-generator contains the Grammar language for MontiCore-based grammars
(cf. Chapter 4), a transformation to transform a given grammar to its internal CD
representation and the generator that derives a DSL infrastructure from the CD.
Here, the Groovy-based MontiCoreScript and all MontiCore configuration options
are defined as well.

monticore-runtime provides everything required to execute MontiCore or a MontiCore-
based DSL. This includes the Generator Engine (s. Chapter 13), common infras-
tructure of Symbol Tables and ASTs (e.g., the ASTNode interface as described in
Section 5.7), and helpers, e.g., for file operations.

monticore-grammar contains the library of the common grammars (cf. Chapter 17) pro-
viding lexical tokens, literal constants and types as well as some helpers to work with
these grammars (e.g., pretty printers).

The other Maven projects complement the core MontiCore functionalities:

monticore-cli provides MontiCore’s Command Line Interface by basically wrapping the
MontiCore generator script with a CLI.

monticore-editor contains core infrastructure supporting textual (texteditor-core)
and graphical (graphicaleditor-core) model editors as well as the editor for
the MontiCore Grammar (grammar-editor).

monticore-emf-runtime contains the runtime environment for EMF compatible Monti-
Core applications.

monticore-maven contains the Maven plugin4 that enables executing MontiCore as part
of the Maven build lifecycle5.

monticore-templateclassgenerator contains a MontiCore module to generate Java classes
from templates to enable a Java-based type-safe workflow when calling templates
(disabled by default).

3https://github.com/MontiCore/monticore
4https://nexus.se.rwth-aachen.de/monticore/latest/monticore-maven/

monticore-maven-plugin/index.html
5https://maven.apache.org/guides/introduction/introduction-to-the-

lifecycle.html
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19.2 Other Source Code Locations

Since the GitHub repository only includes source code specific to MontiCore, other loca-
tions are still relevant, too:

se-commons Located in an SSELab project6 the se-commons provide helpers that are
common across multiple projects of the chair. The project itself is private, but
the packaged libraries are world accessible through the Nexus7. The parts used by
MontiCore are:

se-commons-logging contains the Log’s source code as described in Section 15.3.

se-commons-groovy contains helpers such as the GroovyRunner and
GroovyInterpreter to interpret Groovy scripts (cf. Chapter 16).

se-commons-utilities contains utility classes such as SourceCodePosition,
CLIArguments, and the Names helper.

cd4analysis The CD4Analysis language is located as language within the MontiCore SSE-
Lab project8. It mainly focuses on class diagrams for early activities of the devel-
opment project. It contains full assistance for associations, composition, qualifiers,
etc., but does not define methods. There is a code generator available, that ensures
consistency of the defined model, storage, etc.

automaton The Automaton language is located as language within the MontiCore SSELab
project9. In the provided version, it serves mainly as teaching and toy example.

javaDSL The JavaDSL language is located as language within the MontiCore SSELab
project10. The javaDSL is fully compatible with the Java 8 standard. It contains
a complete grammar, symbol table infrastructure, context conditions, etc. The lan-
guage is meant for either complete integration into a larger language or selection of
individual parts, and probably particular Statement or Expression.

javaLib The JavaLib is located within the MontiCore SSELab project11.

6https://sselab.de/lab1/user/project/se-commons/
7https://nexus.se.rwth-aachen.de/
8https://sselab.de/lab2/private/svn/MontiCore/trunk/mclang/cd4analysis/
9https://sselab.de/lab2/private/svn/MontiCore/trunk/mclang/automaton/
10https://sselab.de/lab2/private/svn/MontiCore/trunk/mclang/javaDSL/
11https://sselab.de/lab2/private/svn/MontiCore/trunk/mclang/javaLib/
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Chapter 20

Further Reading and Related Work from
the SE Group, RWTH Aachen

20.1 Agile Model Based Software Engineering

Agility and modeling in the same project? This question was raised in [Rum04]: “Using
an executable, yet abstract and multi-view modeling language for modeling, designing and
programming still allows to use an agile development process.” Modeling will be used in
development projects much more, if the benefits become evident early, e.g with executable
UML [Rum02] and tests [Rum03]. In [GKRS06], for example, we concentrate on the inte-
gration of models and ordinary programming code. In [Rum12] and [Rum16], the UML/P,
a variant of the UML especially designed for programming, refactoring and evolution, is
defined. The language workbench MontiCore [GKR+06, GKR+08] is used to realize the
UML/P [Sch12]. Links to further research, e.g., include a general discussion of how to
manage and evolve models [LRSS10], a precise definition for model composition as well
as model languages [HKR+09] and refactoring in various modeling and programming lan-
guages [PR03]. In [FHR08] we describe a set of general requirements for model quality.
Finally [KRV06] discusses the additional roles and activities necessary in a DSL-based soft-
ware development project. In [CEG+14] we discuss how to improve reliability of adaprivity
through models at runtime, which will allow developers to delay design decisions to runtime
adaptation.

20.2 Generative Software Engineering

The UML/P language family [Rum12, Rum11, Rum16] is a simplified and semantically
sound derivate of the UML designed for product and test code generation. [Sch12] de-
scribes a flexible generator for the UML/P based on the MontiCore language workbench
[KRV10, GKR+06, GKR+08]. In [KRV06], we discuss additional roles necessary in a
model-based software development project. In [GKRS06] we discuss mechanisms to keep
generated and handwritten code separated. In [Wei12] demonstrate how to systematically
derive a transformation language in concrete syntax. To understand the implications of
executability for UML, we discuss needs and advantages of executable modeling with UML
in agile projects in [Rum04], how to apply UML for testing in [Rum03] and the advantages
and perils of using modeling languages for programming in [Rum02].
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20.3 Unified Modeling Language (UML)

Starting with an early identification of challenges for the standardization of the UML in
[KER99] many of our contributions build on the UML/P variant, which is described in
the two books [Rum16] and [Rum12] implemented in [Sch12]. Semantic variation points
of the UML are discussed in [GR11]. We discuss formal semantics for UML [BHP+98] and
describe UML semantics using the “System Model” [BCGR09a], [BCGR09b], [BCR07b]
and [BCR07a]. Semantic variation points have, e.g., been applied to define class diagram
semantics [CGR08]. A precisely defined semantics for variations is applied, when checking
variants of class diagrams [MRR11c] and objects diagrams [MRR11d] or the consistency
of both kinds of diagrams [MRR11e]. We also apply these concepts to activity diagrams
[MRR11b] which allows us to check for semantic differences of activity diagrams [MRR11a].
The basic semantics for ADs and their semantic variation points is given in [GRR10]. We
also discuss how to ensure and identify model quality [FHR08], how models, views and
the system under development correlate to each other [BGH+98] and how to use modeling
in agile development projects [Rum04], [Rum02]. The question how to adapt and extend
the UML is discussed in [PFR02] describing product line annotations for UML and more
general discussions and insights on how to use meta-modeling for defining and adapting
the UML are included in [EFLR99], [FELR98] and [SRVK10].

20.4 Domain Specific Languages (DSLs)

Computer science is about languages. Domain Specific Languages (DSLs) are better to
use, but need appropriate tooling. The MontiCore language workbench [GKR+06, KRV10,
Kra10, GKR+08] allows the specification of an integrated abstract and concrete syntax
format [KRV07b] for easy development. New languages and tools can be defined in modular
forms [KRV08, GKR+07, Völ11] and can, thus, easily be reused. [Wei12] presents a tool
that allows to create transformation rules tailored to an underlying DSL. Variability in DSL
definitions has been examined in [GR11]. A successful application has been carried out in
the Air Traffic Management domain [ZPK+11]. Based on the concepts described above,
meta modeling, model analyses and model evolution have been discussed in [LRSS10] and
[SRVK10]. DSL quality [FHR08], instructions for defining views [GHK+07], guidelines
to define DSLs [KKP+09] and Eclipse-based tooling for DSLs [KRV07a] complete the
collection.

20.5 Software Language Engineering

For a systematic definition of languages using composition of reusable and adaptable lan-
guage components, we adopt an engineering viewpoint on these techniques. General ideas
on how to engineer a language can be found in the GeMoC initiative [CBCR15, CCF+15].
As said, the MontiCore language workbench provides techniques for an integrated defi-
nition of languages [KRV07b, Kra10, KRV10]. In [SRVK10] we discuss the possibilities
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and the challenges using metamodels for language definition. Modular composition, how-
ever, is a core concept to reuse language components like in MontiCore for the frontend
[Völ11, KRV08] and the backend [RRRW15]]. Language derivation is to our believe a
promising technique to develop new languages for a specific purpose that rely on existing
basic languages. How to automatically derive such a transformation language using con-
crete syntax of the base language is described in [HRW15, Wei12] and successfully applied
to various DSLs. We also applied the language derivation technique to tagging languages
that decorate a base language [GLRR15] and delta languages [HHK+15a, HHK+13], where
a delta language is derived from a base language to be able to constructively describe dif-
ferences between model variants usable to build feature sets.

20.6 Modeling Software Architecture & the MontiArc Tool

Distributed interactive systems communicate via messages on a bus, discrete event sig-
nals, streams of telephone or video data, method invocation, or data structures passed
between software services. We use streams, statemachines and components [BR07] as well
as expressive forms of composition and refinement [PR99] for semantics. Furthermore,
we built a concrete tooling infrastructure called MontiArc [HRR12] for architecture de-
sign and extensions for states [RRW13b]. MontiArc was extended to describe variability
[HRR+11] using deltas [HRRS11, HKR+11] and evolution on deltas [HRRS12]. [GHK+07]
and [GHK+08] close the gap between the requirements and the logical architecture and
[GKPR08] extends it to model variants. [MRR14] provides a precise technique to verify
consistency of architectural views [Rin14, MRR13] against a complete architecture in or-
der to increase reusability. Co-evolution of architecture is discussed in [MMR10] and a
modeling technique to describe dynamic architectures is shown in [HRR98].

20.7 Compositionality & Modularity of Models

[HKR+09] motivates the basic mechanisms for modularity and compositionality for mod-
eling. The mechanisms for distributed systems are shown in [BR07] and algebraically un-
derpinned in [HKR+07]. Semantic and methodical aspects of model composition [KRV08]
led to the language workbench MontiCore [KRV10] that can even be used to develop mod-
eling tools in a compositional form. A set of DSL design guidelines incorporates reuse
through this form of composition [KKP+09]. [Völ11] examines the composition of context
conditions respectively the underlying infrastructure of the symbol table. Modular edi-
tor generation is discussed in [KRV07a]. [RRRW15] applies compositionality to Robotics
control. [CBCR15] (published in [CCF+15]) summarizes our approach to composition and
remaining challenges in form of a conceptual model of the “globalized” use of DSLs. As a
new form of decomposition of model information we have developed the concept of tagging
languages in [GLRR15]. It allows to describe additional information for model elements in
separated documents, facilitates reuse, and allows to type tags.
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20.8 Semantics of Modeling Languages

The meaning of semantics and its principles like underspecification, language precision
and detailedness is discussed in [HR04]. We defined a semantic domain called “System
Model” by using mathematical theory in [RKB95, BHP+98] and [GKR96, KRB96]. An
extended version especially suited for the UML is given in [BCGR09b] and in [BCGR09a]
its rationale is discussed. [BCR07a, BCR07b] contain detailed versions that are applied to
class diagrams in [CGR08]. To better understand the effect of an evolved design, detection
of semantic differencing as opposed to pure syntactical differences is needed [MRR10].
[MRR11a, MRR11b] encode a part of the semantics to handle semantic differences of
activity diagrams and [MRR11e] compares class and object diagrams with regard to their
semantics. In [BR07], a simplified mathematical model for distributed systems based on
black-box behaviors of components is defined. Meta-modeling semantics is discussed in
[EFLR99]. [BGH+97] discusses potential modeling languages for the description of an
exemplary object interaction, today called sequence diagram. [BGH+98] discusses the
relationships between a system, a view and a complete model in the context of the UML.
[GR11] and [CGR09] discuss general requirements for a framework to describe semantic and
syntactic variations of a modeling language. We apply these on class and object diagrams
in [MRR11e] as well as activity diagrams in [GRR10]. [Rum12] defines the semantics in a
variety of code and test case generation, refactoring and evolution techniques. [LRSS10]
discusses evolution and related issues in greater detail.

20.9 Evolution & Transformation of Models

Models are the central artifact in model driven development, but as code they are not
initially correct and need to be changed, evolved and maintained over time. Model trans-
formation is therefore essential to effectively deal with models. Many concrete model
transformation problems are discussed: evolution [LRSS10, MMR10, Rum04], refinement
[PR99, KPR97, PR94], refactoring [Rum12, PR03], translating models from one language
into another [MRR11c, Rum12] and systematic model transformation language develop-
ment [Wei12]. [Rum04] describes how comprehensible sets of such transformations support
software development and maintenance [LRSS10], technologies for evolving models within
a language and across languages, and mapping architecture descriptions to their implemen-
tation [MMR10]. Automaton refinement is discussed in [PR94, KPR97], refining pipe-and-
filter architectures is explained in [PR99]. Refactorings of models are important for model
driven engineering as discussed in [PR01, PR03, Rum12]. Translation between languages,
e.g., from class diagrams into Alloy [MRR11c] allows for comparing class diagrams on a
semantic level.

20.10 Variability & Software Product Lines (SPL)

Products often exist in various variants, for example cars or mobile phones, where one
manufacturer develops several products with many similarities but also many variations.
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Variants are managed in a Software Product Line (SPL) that captures product common-
alities as well as differences. Feature diagrams describe variability in a top down fashion,
e.g., in the automotive domain [GHK+08] using 150% models. Reducing overhead and as-
sociated costs is discussed in [GRJA12]. Delta modeling is a bottom up technique starting
with a small, but complete base variant. Features are additive, but also can modify the
core. A set of commonly applicable deltas configures a system variant. We discuss the ap-
plication of this technique to Delta-MontiArc [HRR+11, HRR+11] and to Delta-Simulink
[HKM+13]. Deltas can not only describe spacial variability but also temporal variability
which allows for using them for software product line evolution [HRRS12]. [HHK+13] and
[HRW15] describe an approach to systematically derive delta languages. We also apply
variability to modeling languages in order to describe syntactic and semantic variation
points, e.g., in UML for frameworks [PFR02]. Furthermore, we specified a systematic way
to define variants of modeling languages [CGR09] and applied this as a semantic language
refinement on Statecharts in [GR11].

20.11 Cyber-Physical Systems (CPS)

Cyber-Physical Systems (CPS) [KRS12] are complex, distributed systems which control
physical entities. Contributions for individual aspects range from requirements [GRJA12],
complete product lines [HRRW12], the improvement of engineering for distributed automo-
tive systems [HRR12] and autonomous driving [BR12a] to processes and tools to improve
the development as well as the product itself [BBR07]. In the aviation domain, a modeling
language for uncertainty and safety events was developed, which is of interest for the Eu-
ropean airspace [ZPK+11]. A component and connector architecture description language
suitable for the specific challenges in robotics is discussed in [RRW13b, RRW14]. Mon-
itoring for smart and energy efficient buildings is developed as Energy Navigator toolset
[KPR12, FPPR12, KLPR12].

20.12 State Based Modeling (Automata)

Today, many computer science theories are based on statemachines in various forms in-
cluding Petri nets or temporal logics. Software engineering is particularly interested in
using statemachines for modeling systems. Our contributions to state based modeling can
currently be split into three parts: (1) understanding how to model object-oriented and
distributed software using statemachines resp. Statecharts [GKR96, BCR07b, BCGR09b,
BCGR09a], (2) understanding the refinement [PR94, RK96, Rum96] and composition
[GR95] of statemachines, and (3) applying statemachines for modeling systems. In [Rum96]
constructive transformation rules for refining automata behavior are given and proven cor-
rect. This theory is applied to features in [KPR97]. Statemachines are embedded in the
composition and behavioral specification concepts of Focus [BR07]. We apply these tech-
niques, e.g., in MontiArcAutomaton [RRW13a, RRW14] as well as in building management
systems [FLP+11].
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20. Further Reading and Related Work from the SE Group, RWTH Aachen

20.13 Robotics

Robotics can be considered a special field within Cyber-Physical Systems which is defined
by an inherent heterogeneity of involved domains, relevant platforms, and challenges. The
engineering of robotics applications requires composition and interaction of diverse dis-
tributed software modules. This usually leads to complex monolithic software solutions
hardly reusable, maintainable, and comprehensible, which hampers broad propagation of
robotics applications. The MontiArcAutomaton language [RRW13a] extends ADL Mon-
tiArc and integrates various implemented behavior modeling languages using MontiCore
[RRW13b, RRW14, RRRW15] that perfectly fit Robotic architectural modelling. The
LightRocks [THR+13] framework allows robotics experts and laymen to model robotic
assembly tasks.

20.14 Automotive, Autonomic Driving & Driver Assistance

Introducing and connecting sophisticated driver assistance, infotainment and communi-
cation systems as well as advanced active and passive safety-systems result in complex
embedded systems. As these feature-driven subsystems may be arbitrarily combined by
the customer, a huge amount of distinct variants needs to be managed, developed and
tested. A consistent requirements management that connects requirements with features
in all phases of the development for the automotive domain is described in [GRJA12].
The conceptual gap between requirements and the logical architecture of a car is closed
in [GHK+07, GHK+08]. [HKM+13] describes a tool for delta modeling for Simulink
[HKM+13]. [HRRW12] discusses means to extract a well-defined Software Product Line
from a set of copy and paste variants. [RSW+15] describes an approach to use model check-
ing techniques to identify behavioral differences of Simulink models. Quality assurance,
especially of safety-related functions, is a highly important task. In the Carolo project
[BR12a, BR12b], we developed a rigorous test infrastructure for intelligent, sensor-based
functions through fully-automatic simulation [BBR07]. This technique allows a dramatic
speedup in development and evolution of autonomous car functionality, and thus enables
us to develop software in an agile way [BR12a]. [MMR10] gives an overview of the current
state-of-the-art in development and evolution on a more general level by considering any
kind of critical system that relies on architectural descriptions. As tooling infrastructure,
the SSElab storage, versioning and management services [HKR12] are essential for many
projects.

20.15 Energy Management

In the past years, it became more and more evident that saving energy and reducing
CO2 emissions is an important challenge. Thus, energy management in buildings as well
as in neighbourhoods becomes equally important to efficiently use the generated energy.
Within several research projects, we developed methodologies and solutions for integrating
heterogeneous systems at different scales. During the design phase, the Energy Navigators
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20.16. Cloud Computing & Enterprise Information Systems

Active Functional Specification (AFS) [FPPR12, KPR12] is used for technical specification
of building services already. We adapted the well-known concept of statemachines to be
able to describe different states of a facility and to validate it against the monitored values
[FLP+11]. We show how our data model, the constraint rules and the evaluation approach
to compare sensor data can be applied [KLPR12].

20.16 Cloud Computing & Enterprise Information Systems

The paradigm of Cloud Computing is arising out of a convergence of existing technolo-
gies for web-based application and service architectures with high complexity, criticality
and new application domains. It promises to enable new business models, to lower the
barrier for web-based innovations and to increase the efficiency and cost-effectiveness of
web development [KRR14]. Application classes like Cyber-Physical Systems and their
privacy [HHK+14, HHK+15b], Big Data, App and Service Ecosystems bring attention to
aspects like responsiveness, privacy and open platforms. Regardless of the application
domain, developers of such systems are in need for robust methods and efficient, easy-to-
use languages and tools [KRS12]. We tackle these challenges by perusing a model-based,
generative approach [NPR13]. The core of this approach are different modeling languages
that describe different aspects of a cloud-based system in a concise and technology-agnostic
way. Software architecture and infrastructure models describe the system and its physical
distribution on a large scale. We apply cloud technology for the services we develop, e.g.,
the SSELab [HKR12] and the Energy Navigator [FPPR12, KPR12] but also for our tool
demonstrators and our own development platforms. New services, e.g., collecting data
from temperature, cars etc. can now easily be developed.
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